
27. Parallel Programming I

Moore’s Law and the Free Lunch, Hardware Architectures, Parallel
Execution, Flynn’s Taxonomy, Multi-Threading, Parallelism and
Concurrency, C++ Threads, Scalability: Amdahl and Gustafson,
Data-parallelism, Task-parallelism, Scheduling

[Task-Scheduling: Cormen et al, Kap. 27] [Concurrency, Scheduling:
Williams, Kap. 1.1 – 1.2]

844



The Free Lunch

The free lunch is over 53

53"The Free Lunch is Over", a fundamental turn toward concurrency in software, Herb Sutter, Dr. Dobb’s Journal, 2005
845



Moore’s Law

Gordon E. Moore (1929)Observation by Gordon E. Moore:

The number of transistors on integrated circuits doubles
approximately every two years.

846



847



For a long time...

the sequential execution became faster ("Instruction Level
Parallelism", "Pipelining", Higher Frequencies)
more and smaller transistors = more performance
programmers simply waited for the next processor generation

848



Today

the frequency of processors does not increase significantly and
more (heat dissipation problems)
the instruction level parallelism does not increase significantly any
more
the execution speed is dominated by memory access times (but
caches still become larger and faster)

849



Trends

850



Multicore

Use transistors for more compute cores
Parallelism in the software
Programmers have to write parallel programs to benefit from new
hardware

851



Forms of Parallel Execution

Vectorization
Pipelining
Instruction Level Parallelism
Multicore / Multiprocessing
Distributed Computing

852



Vectorization

Parallel Execution of the same operations on elements of a vector
(register)

x

y
+ x+ yskalar

x1 x2 x3 x4

y1 y2 y3 y4
+ x1 + y1 x2 + y2 x3 + y3 x4 + y4vector

x1 x2 x3 x4

y1 y2 y3 y4
fma 〈x, y〉vector

853



Vectorization

Parallel Execution of the same operations on elements of a vector
(register)

x

y
+ x+ yskalar

x1 x2 x3 x4

y1 y2 y3 y4
+ x1 + y1 x2 + y2 x3 + y3 x4 + y4vector

x1 x2 x3 x4

y1 y2 y3 y4
fma 〈x, y〉vector

853



Vectorization

Parallel Execution of the same operations on elements of a vector
(register)

x

y
+ x+ yskalar

x1 x2 x3 x4

y1 y2 y3 y4
+ x1 + y1 x2 + y2 x3 + y3 x4 + y4vector

x1 x2 x3 x4

y1 y2 y3 y4
fma 〈x, y〉vector

853



Pipelining in CPUs

Fetch Decode Execute Data Fetch Writeback

Multiple Stages

Every instruction takes 5 time units (cycles)
In the best case: 1 instruction per cycle, not always possible
(“stalls”)

Paralellism (several functional units) leads to faster execution.

854



ILP – Instruction Level Parallelism

Modern CPUs provide several hardware units and execute
independent instructions in parallel.

Pipelining
Superscalar CPUs (multiple instructions per cycle)
Out-Of-Order Execution (Programmer observes the sequential
execution)
Speculative Execution ()

855



27.2 Hardware Architectures

856



Shared vs. Distributed Memory

CPU CPU CPU

Shared Memory

Mem

CPU CPU CPU

Mem Mem Mem

Distributed Memory

Interconnect

857



Shared vs. Distributed Memory Programming

Categories of programming interfaces

Communication via message passing
Communication via memory sharing

It is possible:

to program shared memory systems as distributed systems (e.g. with
message passing MPI)
program systems with distributed memory as shared memory systems
(e.g. partitioned global address space PGAS)

858



Shared Memory Architectures

Multicore (Chip Multiprocessor - CMP)
Symmetric Multiprocessor Systems (SMP)
Simultaneous Multithreading (SMT = Hyperthreading)

one physical core, Several Instruction Streams/Threads: several virtual
cores
Between ILP (several units for a stream) and multicore (several units for
several streams). Limited parallel performance.

Non-Uniform Memory Access (NUMA)

Same programming interface

859



Overview

CMP SMP NUMA

860



An Example

AMD Bulldozer: be-
tween CMP and SMT

2x integer core
1x floating point core

861



Flynn’s Taxonomy

SI = Single Instruction
MI = Multiple Instructions

SD = Single Data
MD = Multiple Data

Single-Core Fehlertoleranz

Vector Computing / GPU Multi-Core

862



Flynn’s Taxonomy

SI = Single Instruction
MI = Multiple Instructions

SD = Single Data
MD = Multiple Data

Single-Core

Fehlertoleranz

Vector Computing / GPU Multi-Core

862



Flynn’s Taxonomy

SI = Single Instruction
MI = Multiple Instructions

SD = Single Data
MD = Multiple Data

Single-Core Fehlertoleranz

Vector Computing / GPU Multi-Core

862



Flynn’s Taxonomy

SI = Single Instruction
MI = Multiple Instructions

SD = Single Data
MD = Multiple Data

Single-Core Fehlertoleranz

Vector Computing / GPU

Multi-Core

862



Flynn’s Taxonomy

SI = Single Instruction
MI = Multiple Instructions

SD = Single Data
MD = Multiple Data

Single-Core Fehlertoleranz

Vector Computing / GPU Multi-Core
862



Massively Parallel Hardware
[General Purpose] Graphical Processing
Units ([GP]GPUs)

Revolution in High Performance
Computing

Calculation 4.5 TFlops vs. 500 GFlops
Memory Bandwidth 170 GB/s vs. 40
GB/s

SIMD

High data parallelism
Requires own programming model. Z.B.
CUDA / OpenCL

863



27.3 Multi-Threading, Parallelism and Concurrency

864



Processes and Threads

Process: instance of a program

each process has a separate context, even a separate address space
OS manages processes (resource control, scheduling, synchronisation)

Threads: threads of execution of a program

Threads share the address space
fast context switch between threads

865



Why Multithreading?

Avoid “polling” resources (files, network, keyboard)
Interactivity (e.g. responsivity of GUI programs)
Several applications / clients in parallel
Parallelism (performance!)

866



Multithreading conceptually

Thread 1

Thread 2

Thread 3

Single Core

Thread 1

Thread 2

Thread 3

Multi Core

867



Thread switch on one core (Preemption)
thread 1 thread 2

idle
busy

Store State t1
Interrupt

Load State t2

busyidle

Store State t2
Interrupt

Load State t1
busy

idle

868



Thread switch on one core (Preemption)
thread 1 thread 2

idle
busy

Store State t1
Interrupt

Load State t2

busyidle

Store State t2
Interrupt

Load State t1
busy

idle

868



Thread switch on one core (Preemption)
thread 1 thread 2

idle
busy

Store State t1
Interrupt

Load State t2

busyidle

Store State t2
Interrupt

Load State t1
busy

idle

868



Thread switch on one core (Preemption)
thread 1 thread 2

idle
busy

Store State t1
Interrupt

Load State t2

busyidle

Store State t2
Interrupt

Load State t1
busy

idle

868



Thread switch on one core (Preemption)
thread 1 thread 2

idle
busy

Store State t1
Interrupt

Load State t2

busyidle

Store State t2
Interrupt

Load State t1
busy

idle

868



Parallelität vs. Concurrency
Parallelism: Use extra resources to solve a problem faster
Concurrency: Correctly and efficiently manage access to shared
resources
Begriffe überlappen offensichtlich. Bei parallelen Berechnungen
besteht fast immer Synchronisierungsbedarf.

Parallelism

Work

Resources

Concurrency

Requests

Resources

869



Thread Safety

Thread Safety means that in a concurrent application of a program
this always yields the desired results.

Many optimisations (Hardware, Compiler) target towards the correct
execution of a sequential program.

Concurrent programs need an annotation that switches off certain
optimisations selectively.

870



Example: Caches

Access to registers faster than to
shared memory.
Principle of locality.
Use of Caches (transparent to the
programmer)

If and how far a cache coherency is guar-
anteed depends on the used system.

871



27.4 C++ Threads

872



C++11 Threads
#include <iostream>
#include <thread>

void hello(){
std::cout << "hello\n";

}

int main(){
// create and launch thread t
std::thread t(hello);
// wait for termination of t
t.join();
return 0;

}

create thread

hello

join

873



C++11 Threads
void hello(int id){

std::cout << "hello from " << id << "\n";
}

int main(){
std::vector<std::thread> tv(3);
int id = 0;
for (auto & t:tv)

t = std::thread(hello, ++id);
std::cout << "hello from main \n";
for (auto & t:tv)

t.join();
return 0;

}

create threads

join

874



Nondeterministic Execution!

One execution:
hello from main
hello from 2
hello from 1
hello from 0

Other execution:
hello from 1
hello from main
hello from 0
hello from 2

Other execution:
hello from main
hello from 0
hello from hello from 1
2

875



Nondeterministic Execution!

One execution:
hello from main
hello from 2
hello from 1
hello from 0

Other execution:
hello from 1
hello from main
hello from 0
hello from 2

Other execution:
hello from main
hello from 0
hello from hello from 1
2

875



Nondeterministic Execution!

One execution:
hello from main
hello from 2
hello from 1
hello from 0

Other execution:
hello from 1
hello from main
hello from 0
hello from 2

Other execution:
hello from main
hello from 0
hello from hello from 1
2

875



Technical Detail

To let a thread continue as background thread:
void background();

void someFunction(){
...
std::thread t(background);
t.detach();
...

} // no problem here, thread is detached

876



More Technical Details

With allocating a thread, reference parameters are copied, except
explicitly std::ref is provided at the construction.
Can also run Functor or Lambda-Expression on a thread
In exceptional circumstances, joining threads should be executed
in a catch block

More background and details in chapter 2 of the book C++ Concurrency in Action,
Anthony Williams, Manning 2012. also available online at the ETH library.

877



27.5 Scalability: Amdahl and Gustafson

878



Scalability

In parallel Programming:

Speedup when increasing number p of processors
What happens if p→∞?
Program scales linearly: Linear speedup.

879



Parallel Performance

Given a fixed amount of computing work W (number computing
steps)

Sequential execution time T1
Parallel execution time on p CPUs

Perfection: Tp = T1/p

Performance loss: Tp > T1/p (usual case)
Sorcery: Tp < T1/p

880



Parallel Speedup

Parallel speedup Sp on p CPUs:

Sp =
W/Tp
W/T1

=
T1
Tp
.

Perfection: linear speedup Sp = p

Performance loss: sublinear speedup Sp < p (the usual case)
Sorcery: superlinear speedup Sp > p

Efficiency:Ep = Sp/p

881



Reachable Speedup?
Parallel Program

Parallel Part Seq. Part

80% 20%

T1 = 10

T8 =?

T8 =
10 · 0.8

8
+ 10 · 0.2 = 1 + 2 = 3

S8 =
T1
T8

=
10

3
≈ 3.3 < 8 (!)

882



Reachable Speedup?
Parallel Program

Parallel Part Seq. Part

80% 20%

T1 = 10

T8 =
10 · 0.8

8
+ 10 · 0.2 = 1 + 2 = 3

S8 =
T1
T8

=
10

3
≈ 3.3 < 8 (!)

882



Reachable Speedup?
Parallel Program

Parallel Part Seq. Part

80% 20%

T1 = 10

T8 =
10 · 0.8

8
+ 10 · 0.2 = 1 + 2 = 3

S8 =
T1
T8

=
10

3
≈ 3.3 < 8 (!)

882



Amdahl’s Law: Ingredients

Computational work W falls into two categories

Paralellisable part Wp

Not parallelisable, sequential part Ws

Assumption: W can be processed sequentially by one processor in
W time units (T1 = W ):

T1 = Ws +Wp

Tp ≥ Ws +Wp/p

883



Amdahl’s Law

Sp =
T1
Tp
≤ Ws +Wp

Ws +
Wp

p

884



Amdahl’s Law

With sequential, not parallelizable fraction λ: Ws = λW ,
Wp = (1− λ)W :

Sp ≤
1

λ+ 1−λ
p

Thus
S∞ ≤

1

λ

885



Amdahl’s Law

With sequential, not parallelizable fraction λ: Ws = λW ,
Wp = (1− λ)W :

Sp ≤
1

λ+ 1−λ
p

Thus
S∞ ≤

1

λ

885



Illustration Amdahl’s Law

p = 1

t

Ws

Wp

p = 2

Ws

Wp

p = 4

Ws

Wp

T1

886



Illustration Amdahl’s Law

p = 1

t

Ws

Wp

p = 2

Ws

Wp

p = 4

Ws

Wp

T1

886



Illustration Amdahl’s Law

p = 1

t

Ws

Wp

p = 2

Ws

Wp

p = 4

Ws

Wp

T1

886



Amdahl’s Law is bad news

All non-parallel parts of a program can cause problems

887



Gustafson’s Law

Fix the time of execution
Vary the problem size.
Assumption: the sequential part stays constant, the parallel part
becomes larger

888



Illustration Gustafson’s Law

p = 1

t

Ws

Wp

p = 2

Ws

Wp Wp

p = 4

Ws

Wp Wp Wp Wp

T

889



Illustration Gustafson’s Law

p = 1

t

Ws

Wp

p = 2

Ws

Wp Wp

p = 4

Ws

Wp Wp Wp Wp

T

889



Illustration Gustafson’s Law

p = 1

t

Ws

Wp

p = 2

Ws

Wp Wp

p = 4

Ws

Wp Wp Wp Wp

T

889



Gustafson’s Law
Work that can be executed by one processor in time T :

Ws +Wp = T

Work that can be executed by p processors in time T :

Ws + p ·Wp = λ · T + p · (1− λ) · T

Speedup:

Sp =
Ws + p ·Wp

Ws +Wp
= p · (1− λ) + λ

= p− λ(p− 1)

890



Amdahl vs. Gustafson

Amdahl Gustafson

p = 4 p = 4

891



Amdahl vs. Gustafson

Amdahl Gustafson

p = 4

p = 4

891



Amdahl vs. Gustafson

Amdahl Gustafson

p = 4 p = 4

891



Amdahl vs. Gustafson

The laws of Amdahl and Gustafson are models of speedup for
parallelization.

Amdahl assumes a fixed relative sequential portion, Gustafson
assumes a fixed absolute sequential part (that is expressed as
portion of the work W1 and that does not increase with increasing
work).

The two models do not contradict each other but describe the
runtime speedup of different problems and algorithms.

892



27.6 Task- and Data-Parallelism

893



Parallel Programming Paradigms

Task Parallel: Programmer explicitly defines parallel tasks.
Data Parallel: Operations applied simulatenously to an aggregate
of individual items.

894



Example Data Parallel (OMP)

double sum = 0, A[MAX];
#pragma omp parallel for reduction (+:ave)
for (int i = 0; i< MAX; ++i)

sum += A[i];
return sum;

895



Example Task Parallel (C++11 Threads/Futures)

double sum(Iterator from, Iterator to)
{

auto len = from − to;
if (len > threshold){

auto future = std::async(sum, from, from + len / 2);
return sumS(from + len / 2, to) + future.get();

}
else

return sumS(from, to);
}

896



Work Partitioning and Scheduling

Partitioning of the work into parallel task (programmer or system)

One task provides a unit of work
Granularity?

Scheduling (Runtime System)

Assignment of tasks to processors
Goal: full resource usage with little overhead

897



Example: Fibonacci P-Fib

if n ≤ 1 then
return n

else
x← spawn P-Fib(n− 1)
y ← spawn P-Fib(n− 2)
sync
return x+ y;

898



P-Fib Task Graph

899



P-Fib Task Graph

900



Question

Each Node (task) takes 1 time unit.
Arrows depict dependencies.
Minimal execution time when number
of processors =∞?

critical path

901



Question

Each Node (task) takes 1 time unit.
Arrows depict dependencies.
Minimal execution time when number
of processors =∞?

critical path

901



Performance Model

p processors
Dynamic scheduling
Tp: Execution time on p processors

902



Performance Model

Tp: Execution time on p processors
T1: work: time for executing total work
on one processor
T1/Tp: Speedup

903



Performance Model

T∞: span: critical path, execution time
on∞ processors. Longest path from
root to sink.
T1/T∞: Parallelism: wider is better
Lower bounds:

Tp ≥ T1/p Work law
Tp ≥ T∞ Span law

904



Greedy Scheduler

Greedy scheduler: at each time it schedules as many as availbale
tasks.
Theorem
On an ideal parallel computer with p processors, a greedy scheduler
executes a multi-threaded computation with work T1 and span T∞ in
time

Tp ≤ T1/p+ T∞

905



Beispiel
Assume p = 2.

Tp = 5 Tp = 4

906



Beispiel
Assume p = 2.

Tp = 5 Tp = 4

906



Beispiel
Assume p = 2.

Tp = 5 Tp = 4

906



Beispiel
Assume p = 2.

Tp = 5 Tp = 4

906



Beispiel
Assume p = 2.

Tp = 5 Tp = 4

906



Beispiel
Assume p = 2.

Tp = 5

Tp = 4

906



Beispiel
Assume p = 2.

Tp = 5

Tp = 4

906



Beispiel
Assume p = 2.

Tp = 5

Tp = 4

906



Beispiel
Assume p = 2.

Tp = 5

Tp = 4

906



Beispiel
Assume p = 2.

Tp = 5

Tp = 4

906



Beispiel
Assume p = 2.

Tp = 5 Tp = 4

906



Proof of the Theorem

Assume that all tasks provide the same amount of work.

Complete step: p tasks are available.

incomplete step: less than p steps available.

Assume that number of complete steps larger than bT1/pc. Executed work
≥ bT1/pc · p+ p = T1 − T1 mod p+ p > T1. Contradiction. Therefore maximally
bT1/pc complete steps.

We now consider the graph of tasks to be done. Any maximal (critical) path starts
with a node t with deg−(t) = 0. An incomplete step executes all available tasks t
with deg−(t) = 0 and thus decreases the length of the span. Number incomplete
steps thus limited by T∞.

907



Consequence

if p� T1/T∞, i.e. T∞ � T1/p, then Tp ≈ T1/p.

Example Fibonacci
T1(n)/T∞(n) = Θ(φn/n). For moderate sizes of n we can use a lot
of processors yielding linear speedup.

908



Granularity: how many tasks?
#Tasks = #Cores?

Problem if a core cannot be fully used
Example: 9 units of work. 3 core.
Scheduling of 3 sequential tasks.

Exclusive utilization:

P1

P2

P3

s1

s2

s3

Execution Time: 3 Units

Foreign thread disturbing:

P1

P2

P3

s1

s2 s1

s3

Execution Time: 5 Units

909



Granularity: how many tasks?
#Tasks = #Cores?
Problem if a core cannot be fully used

Example: 9 units of work. 3 core.
Scheduling of 3 sequential tasks.

Exclusive utilization:

P1

P2

P3

s1

s2

s3

Execution Time: 3 Units

Foreign thread disturbing:

P1

P2

P3

s1

s2 s1

s3

Execution Time: 5 Units

909



Granularity: how many tasks?
#Tasks = #Cores?
Problem if a core cannot be fully used
Example: 9 units of work. 3 core.
Scheduling of 3 sequential tasks.

Exclusive utilization:

P1

P2

P3

s1

s2

s3

Execution Time: 3 Units

Foreign thread disturbing:

P1

P2

P3

s1

s2 s1

s3

Execution Time: 5 Units

909



Granularity: how many tasks?
#Tasks = #Cores?
Problem if a core cannot be fully used
Example: 9 units of work. 3 core.
Scheduling of 3 sequential tasks.

Exclusive utilization:

P1

P2

P3

s1

s2

s3

Execution Time: 3 Units

Foreign thread disturbing:

P1

P2

P3

s1

s2 s1

s3

Execution Time: 5 Units
909



Granularity: how many tasks?
#Tasks = Maximum?
Example: 9 units of work. 3 cores.
Scheduling of 9 sequential tasks.

Exclusive utilization:

P1

P2

P3

s1

s2

s3

s4

s5

s6

s7

s8

s9

Execution Time: 3 + ε Units

Foreign thread disturbing:

P1

P2

P3

s1

s2

s3

s4 s5

s6 s7

s8

s9

Execution Time: 4 Units. Full uti-
lization.

910



Granularity: how many tasks?
#Tasks = Maximum?
Example: 9 units of work. 3 cores.
Scheduling of 9 sequential tasks.

Exclusive utilization:

P1

P2

P3

s1

s2

s3

s4

s5

s6

s7

s8

s9

Execution Time: 3 + ε Units

Foreign thread disturbing:

P1

P2

P3

s1

s2

s3

s4 s5

s6 s7

s8

s9

Execution Time: 4 Units. Full uti-
lization.

910



Granularity: how many tasks?

#Tasks = Maximum?
Example: 106 tiny units of work.

P1

P2

P3

Execution time: dominiert vom Overhead.

911



Granularity: how many tasks?

#Tasks = Maximum?
Example: 106 tiny units of work.

P1

P2

P3

Execution time: dominiert vom Overhead.

911



Granularity: how many tasks?

Answer: as many tasks as possible with a sequential cutoff such that
the overhead can be neglected.

912



Example: Parallelism of Mergesort

Work (sequential runtime) of
Mergesort T1(n) = Θ(n log n).
Span T∞(n) = Θ(n)

Parallelism T1(n)/T∞(n) = Θ(log n)
(Maximally achievable speedup with
p =∞ processors)

split

merge

913


	Parallel Programming I
	Parallel Execution
	Hardware Architectures
	Multi-Threading, Parallelism and Concurrency
	C++ Threads
	Scalability: Amdahl and Gustafson
	Task- and Data-Parallelism


