27. Parallel Programming |

Moore’s Law and the Free Lunch, Hardware Architectures, Parallel
Execution, Flynn’s Taxonomy, Multi-Threading, Parallelism and
Concurrency, C++ Threads, Scalability: Amdahl and Gustafson,
Data-parallelism, Task-parallelism, Scheduling

[Task-Scheduling: Cormen et al, Kap. 27] [Concurrency, Scheduling:

Williams, Kap. 1.1 —1.2]

Moore’s Law

Observation by Gordon E. Moore: o £ oo 1528

The number of transistors on integrated circuits doubles
approximately every two years.

844

846

The Free Lunch

The free lunch is over 23

53w

The Free Lunch is Over", a fundamental turn toward concurrency in software, Herb Sutter, Dr. Dobb’s Journal, 2005

Moore’s Law — The number of transistors on integrated circuit chips (1971-2016) O.LJ"[VJVg"ld
Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. ISR
This advancement is important as other aspects of technological progress — such as processing speed or the price of electronic products — are

strongly linked to Moore's law.

20,000,000,000
10,000,000,000

18M 213 Storaga Controler,
18-coro Yoon Haswal-£5_ N\ 0% M

22-core Xeon Broadwell-€5

5,000,000,000) “’r'ix%’(";v?gn > g,\ﬁ oo Xeon vy Bidge-EX
goomenaen Sy 248X vvcore et ‘mbie S00)
o Soon 3406, B Cors 1 syl
R0 T @ busicors -GS o 7 rcacueny
g oro 7 Skyiake K
Pentium D Prester Qs w core s GPU Goro 7 Haowal
1,000,000,000 iy S e AN
SR G
10 aad core
500,000,000 Hanium 2 Madison GG éme”é‘u‘ﬁv“wgwaaxem”
Peniiym D Smithfels, Duo Conroo,
ttariom 2 VcKinieyg ' BEI o T worcae

Pantom & Prsscott 2V,

100,000,000 AMD ke O,

bentium 4 Prescott

= 50,000,000 e i T @it
3 Pentium Il Mobile Dixon, el Tusiet
3 ADKT 8 @ Pertium il Coppormine
° AMD Ko
S 10,000,000 notg o QT
‘2 5,000,000 Etnive. e
S rentimg, awBis
E 210
el 80486,
1,000,000 o o
T1 Explorers 2:bit
500,000 Lispmachine chip® oo
Itel 80086, ot o PARM
Motorola 68020 ¢ * e
2, Woltian
100,000 Vo, S o
50,000 ° @intel 80186 kbl
Intel 8086> ©Intel 8085 OA?A“?‘M 2 e
Mglori
10,000 ey zeozsy EEE" o By

A
RCA_ mﬂz me\ 8055
5000 paeng, B

w05 Tecmoloy
el &u L C
1,000

O O a> O o o
CRSCAECIES)

e & & & S 9 o L S
SEFFFE S S E S
Year of introduction

Data source: Wikipedia (https://en.wikipedia.org/wiki/Transistor_count)
The data visualization is available at OurWorldinData.org. There you find more visualizations and research on this topic.

rLQ

& &
S

©
N
P

Qhtom
@ARM Cortex-A9

L O O > e
S O 0 & &
BRSNS

Licensed under CC-BY-SA by the author Max Roser.

845

@ourworldindata.org, https://en.wikipedia.org/wiki/Transistor_count

For a long time...

m the sequential execution became faster ("Instruction Level
Parallelism”, "Pipelining", Higher Frequencies)

m more and smaller transistors = more performance
m programmers simply waited for the next processor generation

Trends

10,000,000

Dual-Core Itanium 2 . /
- .

Intel CPU Trends 4

(sources: Intel, Wikipedia, K. Olukotun)

1,000,000

100,000

10,000

1,000

100

N

i t t ot oot e —
7 @ Clock Speed (MHz)

oo aPower (W)

@ Perf fClock (ILP)

0
1970 1975 1980 1985 1990 1995 2000 2005 2010

ddj.htm

tw.ca/publications/concurrency-

Today

m the frequency of processors does not increase significantly and
more (heat dissipation problems)

m the instruction level parallelism does not increase significantly any
more

m the execution speed is dominated by memory access times (but
caches still become larger and faster)

849

Multicore

m Use transistors for more compute cores
m Parallelism in the software

m Programmers have to write parallel programs to benefit from new
hardware

Forms of Parallel Execution

Vectorization

Pipelining

Multicore / Multiprocessing

Distributed Computing

Pipelining in CPUs

|
|
m Instruction Level Parallelism
|
|

Fetch

Decode

Execute

Data Fetch

Writeback

Multiple Stages

m Every instruction takes 5 time units (cycles)
m In the best case: 1 instruction per cycle, not always possible

(“stalls”)

Paralellism (several functional units) leads to faster execution.

854

Vectorization

Parallel Execution of the same operations on elements of a vector
(register)

X
skalar ; :®—> T+ y

T1|To | T3 | T4
vector)@—> Ti+y | T2+ Y2 | T3+ s |zt ys
Y| Y2 | Y3 | Y4

1| T | X3 | X4
vector (z,y)
Y| Y2 | Y3 | Ya

ILP - Instruction Level Parallelism

Modern CPUs provide several hardware units and execute
independent instructions in parallel.

m Pipelining
m Superscalar CPUs (multiple instructions per cycle)

m Out-Of-Order Execution (Programmer observes the sequential
execution)

m Speculative Execution ()

Shared vs. Distributed Memory

Shared Memory Distributed Memory
CPU||CPU||CPU CPU||CPU||CPU
27.2 Hardware Architectures
Mem

Mem | Mem || Mem

Interconnect

Shared vs. Distributed Memory Programming Shared Memory Architectures

m Multicore (Chip Multiprocessor - CMP)

m Symmetric Multiprocessor Systems (SMP)
m Simultaneous Multithreading (SMT = Hyperthreading)

m Categories of programming interfaces

m Communication via message passing
m Communication via memory sharing
m one physical core, Several Instruction Streams/Threads: several virtual

m It is possible: cores

m to program shared memory systems as distributed systems (e.g. with m Between ILP (several units for a stream) and multicore (several units for
message passing MPI) several streams). Limited parallel performance.

m program systems with distributed memory as shared memory systems
(e.g. partitioned global address space PGAS) m Non-Uniform Memory Access (NUMA)

Same programming interface

Overview An Example

CPU CPU

core core

CPU CPU

[u [u] AMD Bulldozer: be-
I

- tween CMP and SMT
m 2x integer core

Memor Rk .
’ v cPu m 1x floating point core
CMP SMP NUMA
Flynn’s Taxonomy Massively Parallel Hardware
Single-Core Fehlertoleranz [General Purpose] Graphical Processing
Units ((GP]JGPUs)
SISD MISD o .
m |Instruction|Instruction|lnstruction| " ReVO|Ut|0n In ngh Performance W:::MFM
I l I Computing
S| = Single Instruction m | Data | m Calculation 4.5 TFlOpS vs. 500 GF|OpS f,%
MI = Multiple Instructions m Memory Bandwidth 170 GB/s vs. 40 =
SD = Single Data GB/s ?25
MD = Multiple Data SIMD MIMD o
Instruction | |InstruciionlInstructionllnstruction| u S I M D :ZE
| | | ! | | m High data parallelism
Data | Data [pata | | | Data | pata | pata | m Requires own programming model. Z.B.
CUDA / OpenCL

Vector Computing / GPU Multi-Core

862

LWikipedia

27.3 Multi-Threading, Parallelism and Concurrency

864

Why Multithreading?

m Avoid “polling” resources (files, network, keyboard)
m Interactivity (e.g. responsivity of GUI programs)

m Several applications / clients in parallel

m Parallelism (performance!)

866

Processes and Threads

m Process: instance of a program

B each process has a separate context, even a separate address space
m OS manages processes (resource control, scheduling, synchronisation)

m Threads: threads of execution of a program

m Threads share the address space
m fast context switch between threads

Multithreading conceptually

Thread 1 ----- [[—— -
Single Core Thread 2 --------- T -
Thread3 -------------- - - -
Thread 1 ----- I, - - - -
Multi Core Thread 2 ----- I - - - -

Thread 3 ----- I - - -

865

867

Thread switch on one core (Preemption)

thread 1 thread 2
busyJ |
Interrupt ! idl
; » Store State ¢; 5 e
| <
! Load State ¢5
idle i busy
i Interrupt
: Store State 5 < .
| ¥ |
7 Load State ¢, idle
busyl |

868

Thread Safety

Thread Safety means that in a concurrent application of a program
this always yields the desired results.

Many optimisations (Hardware, Compiler) target towards the correct
execution of a sequential program.

Concurrent programs need an annotation that switches off certain
optimisations selectively.

Parallelitat vs. Concurrency

m Farallelism: Use extra resources to solve a problem faster

m Concurrency: Correctly and efficiently manage access to shared
resources

m Begriffe Gberlappen offensichtlich. Bei parallelen Berechnungen
besteht fast immer Synchronisierungsbedarf.

Parallelism Concurrency
Work Requests
Resources Resources

869

Example: Caches

m Access to registers faster than to
shared memory.

m Principle of locality.

m Use of Caches (transparent to the
programmer)

If and how far a cache coherency is guar-
anteed depends on the used system.

C++11 Threads

#include <iostream>
#include <thread>

v
create thread

void hello(){
std::cout << "hello\n";

27.4 C++ Threads } hell

int main(){ join
// create and launch thread t
std: :thread t(hello); ¥
// wait for termination of t
t.join();
return O;
}
872
C++11 Threads Nondeterministic Execution!
void hello(int id){
std::cout << "hello from " << id << "\n";
} P4 create threads . i .
One execution: Other execution: Other execution:
int main(){ .
std: :vector<std: :thread> tv(3): ¥ hello from main hello from 1 hello from main
int id = O: ’ hello from 2 hello from main hello from 0
for (auto I; t:tv) hello from 1 hello from O hello from hello from 1
t = std: -thr‘ead(hello ++id) ; i hello from 0 hello from 2 2
std::cout << "hello from main \n"; d

for (auto & t:tv)
t.join();
return O;

}

874

Technical Detail

To let a thread continue as background thread:
void background() ;

void someFunction(){

std::thread t(background);
t.detach();

} // no problem here, thread is detached

27.5 Scalability: Amdahl and Gustafson

More Technical Details

m With allocating a thread, reference parameters are copied, except
explicitly std::ref is provided at the construction.

m Can also run Functor or Lambda-Expression on a thread

m In exceptional circumstances, joining threads should be executed
in a catch block

More background and details in chapter 2 of the book C++ Concurrency in Action,
Anthony Williams, Manning 2012. also available online at the ETH library.

Scalability

In parallel Programming:

m Speedup when increasing number p of processors
m What happens if p — o0?
m Program scales linearly: Linear speedup.

Parallel Performance

Given a fixed amount of computing work W (number computing
steps)

Sequential execution time T}

Parallel execution time on p CPUs

m Perfection: T, =T’ /p

m Performance loss: T}, > T} /p (usual case)
m Sorcery: T, <Ti/p

880

Reachable Speedup?
Parallel Program
Parallel Part Seq. Part
80% 20%
T, = 10
=208 0 02—14+2-3
Go— 10 as g 0

882

Parallel Speedup

Parallel speedup S, on p CPUs:

WL, _ T4

S, = =L
PTWIT, T,

m Perfection: linear speedup S, = p
m Performance loss: sublinear speedup S, < p (the usual case)
m Sorcery: superlinear speedup S, > p

Efficiency:E, = S,/p

Amdahl’s Law: Ingredients

Computational work W falls into two categories

m Paralellisable part W,

m Not parallelisable, sequential part W,

Assumption: W can be processed sequentially by one processor in
W time units (7} = W):

T =W, + W,
Ty =W+ Wy/p

Amdahl’s Law

884

lllustration Amdahl’s Law

W,
W

W,

886

Amdahl’s Law

With sequential, not parallelizable fraction A: W, = AW,
W,=(1-\NW:
1

Spé)ntﬂ

Thus

|
S <~
=

Amdahl’s Law is bad news

All non-parallel parts of a program can cause problems

Gustafson’s Law

m Fix the time of execution
m Vary the problem size.

m Assumption: the sequential part stays constant, the parallel part

becomes larger

Gustafson’s Law

Work that can be executed by one processor in time 7"

W,+W,=T

Work that can be executed by p processors in time 7'

Speedup:

We+p Wy=XA-T+p-(1—A)-T

p

Ws+p-Wp

Ws+ W,
=p—Ap—1)

p-(1—=XN)+A

888

890

lllustration Gustafson’s Law

W,

Amdahl vs. Gustafson

Amdabhl

p

4

W,

W,

W,

W,

W,

I
e~

W,

889

Gustafson

891

Amdahl vs. Gustafson

The laws of Amdahl and Gustafson are models of speedup for
parallelization.

Amdahl assumes a fixed relative sequential portion, Gustafson
assumes a fixed absolute sequential part (that is expressed as
portion of the work 1/} and that does not increase with increasing
work).

The two models do not contradict each other but describe the
runtime speedup of different problems and algorithms.

892

Parallel Programming Paradigms

m /ask Parallel: Programmer explicitly defines parallel tasks.

m Data Parallel: Operations applied simulatenously to an aggregate
of individual items.

894

27.6 Task- and Data-Parallelism

Example Data Parallel (OMP)

double sum = 0, A[MAX];
#pragma omp parallel for reduction (+:ave)
for (int i = 0; i< MAX; ++i)
sum += A[i];
return sum;

893

895

Example Task Parallel (C++11 Threads/Futures)

double sum(Iterator from, Iterator to)
{
auto len = from — to;
if (len > threshold){
auto future = std::async(sum, from, from + len / 2);
return sumS(from + len / 2, to) + future.get();
}
else
return sumS(from, to);

Example: Fibonacci P-Fib

if n <1 then
| returnn

else

x < spawn P-Fib(n — 1)
y < spawn P-Fib(n — 2)
sync

return z + y;

896

898

Work Partitioning and Scheduling

m Partitioning of the work into parallel task (programmer or system)

m One task provides a unit of work
m Granularity?

m Scheduling (Runtime System)

m Assignment of tasks to processors
m Goal: full resource usage with little overhead

P-Fib Task Graph

f(3) f(2)

£(2) 0

spawn

join

897

899

P-Fib Task Graph

£(4)

“V
5 ’
iy €0

Performance Model

W) Processors
m Dynamic scheduling
m 7},: Execution time on p processors

900

902

Question

m Each Node (task) takes 1 time unit.
m Arrows depict dependencies.

m Minimal execution time when number
of processors = co0?

critical path

901

Performance Model

m T},: Execution time on p processors

m 7}: work: time for executing total work
on one processor

m T3 /T,: Speedup

903

Performance Model Greedy Scheduler

m T..: span: critical path, execution time Greedy scheduler: at each time it schedules as many as availbale
on oo processors. Longest path from tasks.
root to sink.
m 71 /Ty: Parallelism: wider is better On an ideal parallel computer with p processors, a greedy scheduler
®m Lower bounds: executes a multi-threaded computation with work T\ and span T in
time
T,>T\/p Work law Uy € 15 @ 4k W

T, > Ty Spanlaw

904

Beispiel Proof of the Theorem

Assume p = 2. Assume that all tasks provide the same amount of work.

m Complete step: p tasks are available.

m incomplete step: less than p steps available.

Assume that number of complete steps larger than |77 /p|. Executed work
> |Tv/p] -p+p=T,—T) mod p+p > T,. Contradiction. Therefore maximally
| T1/p| complete steps.

We now consider the graph of tasks to be done. Any maximal (critical) path starts
with a node ¢ with deg™ (¢) = 0. An incomplete step executes all available tasks ¢

with deg™ (¢) = 0 and thus decreases the length of the span. Number incomplete

T,=5 T,=4 steps thus limited by 7.

906

Consequence

ifp <11 /T, ie. Too < T1/p, then T, = T /p.

Example Fibonacci

Ti(n)/Tx(n) = ©(¢"/n). For moderate sizes of n we can use a lot
of processors yielding linear speedup.

908

Granularity: how many tasks?

m #Tasks = Maximum?

m Example: 9 units of work. 3 cores.
Scheduling of 9 sequential tasks.

e S0

Exclusive utilization: Foreign thread disturbing:

P1 si1 s4 s7 P1 si
P2 s2 sb s8 P2 s2 s4 s5 s8
P3 s3 s6 s9 P3 s3 s6 s7 s9

Execution Time: 3 + ¢ Units Execution Time: 4 Units. Full uti-

lization.

910

Granularity: how many tasks?

m #Tasks = #Cores?
m Problem if a core cannot be fully used

m Example: 9 units of work. 3 core.
Scheduling of 3 sequential tasks.

Exclusive utilization: Foreign thread disturbing:

P1 s P1 sl
P2 s2 P2 s2 s1
P3 s3 P3 s3

Execution Time: 3 Units Execution Time: 5 Units

909

Granularity: how many tasks?

m #Tasks = Maximum?
m Example: 109 tiny units of work.

P1
P2
P3

Execution time: dominiert vom Overhead.

911

Granularity: how many tasks?

Answer: as many tasks as possible with a sequential cutoff such that
the overhead can be neglected.

912

Example: Parallelism of Mergesort

m Work (sequential runtime) of
Mergesort T1(n) = O(nlogn).

m Span T (n) = O(n)

m Parallelism T’ (n)/Tw(n) = O(logn)
(Maximally achievable speedup with
P = 0O Processors)

N
)

£
/ \K@uﬁé’;@/

) 4/)
e

Faaa W0
*-”)ml—@-”)ml—(\x -
OO

OO

split

merge

913

