
26. Flow in Networks

Flow Network, Maximal Flow, Cut, Rest Network, Max-flow Min-cut
Theorem, Ford-Fulkerson Method, Edmonds-Karp Algorithm,
Maximal Bipartite Matching [Ottman/Widmayer, Kap. 9.7, 9.8.1],
[Cormen et al, Kap. 26.1-26.3]

815

Motivation

Modelling flow of fluents, components on conveyors, current in
electrical networks or information flow in communication networks.
Connectivity of Communication Networks, Bipartite Matching,
Circulation, Scheduling, Image Segmentation, Baseball
Eliminination...

816

Flow Network

Flow network G = (V,E, c): directed
graph with capacities
Antiparallel edges forbidden:
(u, v) ∈ E ⇒ (v, u) 6∈ E.
Model a missing edge (u, v) by
c(u, v) = 0.
Source s and sink t: special nodes.
Every node v is on a path between s
and t : s v t

s

v1

v2

v3

v4

t

16

13

12

14

20

4

9
4 7

817

Flow
A Flow f : V ×V → R fulfills the following
conditions:

Bounded Capacity:
For all u, v ∈ V : f(u, v) ≤ c(u, v).
Skew Symmetry:
For all u, v ∈ V : f(u, v) = −f(v, u).
Conservation of flow:
For all u ∈ V \ {s, t}:∑

v∈V

f(u, v) = 0.

s

v1

v2

v3

v4

t

16/8

13/10

12/12

14/10

20/14

4/4

9/4
4/4 7/6

Value of the flow:
|f | =

∑
v∈V f(s, v).

Here |f | = 18.

818

How large can a flow possibly be?

Limiting factors: cuts

cut separating s from t: Partition of V into S and T with s ∈ S,
t ∈ T .
Capacity of a cut: c(S, T) =

∑
v∈S,v′∈T c(v, v

′)

Minimal cut: cut with minimal capacity.
Flow over the cut: f(S, T) =

∑
v∈S,v′∈T f(v, v

′)

819

Implicit Summation
Notation: Let U,U ′ ⊆ V

f(U,U ′) :=
∑
u∈U
u′∈U ′

f(u, u′), f(u, U ′) := f({u}, U ′)

Thus

|f | = f(s, V)

f(U,U) = 0

f(U,U ′) = −f(U ′, U)

f(X ∪ Y, Z) = f(X,Z) + f(Y, Z), if X ∩ Y = ∅.
f(R, V) = 0 if R ∩ {s, t} = ∅. [flow conversation!]

820

How large can a flow possibly be?
For each flow and each cut it holds that f(S, T) = |f |:

f(S, T) = f(S, V)− f(S, S)︸ ︷︷ ︸
0

= f(S, V)

= f(s, V) + f(S − {s}︸ ︷︷ ︸
63t,63s

, V) = |f |.

s

v1

v2

v3

v4

t

16/8

13/10

12/12

14/10

20/14

4/4

9/4
4/4 7/6

821

Maximal Flow ?
In particular, for each cut (S, T) of V .

|f | ≤
∑

v∈S,v′∈T

c(v, v′) = c(S, T)

Will discover that equality holds for minS,T c(S, T).

s

v1

v2

v3

v4

t

16

13

12

14

20

4

9
4 7

c = 23
822

Maximal Flow ?

Naive Procedure

s

v1

v2

v3

v4

t

16/8

13/10

12/12

14/10

20/14

4/4

9/4
4/4 7/6

s

v1

v2

v3

v4

t

16/8

13/11

12/12

14/11

20/15

4/4

9/4
4/4 7/7

s

v1

v2

v3

v4

t

16/8

13/13

12/12

14/11

20/17

4/4

9/2
4/4 7/7 s

v1

v2

v3

v4

t

16/10

13/13

12/12

14/11

20/19

4/4

9/0
4/2 7/7

Conclusion: greedy increase of flow does not solve the problem.

823

Maximal Flow ?

Naive Procedure

s

v1

v2

v3

v4

t

16/8

13/10

12/12

14/10

20/14

4/4

9/4
4/4 7/6 s

v1

v2

v3

v4

t

16/8

13/11

12/12

14/11

20/15

4/4

9/4
4/4 7/7

s

v1

v2

v3

v4

t

16/8

13/13

12/12

14/11

20/17

4/4

9/2
4/4 7/7 s

v1

v2

v3

v4

t

16/10

13/13

12/12

14/11

20/19

4/4

9/0
4/2 7/7

Conclusion: greedy increase of flow does not solve the problem.

823

Maximal Flow ?

Naive Procedure

s

v1

v2

v3

v4

t

16/8

13/10

12/12

14/10

20/14

4/4

9/4
4/4 7/6 s

v1

v2

v3

v4

t

16/8

13/11

12/12

14/11

20/15

4/4

9/4
4/4 7/7

s

v1

v2

v3

v4

t

16/8

13/13

12/12

14/11

20/17

4/4

9/2
4/4 7/7

s

v1

v2

v3

v4

t

16/10

13/13

12/12

14/11

20/19

4/4

9/0
4/2 7/7

Conclusion: greedy increase of flow does not solve the problem.

823

Maximal Flow ?

Naive Procedure

s

v1

v2

v3

v4

t

16/8

13/10

12/12

14/10

20/14

4/4

9/4
4/4 7/6 s

v1

v2

v3

v4

t

16/8

13/11

12/12

14/11

20/15

4/4

9/4
4/4 7/7

s

v1

v2

v3

v4

t

16/8

13/13

12/12

14/11

20/17

4/4

9/2
4/4 7/7 s

v1

v2

v3

v4

t

16/10

13/13

12/12

14/11

20/19

4/4

9/0
4/2 7/7

Conclusion: greedy increase of flow does not solve the problem.

823

Maximal Flow ?

Naive Procedure

s

v1

v2

v3

v4

t

16/8

13/10

12/12

14/10

20/14

4/4

9/4
4/4 7/6 s

v1

v2

v3

v4

t

16/8

13/11

12/12

14/11

20/15

4/4

9/4
4/4 7/7

s

v1

v2

v3

v4

t

16/8

13/13

12/12

14/11

20/17

4/4

9/2
4/4 7/7 s

v1

v2

v3

v4

t

16/10

13/13

12/12

14/11

20/19

4/4

9/0
4/2 7/7

Conclusion: greedy increase of flow does not solve the problem.

823

The Method of Ford-Fulkerson
Start with f(u, v) = 0 for all u, v ∈ V

Determine rest network* Gf and expansion path in Gf

Increase flow via expansion path*
Repeat until no expansion path available.

Gf := (V,Ef , cf)

cf(u, v) := c(u, v)− f(u, v) ∀u, v ∈ V

Ef := {(u, v) ∈ V × V |cf(u, v) > 0}

*Will now be explained
824

Increase of flow, negative!

Let some flow f in the network be given.

Finding:

Increase of the flow along some edge possible, when flow can be
increased along the edge,i.e. if f(u, v) < c(u, v).
Rest capacity cf(u, v) = c(u, v)− f(u, v) > 0.
Increase of flow against the direction of the edge possible, if flow
can be reduced along the edge, i.e. if f(u, v) > 0.
Rest capacity cf(v, u) = f(u, v) > 0.

825

Rest Network

Rest network Gf provided by the edges with positive rest capacity:

s

v1

v2

v3

v4

t

16/8

13/10

12/12

14/10

20/14

4/4

9/4
4/4 7/6

s

v1

v2

v3

v4

t
8

8

3

10

12

4

10

6

14

4

5

4

4 1 6

Rest networks provide the same kind of properties as flow networks with the exception of permitting antiparallel

capacity-edges

826

Observation

Theorem
Let G = (V,E, c) be a flow network with source s and sink t and f a
flow in G. Let Gf be the corresponding rest networks and let f ′ be a
flow in Gf . Then f ⊕ f ′ with

(f ⊕ f ′)(u, v) = f(u, v) + f ′(u, v)

defines a flow in G with value |f |+ |f ′|.

827

Proof
f ⊕ f ′ defines a flow in G:

capacity limit

(f ⊕ f ′)(u, v) = f(u, v) + f ′(u, v)︸ ︷︷ ︸
≤c(u,v)−f(u,v)

≤ c(u, v)

skew symmetry

(f ⊕ f ′)(u, v) = −f(v, u) +−f ′(v, u) = −(f ⊕ f ′)(v, u)

flow conservation u ∈ V − {s, t}:∑
v∈V

(f ⊕ f ′)(u, v) =
∑
v∈V

f(u, v) +
∑
v∈V

f ′(u, v) = 0

828

Proof

Value of f ⊕ f ′

|f ⊕ f ′| = (f ⊕ f ′)(s, V)

=
∑
u∈V

f(s, u) + f ′(s, u)

= f(s, V) + f ′(s, V)

= |f |+ |f ′|

�

829

Augmenting Paths

expansion path p: simple path from s to t in the rest network Gf .

Rest capacity cf(p) = min{cf(u, v) : (u, v) edge in p}

830

Flow in Gf

Theorem
The mapping fp : V × V → R,

fp(u, v) =

cf(p) if (u, v) edge in p

−cf(p) if (v, u) edge in p

0 otherwise

provides a flow in Gf with value |fp| = cf(p) > 0.

fp is a flow (easy to show). there is one and only one u ∈ V with
(s, u) ∈ p. Thus |fp| =

∑
v∈V fp(s, v) = fp(s, u) = cf(p).

831

Consequence

Strategy for an algorithm:

With an expansion path p in Gf the flow f ⊕ fp defines a new flow
with value |f ⊕ fp| = |f |+ |fp| > |f |.

832

Max-Flow Min-Cut Theorem

Theorem
Let f be a flow in a flow network G = (V,E, c) with source s and
sink t. The following statementsa are equivalent:

1 f is a maximal flow in G

2 The rest network Gf does not provide any expansion paths
3 It holds that |f | = c(S, T) for a cut (S, T) of G.

833

Proof

(3)⇒ (1):
It holds that |f | ≤ c(S, T) for all cuts S, T . From |f | = c(S, T) it
follows that |f | is maximal.
(1)⇒ (2):
f maximal Flow in G. Assumption: Gf has some expansion path
|f ⊕ fp| = |f |+ |fp| > |f |. Contradiction.

834

Proof (2)⇒ (3)

Assumption: Gf has no expansion path

Define S = {v ∈ V : there is a path s v in Gf}.
(S, T) := (S, V \ S) is a cut: s ∈ S, t ∈ T .

Let u ∈ S and v ∈ T . Then cf(u, v) = 0, also
cf(u, v) = c(u, v)− f(u, v) = 0. Somit f(u, v) = c(u, v).

Thus

|f | = f(S, T) =
∑
u∈S

∑
v∈T

f(u, v) =
∑
u∈S

∑
v∈T

c(u, v) = C(S, T).

�
835

Algorithm Ford-Fulkerson(G, s, t)

Input: Flow network G = (V,E, c)
Output: Maximal flow f .

for (u, v) ∈ E do
f(u, v)← 0

while Exists path p : s t in rest network Gf do
cf (p)← min{cf (u, v) : (u, v) ∈ p}
foreach (u, v) ∈ p do

f(u, v)← f(u, v) + cf (p)
f(v, u)← f(v, u)− cf (p)

836

Practical Consideration

In an implementation of the Ford-Fulkerson algorithm the negative
flow egdes are usually not stored because their value always equals
the negated value of the antiparallel edge.

f(u, v)← f(u, v) + cf (p)
f(v, u)← f(v, u)− cf (p)

is then transformed to
if (u, v) ∈ E then

f(u, v)← f(u, v) + cf (p)
else

f(v, u)← f(v, u)− cf (p)

837

Analysis

The Ford-Fulkerson algorithm does not
necessarily have to converge for irrational
capacities. For integers or rational numbers it
terminates.
For an integer flow, the algorithms requires
maximally |fmax| iterations of the while loop
(because the flow increases minimally by 1).
Search a single increasing path (e.g. with
DFS or BFS) O(|E|) Therefore O(fmax|E|).

s

u

v

t

1000

1000

1

1000

1000

With an unlucky choice the al-
gorithm may require up to 2000
iterations here.

838

Edmonds-Karp Algorithm

Choose in the Ford-Fulkerson-Method for finding a path in Gf the
expansion path of shortest possible length (e.g. with BFS)

839

Edmonds-Karp Algorithm

Theorem
When the Edmonds-Karp algorithm is applied to some integer
valued flow network G = (V,E) with source s and sink t then the
number of flow increases applied by the algorithm is in O(|V | · |E|).
⇒ Overal asymptotic runtime: O(|V | · |E|2)

[Without proof]

840

Application: maximal bipartite matching
Given: bipartite undirected graph G = (V,E).

Matching M : M ⊆ E such that |{m ∈M : v ∈ m}| ≤ 1 for all v ∈ V .

Maximal Matching M : Matching M , such that |M | ≥ |M ′| for each
matching M ′.

841

Corresponding flow network
Construct a flow network that corresponds to the partition L,R of a
bipartite graph with source s and sink t, with directed edges from s
to L, from L to R and from R to t. Each edge has capacity 1.

L R

s t

L R

842

Integer number theorem

Theorem
If the capacities of a flow network are integers, then the maximal
flow generated by the Ford-Fulkerson method provides integer
numbers for each f(u, v), u, v ∈ V .

[without proof]

Consequence: Ford-Fulkerson generates for a flow network that
corresponds to a bipartite graph a maximal matching
M = {(u, v) : f(u, v) = 1}.

843

	Flow in Networks
	Flow Network
	Cut
	Maximal Flow
	Rest Network
	Max-Flow Min-Cut
	 Ford-Fulkerson Algorithm
	Edmonds-Karp Algorithm
	Maximales Bipartites Matching

