26. Flow in Networks

Flow Network, Maximal Flow, Cut, Rest Network, Max-flow Min-cut
Theorem, Ford-Fulkerson Method, Edmonds-Karp Algorithm,
Maximal Bipartite Matching [Ottman/Widmayer, Kap. 9.7, 9.8.1],
[Cormen et al, Kap. 26.1-26.3]

815

Motivation

m Modelling flow of fluents, components on conveyors, current in
electrical networks or information flow in communication networks.

m Connectivity of Communication Networks, Bipartite Matching,

Circulation, Scheduling, Image Segmentation, Baseball
Eliminination...

Flow Network

m Flow network G = (V, E, ¢): directed
graph with capacities

m Antiparallel edges forbidden:
(u,v) € E = (v,u) € E.

m Model a missing edge (u, v) by
c(u,v) = 0.

m Source s and sink t: special nodes.
Every node v is on a path between s
andt:s~v~~t

S

12
V) — U3

16/‘
4

AN

Vg =—— U4
14

\2‘0

Flow

A Flow f : V' xV — R fulfills the following

conditions:
m Bounded Capacity:

For all u,v € V: f(u,v) < ¢(u,v).

m Skew Symmetry:.

Forall u,v € V: f(u,v) = —f(v,u).

m Conservation of flow:
Forallu e V'\ {s,t}:

Zf(u,v) = 0.

veV

U1 ﬁ (%3
§ 4/ 4‘ 9/4]AT/ 6 t
1m 4/4
(%) é (7

14/10

Value of the flow:

1= 2 vev £(s,0).
Here | f| = 18.

How large can a flow possibly be?

Limiting factors: cuts

m cut separating s from t: Partition of V' into S and T with s € S,
teT.

m Capacity of a cut: ¢(S,T) =) g yer c(v, V)

m Minimal cut: cut with minimal capacity.

m Flow over the cut: f(S,T) =} cser f(v,V)

Imp

licit Summation

Notation: Let U, U’ C V

f(U,U): Z flu,u) fu,U") = f({u},U")

uel
u' ey’
Thus
m[f|=f(s,V)
m f(UU)=0

m f(
m
m f(

UU)=—-f(U',U)
XUY,Z)=f(X,Z)+ f(Y,Z),if XNY = 0.
R, V) =0if RN {s,t} = 0. [flow conversation!]

How large can a flow possibly be?
For each flow and each cut it holds that f(S,T") = | f|:

f(S7T) :f(S,V) —f(S,S) = f(SvV)
0
:f(s,V)+f(S—{s},V) = ’f’
#t,Zs

12/12
U1

U3 K
V > 20/14
s 4/4 A 76 t
9/4,
13/10 4/4

Vg —'.'—) Vg
,44/10

Maximal Flow ?
In particular, for each cut (S, 7)) of V.
1< Y elv,o)=e(S,T)

veSW'ET
Will discover that equality holds for ming 7 ¢(S, T').

o= 23

Maximal Flow ?

Naive Procedure

12/12
CE]

U ———>
V 20/14

4/4

s 716
| 9/4 A‘
13/10 4/4

Vg ——————— Uy
14/10

t

Maximal Flow ?

Naive Procedure

12/12 12/12
V) ——— U3 v

1 U3
V 20/14 V 20/15

s 4/4 76 t s 4/4 7 t
9/4 9/4
13/10 4/4 13/11 4/4
Vg ———————> 1 U2 Vg
14/10 14/11

Maximal Flow ?

Naive Procedure

12/12
v ———— v

V 20/14

s 4/4 76
9/4
13/10 4/4
Vg ——————— Uy
14/10

V 20/17
El

4/4 7

13/13 4/4

12/12
v

] ———> U3
V’ 20/15
S

4/4 7 t

13/11 4/4
v

Maximal Flow ?

Naive Procedure

12/12 12/12
U1 U3 UV —— U3
V 20/14 V 20/15
s 4/4 76 t s 4/4 7 t
9/4 9/4
13/10 4/4 13/11 4/4
Vg —————— Uy Vg ———— Us
14/10 14/11
12/12 12/12
VY ——— U3 V) ——— U3
V 20/17 16/10 20/19
s 4/4 77 t s 4/2 77 t
9/2 9/0
13/13 4/4 13/13 4/4
Vg ————— Uy Vg ——————> Us
14/11 14/11

Maximal Flow ?

Naive Procedure

12/12

U ——
V 20/14
s 4/4 716 t
9/4
44
) Uy

13/10

14/10
12/12
vy V.
V 20/17
s 4/4|]7/7 t
o2
1\ 4/4
vy Uy
14/11

U1
16/8
s 4/4| o N"T t
13/11 A’
Vg —————— > Uy

12/12
CE]
20/15

14/11

14/11

Conclusion: greedy increase of flow does not solve the problem.

The Method of Ford-Fulkerson

m Start with f(u,v) = 0forall u,v € V

m Determine rest network™ Gy and expansion path in G's
m Increase flow via expansion path*

m Repeat until no expansion path available.

cr(u,v) == c(u,v) — f(u,v) Yu,veV
(u,v) € V x Vlcs(u,v) > 0}

*Will now be explained

Increase of flow, negative!

Let some flow f in the network be given.

Finding:

m Increase of the flow along some edge possible, when flow can be
increased along the edge,i.e. if f(u,v) < c(u,v).
Rest capacity ¢f(u,v) = c¢(u,v) — f(u,v) > 0.

m Increase of flow against the direction of the edge possible, if flow

can be reduced along the edge, i.e. if f(u,v) > 0.
Rest capacity cf(v, u) = f(u,v) > 0.

Rest Network

Rest network Gy provided by the edges with positive rest capacity:

12

12/12
v ——— v

V’ Wf
s 4/4 716
o/4
1% 44

Vg ——————— Uy
14/10

Rest networks provide the same kind of properties as flow networks with the exception of permitting antiparallel

capacity-edges

Observation

Theorem

LetG = (V, E, c) be a flow network with source s and sinkt and f a
flow in G. Let G be the corresponding rest networks and let f' be a
flow in G¢. Then f & f' with

(f S f/)(uav) — f(u,v) + f’(u,v)

defines a flow in G with value | f| + | f'|.

Proof

f @ f' defines a flow in G
m capacity limit

(f S f/) (u> U) — f(u7 U) + f/(u? U) < C(“? U)

m skew symmetry
(f D f/)(u7U) - _f(vvu) + —f’(v,u) - _(f D f/)(v7u)

m flow conservation u € V — {5 t}:

Zf@f quv—l—quv—O

veV veV veV

Proof

Value of f @ f’

ifefl={(ef)sV)
= f(s,u)+ f(s,u)

ueV

Zf(S,V)—i—f/(S,V)
=|fl+1f]

Augmenting Paths

expansion path p: simple path from s to ¢ in the rest network G ;.
Rest capacity c(p) = min{cs(u,v) : (u,v) edge in p}

Flow in G'¢

Theorem
The mapping f, : V x V = R,

ci(p) if(u,v) edgeinp
fp(u,v) = ¢ —c(p) if(v,u) edgeinp
0 otherwise

provides a flow in G ; with value | f,| = c;(p) > 0.

fp is a flow (easy to show). there is one and only one v € V' with
(s,u) € p. Thus [fo| = 2 .y fols, v) = fols,u) = ¢;(p).

Consequence

Strategy for an algorithm:

With an expansion path p in G the flow f @ f, defines a new flow
with value |f & f,| = |f| + | fo| > | f].

Max-Flow Min-Cut Theorem

Theorem
Let f be a flow in a flow network G = (V, E, ¢) with source s and
sink t. The following statementsa are equivalent:

f is a maximal flow in G
The rest network Gy does not provide any expansion paths
It holds that | f| = ¢(S,T) foracut (S,T) of G.

Proof

m (3) = (1):
It holds that | f| < ¢(S,T) for all cuts S, T. From |f| = ¢(S,T) it
follows that | f| is maximal.

m (1) = (2):
f maximal Flow in G. Assumption: Gy has some expansion path
If® f,| =|f| + |fs] > |f]. Contradiction.

Proof (2) = (3)

Assumption: Gy has no expansion path
Define S = {v € V : thereis apath s ~» v in G¢}.
(S, T):=(S,V\S)isacut: se S;t €T.

Letu € Sand v € T. Then ¢f(u,v) = 0, also
cr(u,v) = c(u,v) — f(u,v) = 0. Somit f(u,v) = c(u,v).

Thus

|fl = Zquv ZZc(u,v):C(S,T).

ueS veT ueS veT

Algorithm Ford-Fulkerson((, s, t)

Input: Flow network G = (V, E, ¢)
Output: Maximal flow f.

for (u,v) € £ do
flu,v) <0
while Exists path p : s ~~ ¢ in rest network Gy do
cs(p) < min{cs(u,v) : (u,v) € p}
foreach (u,v) € p do
f(u,v) — f(uav) + Cf(p)
f(vvu) — f(v7u> - Cf(p>

Practical Consideration

In an implementation of the Ford-Fulkerson algorithm the negative
flow egdes are usually not stored because their value always equals
the negated value of the antiparallel edge.

f(u,v) « f(u,v) + c¢(p)
f(v,u) = f(v,u) —cs(p)

is then transformed to

if (u,v) € £ then
f(u,v) < f(u,v) + c¢(p)
else

f(v,u) < f(v,u) —cs(p)

Analysis

m The Ford-Fulkerson algorithm does not
necessarily have to converge for irrational
capacities. For integers or rational numbers it
terminates.

m For an integer flow, the algorithms requires
maximally | fi..x| iterations of the while loop
(because the flow increases minimally by 1).
Search a single increasing path (e.g. with
DFS or BFS) O(|E|) Therefore O(fiax|E|).

u

1()()()/‘ \1‘()()()

S 1 t

1000\4 A‘ 000

v

With an unlucky choice the al-
gorithm may require up to 2000
iterations here.

Edmonds-Karp Algorithm

Choose in the Ford-Fulkerson-Method for finding a path in G+ the
expansion path of shortest possible length (e.g. with BFS)

Edmonds-Karp Algorithm

Theorem

When the Edmonds-Karp algorithm is applied to some integer
valued flow network G = (V, E) with source s and sink t then the
number of flow increases applied by the algorithm is in O(|V| - |E).

= Overal asymptotic runtime: O(|V| - |E|?)

[Without proof]

Application: maximal bipartite matching

Given: bipartite undirected graph G = (V, E).
M: M C Esuchthat|{me M :vem}| <lforallvelV.

Maximal Matching M: Matching M, such that |M| > |M’| for each
matching M.

=
X

/
NAV

Corresponding flow network

Construct a flow network that corresponds to the partition L, R of a
bipartite graph with source s and sink ¢, with directed edges from s
to L, from L to R and from R to ¢t. Each edge has capacity 1.

2>

YV
/N

Integer number theorem

If the capacities of a flow network are integers, then the maximal
flow generated by the Ford-Fulkerson method provides integer
numbers for each f(u,v), u,v € V.

[without proof]

Consequence: Ford-Fulkerson generates for a flow network that
corresponds to a bipartite graph a maximal matching

M = {(u,v) : f(u,v) =1}.

	Flow in Networks
	Flow Network
	Cut
	Maximal Flow
	Rest Network
	Max-Flow Min-Cut
	 Ford-Fulkerson Algorithm
	Edmonds-Karp Algorithm
	Maximales Bipartites Matching

