27. Parallel Programming |

Moore’s Law and the Free Lunch, Hardware Architectures, Parallel
Execution, Flynn’s Taxonomy, Multi-Threading, Parallelism and
Concurrency, C++ Threads, Scalability: Amdahl and Gustafson,
Data-parallelism, Task-parallelism, Scheduling

[Task-Scheduling: Cormen et al, Kap. 27] [Concurrency, Scheduling:

Williams, Kap. 1.1 — 1.2]



The Free Lunch

The free lunch is over °3

53"The Free Lunch is Over", a fundamental turn toward concurrency in software, Herb Sutter, Dr. Dobb’s Journal, 2005



Moore’s Law

Observation by Gordon E. Moore: T

The number of transistors on integrated circuits doubles
approximately every two years.




Moore’s Law — The number of transistors on integrated circuit chips (1971-2016) SEsGSE
: " aa o o ) . . i P 5, B EZ]

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two year:

This advancement is important as other aspects of technological progress — such as processing speed or the price of electronic produets —

strongly linked to Moore's law.

20,000,000,000

1BM 213 Storage Controller,

10,000,000,000 16-core Xeon Hasual-£5,_ N @0 M
e NS @22 o Yoo Bosowel 63
61-core Xeon Phi o 5-Core Xeon Ivy Bridge-EX
5:000,000,000 28 8oy i
8-core Xeon Nehalem-EXw 8 A ﬂ;@;g:;'ﬁ'ﬂﬁﬂw‘ ‘mobile SoC*)
Sicgreten 400 T S———"

Duai-core g 2@ @

}Quad-core + GPU GT2 Core i7 Skylake K

9,
Pentium D Presier 08 Ruao-coro + GRU Cora 7 Haswol
1,000,000,000 o o, \POVEE o @ b A7 du-core ARIGGS -monie 800"
500,000,000 Y AN Fis e 20Le
,000, tarium 2 Vagioon g1, SLE LSRR
b S s 200 et
anium & KN Al & Coe Bus Wodale 3
Pentium 4 Prascott-2! . @ Core 2 Duo Alendale
i Gadr i
100,000,000 AMDKS® B 4 Prescor
Pentium 4 Nothwood
2 50,000,000 P ilaneicg %, ML, e
5 Pentum 1 Moo Dixon PR
8 AMD";B%%Pemiwm 1l Coppermine
c D Ks
£ 10,000,000 et 8, o SEBIAL G
G 5,000,000 o Sei
< Pentimg,  anB Ko
iy R
= SAT110
It 04,
1,000,000 o S
P —
500,000 LS5 machin chip @ e, .
Intel 0380, Inid o PARM 3

Motorola 68020 ¢p "
£ WAL
100,000 g e 52 RostTan
50,000 ®  onass
Intel 80864p @ Intel 8085 ?ﬁw 2 4 o
% @

g o e
10,000 TMSgoo0  ZiogZey t: ey

L

Stoia

uif

RCAZE02 a0
5,000 gy, @nigiooss
2 Q10 Technology
Matbrola. £33 4
o B B
1,000
10 AP g A5 b SN R SRS S SRS R U
RO FEFEFEE S S S
Year of introduction
Data source: Wikipedia (https:/en.wikipedia.org/wiki/Transistor_count)
The data visualization is available at OurWorldinData.org. There you find more visualizations and research on this topic. Licensed under CC-BY-SA by the author Max Roser.



For a long time...

m the sequential execution became faster ("Instruction Level
Parallelism”, "Pipelining", Higher Frequencies)

m more and smaller transistors = more performance
m programmers simply waited for the next processor generation



Today

m the frequency of processors does not increase significantly and
more (heat dissipation problems)

m the instruction level parallelism does not increase significantly any
more

m the execution speed is dominated by memory access times (but
caches still become larger and faster)



Trends

10,000,000
Dual-Core Itanium 2 " /
1,000,000
. -
Intel CPU Trends 4
(sources: Intel, Wikipedia, K. Olukotun}) >
100,000
10,000
1,000
100
10
1
@ Clock Speed (MHz)
A Power (W)
@ Perf/Clock (ILP)
o

1970 1975 1980 1985 1990 1995 2000 2005 2010



Multicore

m Use transistors for more compute cores
m Parallelism in the software

m Programmers have to write parallel programs to benefit from new
hardware



Forms of Parallel Execution

Vectorization

Pipelining

Instruction Level Parallelism
Multicore / Multiprocessing
Distributed Computing



Vectorization

Parallel Execution of the same operations on elements of a vector
(register)

X
skalar ; )@—» T+ y




Vectorization

Parallel Execution of the same operations on elements of a vector

(register)

skalar

vector

)@—mﬁ-y
Y

1

L2

T3

Lq

Y1

Y2

Ys

Ya

1+ W%

To + Yo

T3+ Y3

Ty + Ya

-




Vectorization

Parallel Execution of the same operations on elements of a vector

(register)

skalar

vector

vector

)@—ms-l-y
Y

1

L2

T3

Lq

Y1

Y2

Ys

Ya

T+ Y1 | T2+ Yo

T3+ Y3

Ty + Ya

-

x1

x2

xs3

Ty

2A1

Y2

Ys

Ya

(z,9)




Pipelining in CPUs

Fetch Decode Execute Data Fetch Writeback

Multiple Stages

m Every instruction takes 5 time units (cycles)
m In the best case: 1 instruction per cycle, not always possible
(“stalls”)

Paralellism (several functional units) leads to faster execution.



ILP - Instruction Level Parallelism

Modern CPUs provide several hardware units and execute
independent instructions in parallel.

m Pipelining

m Superscalar CPUs (multiple instructions per cycle)

m Out-Of-Order Execution (Programmer observes the sequential
execution)

m Speculative Execution ()



27.2 Hardware Architectures



Shared vs. Distributed Memory

Shared Memory Distributed Memory
CPU | |CPU || CPU CPU||CPU | CPU
Mem

Mem | Mem |  Mem

Interconnect




Shared vs. Distributed Memory Programming

m Categories of programming interfaces

m Communication via message passing
m Communication via memory sharing

m It is possible:

m to program shared memory systems as distributed systems (e.g. with
message passing MPI)

m program systems with distributed memory as shared memory systems
(e.g. partitioned global address space PGAS)



Shared Memory Architectures

m Multicore (Chip Multiprocessor - CMP)
m Symmetric Multiprocessor Systems (SMP)
m Simultaneous Multithreading (SMT = Hyperthreading)

m one physical core, Several Instruction Streams/Threads: several virtual
cores

m Between ILP (several units for a stream) and multicore (several units for
several streams). Limited parallel performance.

m Non-Uniform Memory Access (NUMA)

Same programming interface



Overview

core

core

CPU

CPU

CPU

CPU

[uTul]
}

Memory

CMP

SMP

CPU

CPU

NUMA

860



An Example

Module block
(incl. 2 cores)

Branch
Prediction

Instruction

L1 instruction cache
64KB two-way

ey

=

Micro | Fast i Fasi
Decode | Path c Pat Decode | Path
E 2 £ 2 —

Format | Format
Docode | Docode

Format | Format
Docode | Docode

AMD Bulldozer: be-
tween CMP and SMT

m 2x integer core
m 1x floating point core

sorosser ] o, |
v 3 v 3
iz
ry ¥ 3

L1
16

iata cache.
four-wa)

L1 data cache
16kB four.wa

a
KB

L2 Data Cache
2048KB (shared,Max)

Core Interface Unit




Flynn’s Taxonomy

S| = Single Instruction
MI = Multiple Instructions

SISD

MISD

|Instruction |Instruction Ilnstructionl

; I l

SD = Single Data
MD = Multiple Data

SIMD MIMD
| Instruction | |InstructionllnstructionIlnstruction|

l 1 l

P 1

I Data | Data | Data |

| Data | Data I Data |




Flynn’s Taxonomy

Single-Core

SISD MISD

m |Instruction|Instruction|lnstruction|
I ! |

S| = Single Instruction m | Data

MI = Multiple Instructions

SD = Single Data

MD = Multiple Data SIMD MIMD

| Instruction | |InstructionllnstructionIlnstruction|

l : l P 1

I Data | Data I Data | | Data | Data I Data |




Flynn’s Taxonomy

Single-Core Fehlertoleranz

SISD MISD

m |Instruction|Instruction||nstruction|
I ! |

S| = Single Instruction m | Data

MI = Multiple Instructions

SD = Single Data
MD = Multiple Data SIMD

MIMD
| Instruction | |InstructionllnstructionIlnstruction|

l : l P 1

I Data | Data I Data | | Data | Data I Data |




Flynn’s Taxonomy

Single-Core Fehlertoleranz

SISD MISD

m |Instruction | Instruction Ilnstructionl
I ! |

S| = Single Instruction m | Data

MI = Multiple Instructions

SD = Single Data
MD = Multiple Data SIMD

MIMD
| Instruction | |Instruction|lnstruction |Instruction |
l I l
I Data | Data I Data | | Data | Data I Data |

Vector Computing / GPU



Flynn’s Taxonomy

Single-Core

SISD

Fehlertoleranz

MISD

|Instruction | Instruction Ilnstructionl

; I l

Sl = Single Instruction m Data
MI = Multiple Instructions
SD = Single Data
MD = Multiple Data SIMD MIMD
| Instruction | |Instructionllnstruction|Instruction |

1 1

l

| Data | Data I Data |

| Data | Data I Data |

Vector Computing / GPU

Multi-Core



Massively Parallel Hardware

[General Purpose] Graphical Processing
Units ([GP]GPUs)
m Revolution in High Performance
Computing
m Calculation 4.5 TFlops vs. 500 GFlops

m Memory Bandwidth 170 GB/s vs. 40
GB/s

m SIMD

m High data parallelism
m Requires own programming model. Z.B.
CUDA / OpenCL

eeeeeeeeeeeeeeee

863



27.3 Multi-Threading, Parallelism and Concurrency



Processes and Threads

m Process: instance of a program

m each process has a separate context, even a separate address space
m OS manages processes (resource control, scheduling, synchronisation)

m Threads: threads of execution of a program

m Threads share the address space
m fast context switch between threads



Why Multithreading?

m Avoid “polling” resources (files, network, keyboard)
m Interactivity (e.g. responsivity of GUI programs)

m Several applications / clients in parallel

m Parallelism (performance!)



Multithreading conceptually

Thread 1 ----- - [ [
Single Core Thread 2 --------- - -
Thread 3 -------------- - e
Thread 1 ----- I - -
Multi Core Thread 2 ----- I, - - - -
Thread 3 ----- I - - - -



Thread switch on one core (Preemption)

thread 1 thread 2



Thread switch on one core (Preemption)

thread 1 thread 2

busy :
Interrupt ' idle

> Store State ¢;



Thread switch on one core (Preemption)

thread 1 thread 2

busy :
Interrupt ' idle

> Store State ¢;
¥

Load State ¢




Thread switch on one core (Preemption)

thread 1 threIad 2
busy| :
ESEES » Store State ¢; | e
Load gtate ty
idle busy

Interrupt
Store State ¢, <




Thread switch on one core (Preemption)

thread 1

busy
Interrupt

idle !

> Store State ¢;

L 2
Load State ¢

Store State ¢5 ¢

L 4
Load State ¢,

thread 2
' idle
busy
Interrupt
| idle



Parallelitat vs. Concurrency

m Parallelism: Use extra resources to solve a problem faster

m Concurrency: Correctly and efficiently manage access to shared
resources

m Begriffe Uberlappen offensichtlich. Bei parallelen Berechnungen
besteht fast immer Synchronisierungsbedarf.

Parallelism Concurrency

Work Requests

A7INS NS

Resources Resources



Thread Safety

Thread Safety means that in a concurrent application of a program
this always yields the desired results.

Many optimisations (Hardware, Compiler) target towards the correct
execution of a sequential program.

Concurrent programs need an annotation that switches off certain
optimisations selectively.



Example: Caches

m Access to registers faster than to
shared memory.

m Principle of locality.

m Use of Caches (transparent to the
programmer)

If and how far a cache coherency is guar-
anteed depends on the used system.




27.4 C++ Threads



C++11 Threads

#include <iostream>
#include <thread>

void hello(){
std::cout << "hello\n";

1

int main(){
// create and launch thread t
std: :thread t(hello);
// wait for termination of t
t.join();
return O;

,
create thread

hello

join

N



C++11 Threads

void hello(int id){
std::cout << "hello from " << id << "\n'";

}

int main(){
std: :vector<std::thread> tv(3);
int id = 0;
for (auto & t:tv)

t = std::thread(hello, ++id);
std::cout << "hello from main \n";
for (auto & t:tv)

t.join();
return O;

,

create threads

join




Nondeterministic Execution!

One execution:

hello from main
hello from 2
hello from 1
hello from 0



Nondeterministic Execution!

One execution:

hello from main
hello from 2
hello from 1
hello from 0

Other execution:

hello from 1
hello from main
hello from 0
hello from 2



Nondeterministic Execution!

One execution:

hello from main
hello from 2
hello from 1
hello from 0

Other execution:

hello from 1
hello from main
hello from 0
hello from 2

Other execution:

hello from main

hello from 0

hello from hello from 1
2



Technical Detail

To let a thread continue as background thread:

void background();
void someFunction(){

std::thread t(background);
t.detach();

} // no problem here, thread is detached

876



More Technical Details

m With allocating a thread, reference parameters are copied, except
explicitly std::ref is provided at the construction.

m Can also run Functor or Lambda-Expression on a thread

m In exceptional circumstances, joining threads should be executed
in a catch block

More background and details in chapter 2 of the book C++ Concurrency in Action,
Anthony Williams, Manning 2012. also available online at the ETH library.



27.5 Scalability: Amdahl and Gustafson



Scalability

In parallel Programming:

m Speedup when increasing number p of processors
m What happens if p — co?
m Program scales linearly: Linear speedup.



Parallel Performance

Given a fixed amount of computing work W (number computing
steps)

Sequential execution time T3

Parallel execution time on p CPUs

m Perfection: T, =11 /p

m Performance loss: T, > 1 /p (usual case)

m Sorcery: T, < T /p



Parallel Speedup

Parallel speedup S, on p CPUs:

_WiT, _h

Sy = = —.
Pw/n T,

m Perfection: linear speedup S, = p
m Performance loss: sublinear speedup S, < p (the usual case)
m Sorcery: superlinear speedup S, > p

Efficiency:E, = S,/p



Reachable Speedup?

Parallel Program

Parallel Part
80%

Seq. Part
20%



Reachable Speedup?

Parallel Program

Parallel Part Seq. Part
80% 20%
Ty =10

~10-0.8

Ty S

+10-02=14+2=3




Reachable Speedup?

Parallel Program

Parallel Part Seq. Part
80% 20%
T =10
10-0.8
Ty = 3 +10-02=1+2=3
T, 10
Sg=—=2="~33<8 (I



Amdahl’s Law: Ingredients

Computational work ¥ falls into two categories

m Paralellisable part IV,

m Not parallelisable, sequential part IV,

Assumption: W can be processed sequentially by one processor in
W time units (17 = W):

T, =W, + W,
T,>Ws+W,/p



Amdahl’s Law

=




Amdahl’s Law

With sequential, not parallelizable fraction A\: W, = AW,
W, =(1-XW:
1

A4 =2

S, <



Amdahl’s Law

With sequential, not parallelizable fraction A\: W, = AW,
W, =(1-XW:
1

A4 =2

S, <

Thus

n
8
IN
> =



lllustration Amdahl’s Law

p=1
W

W,




lllustration Amdahl’s Law

W,

W,




lllustration Amdahl’s Law

W
W,

W,




Amdahl’s Law is bad news

All non-parallel parts of a program can cause problems



Gustafson’s Law

m Fix the time of execution

m Vary the problem size.

m Assumption: the sequential part stays constant, the parallel part
becomes larger



lllustration Gustafson’s Law

p=1
W

W,




lllustration Gustafson’s Law

W, w, W,




lllustration Gustafson’s Law

W,

W,

W,

W,

W,

W,

W,




Gustafson’s Law
Work that can be executed by one processor in time T
Ws+W,=T
Work that can be executed by p processors in time 7':
Ws+p-Wy=AX-T+p-(1-XN) T
Speedup:

PT W, + W, pr(1=-A)+

=p—Alp—1)




Amdahl vs. Gustafson

Amdahl Gustafson




Amdahl vs. Gustafson

Amdahl Gustafson

p=4




Amdahl vs. Gustafson

Amdahl

p:

4

p:

Gustafson

4




Amdahl vs. Gustafson

The laws of Amdahl and Gustafson are models of speedup for
parallelization.

Amdahl assumes a fixed relative sequential portion, Gustafson
assumes a fixed absolute sequential part (that is expressed as
portion of the work 1/, and that does not increase with increasing
work).

The two models do not contradict each other but describe the
runtime speedup of different problems and algorithms.



27.6 Task- and Data-Parallelism



Parallel Programming Paradigms

m Jask Parallel: Programmer explicitly defines parallel tasks.

m Data Parallel: Operations applied simulatenously to an aggregate
of individual items.



Example Data Parallel (OMP)

double sum = 0, A[MAX];
#pragma omp parallel for reduction (+:ave)
for (int i = 0; i< MAX; ++i)
sum += A[i];
return sum;

895



Example Task Parallel (C++11 Threads/Futures)

double sum(Iterator from, Iterator to)
{
auto len = from — to;
if (len > threshold){
auto future = std::async(sum, from, from + len / 2);
return sumS(from + len / 2, to) + future.get();
}
else
return sumS(from, to);



Work Partitioning and Scheduling

m Partitioning of the work into parallel task (programmer or system)

m One task provides a unit of work
m Granularity?

m Scheduling (Runtime System)

m Assignment of tasks to processors
m Goal: full resource usage with little overhead



Example: Fibonacci P-Fib

if n <1 then
return n

else
x < spawn P-Fib(n — 1)
y < spawn P-Fib(n — 2)
sync
return x + v;



P-Fib Task Graph

f(4)

w f2)
f(2) | ¢ g——xye




P-Fib Task Graph




Question

m Each Node (task) takes 1 time unit.
m Arrows depict dependencies.

m Minimal execution time when number
of processors = 00?




Question

m Each Node (task) takes 1 time unit.
m Arrows depict dependencies.

m Minimal execution time when number
of processors = 00?

critical path



Performance Model

B p Processors
m Dynamic scheduling
m 7},: Execution time on p processors



Performance Model

m 7},: Execution time on p processors

m 7. work: time for executing total work
on one processor

m 7 /T,: Speedup



Performance Model

m T..: span: critical path, execution time
on oo processors. Longest path from
root to sink.

m 11 /T,: Parallelism: wider is better
m Lower bounds:

T, >1Ti/p Work law
T, > T, Spanlaw



Greedy Scheduler

Greedy scheduler: at each time it schedules as many as availbale
tasks.

Theorem

On an ideal parallel computer with p processors, a greedy scheduler
executes a multi-threaded computation with work T7 and spanl, in
time

Tp S Tl/p"'Too




Beispiel

Assume p = 2.



Beispiel

Assume p = 2.




Beispiel

Assume p = 2.




Beispiel

Assume p = 2.




Beispiel

Assume p = 2.




Beispiel

Assume p = 2.




Beispiel

Assume p = 2.




Beispiel

Assume p = 2.




Beispiel

Assume p = 2.




Beispiel

Assume p = 2.




Beispiel

Assume p = 2.




Proof of the Theorem

Assume that all tasks provide the same amount of work.

m Complete step: p tasks are available.

m incomplete step: less than p steps available.

Assume that number of complete steps larger than |7} /p|. Executed work

> |Ti/p| -p+p=T —T1 mod p+ p > T). Contradiction. Therefore maximally
| T1/p| complete steps.

We now consider the graph of tasks to be done. Any maximal (critical) path starts
with a node ¢ with deg™ () = 0. An incomplete step executes all available tasks ¢

with deg™ (¢) = 0 and thus decreases the length of the span. Number incomplete

steps thus limited by 7.



Consequence

ifp << Ti/Tw,ie. T, < T1/p, then T, = 11 /p.

Example Fibonacci

Ti(n)/Tx(n) = ©(¢"/n). For moderate sizes of n we can use a lot
of processors yielding linear speedup.




Granularity: how many tasks?

m #Tasks = #Cores?



Granularity: how many tasks?

m #Tasks = #Cores?
m Problem if a core cannot be fully used



Granularity: how many tasks?

m #Tasks = #Cores?
m Problem if a core cannot be fully used

m Example: 9 units of work. 3 core.
Scheduling of 3 sequential tasks.



Granularity: how many tasks?

m #Tasks = #Cores?
m Problem if a core cannot be fully used %

m Example: 9 units of work. 3 core.
Scheduling of 3 sequential tasks.

Exclusive utilization: Foreign thread disturbing:
P1 s1 P1 sl

P2 s2 P2 s2 s
P3 s3 P3 s3

Execution Time: 3 Units Execution Time: 5 Units



Granularity: how many tasks?

m #Tasks = Maximum?

m Example: 9 units of work. 3 cores.
Scheduling of 9 sequential tasks.



Granularity: how many tasks?

m #Tasks = Maximum?

m Example: 9 units of work. 3 cores. e

Scheduling of 9 sequential tasks.

Exclusive utilization: Foreign thread disturbing:

P1 si s4 s7 P1 s1

P2 s2 s5 s8 P2 s2 s4 s5 s8

P3 s3 s6 s9 P3 s3 s6 s7 s9
Execution Time: 3 + ¢ Units Execution Time: 4 Units. Full uti-

lization.



Granularity: how many tasks?

m #Tasks = Maximum?
m Example: 10° tiny units of work.



Granularity: how many tasks?

m #Tasks = Maximum?
m Example: 10° tiny units of work.

P1
P2
P3

Execution time: dominiert vom Overhead.



Granularity: how many tasks?

Answer: as many tasks as possible with a sequential cutoff such that
the overhead can be neglected.



Example: Parallelism of Mergesort

m Work (sequential runtime) of
Mergesort T1(n) = O(nlogn).

m Span T (n) = O(n)

m Parallelism T3 (n)/Tx(n) = ©(logn)
(Maximally achievable speedup with
p = 00 Processors)

merge

913



	Parallel Programming I
	Parallel Execution
	Hardware Architectures
	Multi-Threading, Parallelism and Concurrency
	C++ Threads
	Scalability: Amdahl and Gustafson
	Task- and Data-Parallelism


