4. Searching

Linear Search, Binary Search, (Interpolation Search,) Lower Bounds
[Ottman/Widmayer, Kap. 3.2, Cormen et al, Kap. 2: Problems
2.1-3,2.2-3,2.3-5]

118

Search in Array

Provided

m Array A with n elements (A[1],...
m Key b

Wanted: index k, 1 < k < n with A[k] = b or "not found”.

, Aln]).

22 | 20 | 32 | 10 | 35 | 24 | 42 | 38 | 28 | 41

1 2 3 4 5 6 7 8 9 10

120

The Search Problem

Provided

m A set of data sets

examples
telephone book, dictionary, symbol table

m Each dataset has a key k.

m Keys are comparable: unique answer to the question k; < k, for
keys /ﬁ,]fg.

Task: find data set by key k.

119

Linear Search

Traverse the array from A[1] to A[n].

m Best case: 1 comparison.
m Worst case: n comparisons.

m Assumption: each permutation of the n keys with same probability.
Expected number of comparisons for the successful search:

lew. n+1
Eizllz 5 .

121

Search in a Sorted Array

Provided

m Sorted array A with n elements (A[1],..., An]) with
Al < A2l <--- < An).
m Key b

Wanted: index k, 1 < k < n with A[k] = b or "not found”.

10 | 20 | 22 | 24 | 28 | 32 | 35 | 38 | 41 | 42

1 2 3 4 5 6 7 8 9 10

Binary Search Algorithm BSearch(A|l..7],)

Input: Sorted array A of n keys. Key b. Bounds 1 <[<r<mnorl>r

beliebig.
Output: Index of the found element. 0, if not found.
m <+ |[(I+7)/2]
if [> r then // Unsuccessful search
return NotFound
else if b = A[m] then// found
. returnm
else if b < A[m| then// element to the left
return BSearch(A[l..m — 1],b)
else // b > A[m]: element to the right
. return BSearch(A[m + 1..7],b)

122

124

Divide and Conquer!

Search b = 23.

10 | 20 |22 | 24 | 28 | 32 | 35 | 38 | 41 | 42 b < 28

1 2 3 4 5 6 7 8 9 10

10|20 |22 |24 | 28 | 32 | 35|38 41 | 42 b>20

1 2 3 4 5 6 7 8 9 10

1020 | 22 |24 |28 | 32|35 |38 | 41 | 42 p>22

1 2 3 4 5 6 7 8 9 10

10 |20 |22 | 4 | 28 |32 | 35|38 |41 | 42| b<24

1 2 3 5 6 7 8 9 10

10| 20 | 22 |24 |28 32|35 38 | 41 42 erfolglos

1 2 3 a4 5 6 7 8 9 10

123
Analysis (worst case)
Recurrence (n = 2%)
d fallsn =1,

Compute:

T(n)

T(n) = {

A (O

>—|—i-c

T
T
T

(
(&
(

2) +logon-c=d+c-logyn € O(logn)
n

T(n/2)+c fallsn > 1.

125

Analysis (worst case)

d ifn =1,
T(n) = {T(n/Q) +c ifn>1.

Guess : T'(n) =d +c-logyn
Proof by induction:

m Base clause: 7'(1) = d.
m Hypothesis: T'(n/2) = d + ¢ - logyn/2
m Step: (n/2 — n)

Tn)=Tn/2)+c=d+c-(loggn — 1)+ c=d+ clogyn.

126

Iterative Binary Search Algorithm

Input: Sorted array A of n keys. Key b.
Output: Index of the found element. 0, if unsuccessful.
l<—1.r<n
while [< r do
m<« [({+71)/2]
if Alm| =10 then
. returnm
else if A[m| < b then
Clem+1
else
Crem—1

r(;turn NotFound;

128

Result

The binary sorted search algorithm requires ©(log n) fundamental
operations.

127

Correctness

Algorithm terminates only if A is empty or b is found.
Invariant: If bis in A then b is in domain A[l..7]
Proof by induction

m Base clause b € A[l..n] (oder nicht)

m Hypothesis: invariant holds after 7 steps.

m Step:
b< Alm|=be All.m —1]
b>Alm]=0be€ Alm+ 1..r]

129

[Can this be improved?]

Assumption: values of the array are uniformly distributed.

Search for "Becker” at the very beginning of a telephone book while
search for "Wawrinka" rather close to the end.
Binary search always starts in the middle.

Binary search always takes m = |l + 5*].

Lower Bounds

Binary Search (worst case): ©(logn) comparisons.

Does for any search algorithm in a sorted array (worst case) hold
that number comparisons = Q(logn)?

130

132

[Interpolation search]

Expected relative position of b in the search interval [I, |

b— All]

= m S [0,1]

New 'middle’: [+ p - (r —)
Expected number of comparisons O(loglogn) (without proof).

@ Would you always prefer interpolation search?

O No: worst case number of comparisons 2(n).

Decision tree

3
b < A[3] b> A3 m Forany input b = Ali] the
algorithm must succeed =
decision tree comprises at
least n nodes.
1 5
m Number comparisons in
b>All] b < A[5] b> A[5] \worst case = height of the
tree = maximum number
nodes from root to leaf.
2 4 6

133

Decision Tree

Binary tree with height 4 has at most
20 42t ... 4 2L = 2h — 1 < 2" nodes.

2" > n = h > logyn

Decision tree with n node has at least height log, n.
Number decisions = 2(logn).

Any comparison-based search algorithm on sorted data with length
n requires in the worst case §)(log n) comparisons.

134

Attempt

@ Correct?
"Proof”: to find b in A, b must be compared with each of the n
elements Afi| (1 <i <n).

Wrong argument! It is still possible to compare elements within A.

136

Lower bound for Search in Unsorted Array

Any comparison-based search algorithm with unsorted data of
length n requires in the worst case 2(n) comparisons.

Better Argument

m Different comparisons: Number comparisons with b: e Number
comparisons without b: ¢

m Comparisons induce g groups. Initially g = n.

m To connect two groups at least one comparison is needed:
n—g<ai.

m At least one element per group must be compared with b.

m Number comparisons i +e >n—g+ g = n. |

5. Selection

The Selection Problem, Randomised Selection, Linear Worst-Case
Selection [Ottman/Widmayer, Kap. 3.1, Cormen et al, Kap. 9]

138

Naive Algorithm

Repeatedly find and remove the minimum ©(k - n).
— Median in ©(n?)

140

The Problem of Selection

Input

m unsorted array A = (A, ..., A,) with pairwise different values
m Number 1l < k <n.

Output A[i] with [{j : Alj] < Ali]}| =k —1

Special cases

k = 1: Minimum: Algorithm with n comparison operations trivial.
k = n: Maximum: Algorithm with n comparison operations trivial.
k = |n/2]: Median.

Min and Max

@ separately find minimum an maximum in (A[1],..., A[n]), 2n
comparisons are required. (How) can an algorithm with less than 2n
comparisons for both values at a time can be found?

® Possible with %n comparisons: compare 2 elements each and
then the smaller one with min and the greater one with max.*

4An indication that the naive algorithm can be improved.

139

141

Better Approaches

m Sorting (covered soon): O(nlogn)
m Use a pivot: O(n) !

Algorithmus Partition(A|/..r|, p)

Input: Array A, that contains the pivot p in the interval [, r] at least once.
Output: Array A partitioned in [[..r] around p. Returns position of p.
while [< 7 do
while A[l] < p do
Ll +1
while A[r] > p do
| r+7r—1
swap(A[l], A[r])
if All] = A[r] then
Ll +1

return |-1

142

144

Use a pivot

Choose a (an arbitrary) pivot p

Partition A in two parts, and determine the rank of p by counting
the indices i with A[i] < p.

Recursion on the relevant part. If £ = r then found.

<|l<|<|<|l<|p|>|>|>]|>

1 r

143

Correctness: Invariant

Invariant I: A; < pVie€ [0,1), A; >pVi€ (r,n], Ik €[l,r] : A, =p.
while [< r do

I

while A[l] < p do

AT I'und A[l] >

while A[r] > p do und A[l] > p
SR I'und Afr| <

una Alr <p
swap(A{l, Alr) Al < p < Alr
if All] = A[r] then Iund Al] < p < A[r]
L [+1+1
» I
return |-1

Correctness: progress

while [<7 do

while A[l] < p do
Ll +1

while A[r] > p do
| r+7r—1
swap(A[l], A[r])

if A[l] = A[r] then
Ll +1

progress if A[l] < p
progress if A[r] > p

progress if A[l] > p oder Alr| < p
progress if A[l] = A[r] =p

return -1

146

Analysis

Partitioning with factor ¢ (0 < ¢ < 1): two groups with ¢ - n and
(1 — q) - n elements (without loss of generality g > 1 — g).

Tn)<T(g-n)+c-n

log, (n)—1
=cnt+q-cn+T(@F -n)=..=c-n Z q'+T(1)
i=0
<c-n iqi +d:c-n-L+d:O(n)
- i=0 1—gq
——
geom. Reihe

Choice of the pivot.

The minimum is a bad pivot: worst case ©(n?)

P P2 | P3| Pa | P5

A good pivot has a linear number of elements on both sides.

How can we achieve this?

Randomness to our rescue (Tony Hoare, 1961). In each step
choose a random pivot.

1
4

N[=
=

& (W) N (§
S S

" schlecht gute Pivots schlecht

Probability for a good pivot in one trial: 5 =: p.
Probability for a good pivot after k trials: (1 — p)*~1 - p.

Expected number of trials: 1/p = 2 (Expected value of the geometric
distribution:)

149

Algorithm Quickselect (A[l..7], k)

Input: Array A with length n. Indices 1 <[< k < r < n, such that for all
z € All.r]: |[{j|Alf] < 2} > 1 and [{j|A[j] < x}| <7
Output: Value x € A[l..r] with [{j]|A[j] < x}| > k and
[{jle < AlJH =2 n—k+1
if I=r then
- return A[l];

x < RandomPivot(A[l..r])
m < Partition(A[l..r], z)
if £ <m then

. return QuickSelect(A[l..m — 1], k)
else if &£ > m then

- return QuickSelect(A[m + 1..r], k)
else

. return Afk]

150

Median of medians

Goal: find an algorithm that even in worst case requires only linearly
many steps.

Algorithm Select (k-smallest)

m Consider groups of five elements.

m Compute the median of each group (straighforward)

m Apply Select recursively on the group medians.

m Partition the array around the found median of medians. Result: ¢

m If i = k then result. Otherwise: select recursively on the proper
side.

152

Algorithm RandomPivot (A[l..7])

Input: Array A with length n. Indices 1 <1 <i<r<n
Output: Random “good” pivot x € Al..r]
repeat

choose a random pivot x € A[l..r]

p+1

for j = tor do

if Al <z thenp<p+1

ntil 85| < p < [t
return
This algorithm is only of theoretical interest and delivers a good pivot in 2 expected
iterations. Practically, in algorithm QuickSelect a uniformly chosen random pivot
can be chosen or a deterministic one such as the median of three elements.

151

Median of medians
R RRRRRRERR =R

groups of five
medians

recursion for pivot
base case

pivot (level 1)

@A partition (level 1)
median = pivot level 0

B 2. recursion starts

153

How good is this? Analysis

OO 00000000000 Recursion inequality:
O O<Omo 00 000000000040

1 n n
A >3 2 8 [NMST(kD+T 10 6]) Tdn
0 o

with some constant d.
Number points left / right of the median of medians (without median Claim:

group and the rest group) > 3 - ([$[2]] —2) > 32 -6 T(n) = O(n).
Second call with maximally [+ 6] elements.

Proof Proof
Base clause: choose c large enough such that Induction step:
T(n) < c-nfirallen < ng. T(n)ﬁo[g-‘#—c-[i—g—l—a‘—l—d-n

Induction hypothesis:

<. m 6 don= 2 8¢+ d
T(i) < c-ifirallei < n. Sergreteqptbetetdn=qg-contotdn

Induction step: Choose ¢ > 80 - d and ng = 91.

2 1
T(n)S%-c-n+86+8—-c-n:c- (£n+8) <c-n.

:c-[ﬁ-‘—kc-[?—n%—a‘%—d-n. ! —

<nflirn > ng

156

Result

The k-th element of a sequence of n elements can, in the worst
case, be found in ©(n) steps.

5.1 Appendix

Derivation of some mathemmatical formulas

Overview

)

Repeatedly find minimum n?)

Sorting and choosing A[i O(nlogn)

(

(nl
Quickselect with random pivot O(n) expected

(n)

Median of Medians (Blum)

W

O(n) worst case

1
2

1 1
4 4

&

) schlecht

(§

schlecht :

(W) N
L) L)

gute Pivots

[Expected value of the Geometric Distribution]

Random variable X € Nt with P(X = k) = (1 —p)* ! p.
Expected value

k=1 k=1
=> k- d" —kd" =D (k+1)-¢" k-
k=1 k=0

160 161

