28. Parallel Programming I

Shared Memory, Concurrency, Excursion: lock algorithm (Peterson),
Mutual Exclusion Race Conditions [C++ Threads: Williams, Kap.
2.1-2.2], [C++ Race Conditions: Williams, Kap. 3.1] [C++ Mutexes:
Williams, Kap. 3.2.1, 3.3.3]

914

Sharing Resources (Memory)

m Up to now: fork-join algorithms: data parallel or
divide-and-conquer

m Simple structure (data independence of the threads) to avoid race
conditions

m Does not work any more when threads access shared memory.

916

28.1 Shared Memory, Concurrency

Managing state

Managing state: Main challenge of concurrent programming.

Approaches:

m Immutability, for example constants.
m Isolated Mutability, for example thread-local variables, stack.

m Shared mutable data, for example references to shared memory,
global variables

915

917

Protect the shared state

m Method 1: locks, guarantee exclusive access to shared data.

m Method 2: lock-free data structures, exclusive access with a much
finer granularity.

m Method 3: transactional memory (not treated in class)

918

Bad Interleaving

Parallel call to widthdraw(100) on the same account

Thread 1

int b = getBalance();

Thread 2

int b = getBalance();
setBalance (b—amount) ;

setBalance(b—amount) ;

920

Canonical Example

class BankAccount {
int balance = 0;
public:
int getBalance(){ return balance; }
void setBalance(int x) { balance = x; }
void withdraw(int amount) {
int b = getBalance();
setBalance(b — amount);
}
// deposit etc.
};

(correct in a single-threaded world)

919

Tempting Traps

WRONG:

void withdraw(int amount) {
int b = getBalance();
if (b==getBalance())
setBalance(b — amount);

Bad interleavings cannot be solved with a repeated reading

Tempting Traps Mutual Exclusion

also WRONG:
void withdraw(int amount) { We need a concept for mutual exclusion
) setBalance(getBalance() — amount); Only one thread may execute the operation withdraw on the same

account at a time.
The programmer has to make sure that mutual exclusion is used.

Assumptions about atomicity of operations are almost always wrong

922

More Tempting Traps Just moved the problem!

class BankAccount {
int balance = 0; Thread 1 Thread 2
bool busy = false;

public: while (busy); //spin

void withdraw(int amount) {
while (busy); // spin wait
busy = true;

Q0 S
int b = getBalance(); /&2f busy = true;
W,
Cb*V

while (busy); //spin
busy = true;

setBalance(b — amount);
busy = false;
}

int b = getBalance();
int b = getBalance();

setBalance(b — amount);

// deposit would spin on the same boolean setBalance(b — amount);

};

924

How ist this correctly implemented?

m We use locks (mutexes) from libraries

m They use hardware primitives, Read-Modify-Write (RMW)
operations that can, in an atomic way, read and write depending
on the read result.

m Without RMW Operations the algorithm is non-trivial and requires
at least atomic access to variable of primitive type.

Alice’s Cat vs. Bob’s Dog

A A
¥).

926

928

28.2 Excursion: lock algorithm

Required: Mutual Exclusion

A

f

927

929

Required: No Lockout When Free

]
£

X

Communication Idea 1

Dog is
allowed

N dog cat
in yard

=[x

A

930

932

Communication Types

m Transient: Parties participate at the same time

m Persistent: Parties participate at different times

wd” T I .
berit ,
back!

Mutual exclusion: persistent communication

931

Access Protocol

Now cat is
allowed in

yard
dog cat

a4

933

Problem!

O
. qac"‘“o
o n

Access Protocol 2.1

=

dog cat

AP

A

Communication Idea 2

Different Scenario

Problem: No Mutual Exclusion Checking Flags Twice: Deadlock

) o

AXZ

Access Protocol 2.2 Access Protocol 2.2:provably correct

2

=

A X N

=

Weniger schwerwiegend: Starvation

@ ® g

General Problem of Locking remains

Final Solution

Next
time cat
goes first

o4

942 943

Peterson’s Algorithm>*

for two processes is provable correct and free from starvation

non—critical section

flag[me] = true // I am interested
victim = me // but you go first

// spin while we are both interested and you go first:
while (fla ou] && victim == me ;
(g [Y] > 4 > The code assumes that the access to flag
/ victim is atomic and particularly lineariz-
critical section able or sequential consistent. An assump-
%2 tion that — as we will see below —is not nec-
essarily given for normal variables. The
flag [me] = false Peterson-lock is not used on modern hard-

ware.

944 54not relevant for the exam 945

28.3 Mutual Exclusion

Required Properties of Mutual Exclusion

Correctness (Safety)

m At most one process executes the
critical section code

Liveness

m Acquiring the mutex must terminate in
finite time when no process executes
in the critical section

£

946

948

Critical Sections and Mutual Exclusion

Critical Section
Piece of code that may be executed by at most one process (thread)
at a time.

Mutual Exclusion
Algorithm to implement a critical section

acquire_mutex(); // entry algorithm\\
/[critical section
release_mutex(); // exit algorithm

947

Almost Correct

class BankAccount {

int balance = 0;

std::mutex m; // requires #include <mutex>
public:

void withdraw(int amount) {

m.lock();
int b = getBalance();
setBalance(b — amount);
m.unlock() ;

}

};

What if an exception occurs?

949

RAII Approach Reentrant Locks

class BankAccount { [W A

int balance = 0; : ' [
thread
std: ‘mutex m: Reentrant Lock (recursive lock) TI

public: m remembers the currently affected thread;

void withdraw(int amount) { = prowdes a counter

std::lock_guard<std::mutex> guard(m); m Call of lock: counter incremented
int b = getBalance(); m Call of unlock: counter is decremented. If counter = 0 the lock is released.
setBalance(b — amount);

} // Destruction of guard leads to unlocking m

};

What about getBalance / setBalance?

950

Account with reentrant lock

class BankAccount {
int balance = 0;
std: :recursive_mutex m;
using guard = std::lock_guard<std::recursive_mutex>;

public:
int getBalance(){ guard g(m); return balance; 28 4 Race Conditions
} Ll
void setBalance(int x) { guard g(m); balance = x;
}

void withdraw(int amount) { guard g(m);
int b = getBalance();
setBalance(b — amount);
}
};

952

Race Condition

m A race condition occurs when the result of a computation depends
on scheduling.

m We make a distinction between bad interleavings and data races
m Bad interleavings can occur even when a mutex is used.

Peek

Forgot to implement peek. Like this?

template <typename T>

T peek (stack<T> &s){ /%2f66
T value = s.popQ); 49
s.push(value) ; CKS
return value; Qf@ /
}

Despite its questionable style the code is correct in a sequential
world. Not so in concurrent programming.

956

Example: Stack

Stack with correctly synchronized access:

template <typename T>
class stack{

std: :recursive_mutex m;
using guard = std::lock_guard<std::recursive_mutex>;
public:
bool isEmpty(){ guard g(m); ... }
void push(T value){ guard g(m); R
T pop(O{ guard g(m); ...}
+;

Bad Interleaving!

Initially empty stack s, only shared between threads 1 and 2.

Thread 1 pushes a value and checks that the stack is then
non-empty. Thread 2 reads the topmost value using peek().

Thread 1 Thread 2
s.push(5);
int value = s.pop(Q);
t assert(!s.isEmpty());

s.push(value);

return value;

The fix

Peek must be protected with the same lock as the other access
methods

How about this?

class counter{
int count = 0;
std::recursive_mutex m;
using guard = std::lock_guard<std::recursive_mutex>;
public:
int increase(){
guard g(m); return ++count;
}
int get(O{
return count;

} MOt threaq.

S
3 afel

960

Bad Interleavings

Race conditions as bad interleavings can happen on a high level of
abstraction

In the following we consider a different form of race condition: data
race.

Why wrong?

It looks like nothing can go wrong because the update of count
happens in a “tiny step”.

But this code is still wrong and depends on
language-implementation details you cannot assume.
This problem is called Data-Race

Moral: Do not introduce a data race, even if every interleaving you
can think of is correct. Don’t make assumptions on the memory
order.

961

A bit more formal

Data Race (low-level Race-Conditions) Erroneous program behavior
caused by insufficiently synchronized accesses of a shared resource
by multiple threads, e.g. Simultaneous read/write or write/write of
the same memory location

Bad Interleaving (High Level Race Condition) Erroneous program
behavior caused by an unfavorable execution order of a
multithreaded algorithm, even if that makes use of otherwise well
synchronized resources.

962

One Resason: Memory Reordering

Rule of thumb: Compiler and hardware allowed to make changes
that do not affect the semantics of a sequentially executed program

void £() { void £() {
x =1; x = 1;
y = x+1; z = x+1;
z = x+1; sequentially equivalent y = x+1;

964

We look deeper

class C {
int x = 0; There is no interleaving of f and g that
int y = 0; would cause the assertion to fail:
public:
void £() { m ABCDV
@ x=1; m ACBDV
= L m ACDBV
void gO { m CABDV
© int a =y; m CCDBV
@ int b =x; m CDABV
assert(b >= a);\
} o this fail? It can nevertheless fail!
} an this fail”

963

From a Software-Perspective

Modern compilers do not give guarantees that a global ordering of
memory accesses is provided as in the sourcecode:

m Some memory accesses may be even optimized away completely!

m Huge potential for optimizations — and for errors, when you make
the wrong assumptions

965

Example: Self-made Rendevouz

int x; // shared

void wait(){ Assume thread 1 calls wait, later thread 2
x =1; calls arrive. What happens?
while(x == 1);

} thread 1 —— wait —

void arrive(){ thread 2 Sl —
X = 2;

}

966

Hardware Perspective

Modern multiprocessors do not enforce global ordering of all
instructions for performance reasons:

m Most processors have a pipelined architecture and can execute
(parts of) multiple instructions simultaneously. They can even
reorder instructions internally.

m Each processor has a local cache, and thus loads/stores to shared
memory can become visible to other processors at different times

968

Compilation

Source Without optimisation | With optimisation
int x; // shared
wait: wait:
void wait(){ movl $0x1, x movl $0x1, x
x =1; test: test:
while(x == 1); mov X, heax B jmp te;balways
| u
} cmp $0x1, %eax ‘
je test
void arrive(){ arrive: arrive
x = 2; movl $0x2, x movl $0x2, x
}
967
Memory Hierarchy
RegiSte rs fast,low latency, high cost, low capacity
L1 Cache
L2 Cache

SyStem Memory slow,high latency,low cost,high capacity

969

An Analogy
Anna | global data
C e A = v E@H
n '!C'v"u'; h=§
Beat Zoe
2=V
A > [ofelReb[]
/ Wait Wkl Q40
> R VS | B

local data

Memory Models

When and if effects of memory operations become visible for
threads, depends on hardware, runtime system and programming
language.

A memory model (e.g. that of C++) provides minimal guarantees for
the effect of memory operations

m leaving open possibilities for optimisation

m containing guidelines for writing thread-safe programs

For instance, C++ provides guarantees when synchronisation with a
mutex is used.

Schematic

CPU 1
Core 1 Core 2
Registers Registers
L1 L1

L2

L* System Bus

System Memory

Fixed

class C {
int x = 0;
int y = 0;
std::mutex m;
public:
void £() {
m.lock(); x
m.lock(Q; y
}
void g() {
m.lock(); int a = y; m.unlock();
m.lock(); int b = x; m.unlock();
assert(b >= a); // cannot fail
}
};

1; m.unlock();
1; m.unlock();

CPU 2
Corel Core 2
Registers Registers
L1 L1

L2

_I

973

Atomic

Here also possible:

class C {
std::atomic_int x{0}; // requires #include <atomic>
std::atomic_int y{0};

public:
void £() {

void g() {
int a = y;
int b = x;
assert(b >= a); // cannot fail
}
}; 974

