26. Flow in Networks

Flow Network, Maximal Flow, Cut, Rest Network, Max-flow Min-cut
Theorem, Ford-Fulkerson Method, Edmonds-Karp Algorithm,
Maximal Bipartite Matching [Ottman/Widmayer, Kap. 9.7, 9.8.1],
[Cormen et al, Kap. 26.1-26.3]

815

Flow Network

m Flow network G = (V, E, ¢): directed
graph with capacities 12
m Antiparallel edges forbidden: o .

(u,v) € E = (v,u) € E. 16/‘ \2|O

m Model a missing edge (u, v) by s 4 o |7 Lt

c(u,v) = 0. 13\‘ A‘

m Source s and sink t: special nodes. 2 ——
Every node v is on a path between s
andt:s~»v~t

817

Motivation

m Modelling flow of fluents, components on conveyors, current in
electrical networks or information flow in communication networks.

m Connectivity of Communication Networks, Bipartite Matching,
Circulation, Scheduling, Image Segmentation, Baseball
Eliminination...

816

Flow

A Flow f - V xV — R fulfills the following
conditions: o1

m Bounded Capacity: V — wl
Forall u,v € V: f(u,v) < c(u,v). . » B .

m Skew Symmetry: 1m 914 %
Forall u,v € V: f(u,v) = —f(v,u). ‘ Uy e 4

14/10
m Conservation of flow:

Forallu e V' \ {s,t}:

Zf(u, v) = 0.

veV

Value of the flow:

|f| = Z’UGV f(S,’U).
Here |f| = 18.

818

How large can a flow possibly be?

Limiting factors: cuts

m cut separating s from t: Partition of V' into S and 7" with s € .5,
teT.

m Capacity of acut: ¢(S,T) = > cgper c(v,0)
m Minimal cut. cut with minimal capacity.
m Flow over the cut: f(S,T) =} cger f(v,0)

819

How large can a flow possibly be?
For each flow and each cut it holds that f(S,T") = |f|:

f(8,T) = f(5,V) = [(5,5) = [(5,V)
0
= [V) + f(S={s}, V) =[]
#t.Fs

12/12

U1 U3 K
V 20714
s 4/4 706 t
9/4,
13/10 4/4
v

821

Implicit Summation
Notation: Let U, U’ C V

f(U7 U/) = Z f(u7u/)7 f(u7 U/) = f({u}7 U/)

uel
u'el’
Thus
m | fl=[f(s,V)
m f(UU)=0

u f(U7 Ul) = _f<U,7 U)
m f(XUY,2)=f(X,2)+ f(Y.Z),if XY = 0.
m f(RV)=0if Rn{s,t} = 0. [flow conversation!]

820

Maximal Flow ?

In particular, for each cut (S, 7) of V.

f1<) elw,v))=c(S,T)
veSW'eT
Will discover that equality holds for ming 1 ¢(S, T).

‘\
2
V] ———— U3

16 . 20
s 4] ‘1\7 t
9 .

822

Maximal Flow ?

Naive Procedure
6/8 « — - 20/1
1/4 / 7/6 t
3/10 - - %
6/8
1/4

/
S
\\
U2
3
/’ 20117 5110 20/19
s s 1/2 77 t
9/0
N 1/4 1N %
v v. n

Conclusion: greedy increase of flow does not solve the problem.

AN
N
WV

=
& S
\\ ©
© [V}
=
£ &
~
5

823

Increase of flow, negative!

Let some flow f in the network be given.
Finding:

m Increase of the flow along some edge possible, when flow can be
increased along the edge,i.e. if f(u,v) < ¢(u,v).
Rest capacity cf(u,v) = ¢(u,v) — f(u,v) > 0.

m Increase of flow against the direction of the edge possible, if flow
can be reduced along the edge, i.e. if f(u,v) > 0.
Rest capacity c¢(v, u) = f(u,v) > 0.

825

The Method of Ford-Fulkerson

m Start with f(u,v) =0forallu,v € V

m Determine rest network* Gy and expansion path in G/
m Increase flow via expansion path*

m Repeat until no expansion path available.

Gy = (V. Ef,c)
cr(u,v) = c(u,v) — f(u,v) Yu,v eV
E¢:={(u,v) € V x Vles(u,v) > 0}

*Will now be explained

824

Rest Network

Rest network Gy provided by the edges with positive rest capacity:

12

Rest networks provide the same kind of properties as flow networks with the exception of permitting antiparallel
capacity-edges

826

Observation

Theorem

LetG = (V, E, c) be a flow network with source s and sinkt and f a
flow in G. Let Gy be the corresponding rest networks and let f’ be a
flowin Gy. Then f & f' with

(f D f/)(ua ’U) = f(u7v) + f/(ua U)

defines a flow in G with value | f| + | f'|.

827

Proof

Value of f @ f

ifefl=Uof)sV)
= Zf(s,u) + f'(s,u)

ueV
= f(s,V)+ f'(s,V)
=[fI+1f]

829

Proof

f @ f' defines a flow in G-
m capacity limit

(fEB f/)<u7 U) =

m skew symmetry

(f S f/)(uv U) = —f(v,u) + —f’(v,u) = _(f S f/)(U,U)

m flow conservation u € V' — {s,t}:

S (foMuw)=> fluv)+ > f(uv)=0

828

Augmenting Paths

expansion path p: simple path from s to ¢ in the rest network G/ .
Rest capacity cy(p) = min{cs(u,v) : (u,v) edge in p}

830

Flow in G ¢

Theorem
The mapping f, : V xV = R,

ce(p) if(u,v) edgeinp
fp(u,v) = —cp(p) if (v,u) edge inp
0 otherwise

provides a flow in Gy with value | f,| = c¢(p) > 0.

fp is a flow (easy to show). there is one and only one v € V' with
(s,u) € p. Thus | fy| = > ev fols,v) = fo(s,u) = ¢4 (p).

831

Max-Flow Min-Cut Theorem

Theorem

Let f be a flow in a flow network G = (V, E, ¢) with source s and
sink t. The following statementsa are equivalent:

f is a maximal flow in G
The rest network G ¢ does not provide any expansion paths
It holds that | f| = ¢(S,T) foracut (S,T) of G.

833

Consequence

Strategy for an algorithm:

With an expansion path p in G the flow f @ f, defines a new flow
with value | f & fp| = [f] + | /5| > |-

832

Proof

m (3)= (1):
It holds that | f| < ¢(S,T) for all cuts S, T. From | f| = ¢(S,T) it
follows that | f| is maximal.

m (1) = (2):
f maximal Flow in G. Assumption: G has some expansion path
\f & fol = |fl +1f»] > |f|. Contradiction.

834

Proof (2) = (3)

Assumption: G'; has no expansion path
Define S = {v € V : thereis a path s ~» v in G}.
(S, T):=(S,V\S)isacut: s S,teT.

Letu € Sandv € T. Then ¢s(u,v) = 0, also
cr(u,v) = c(u,v) — f(u,v) = 0. Somit f(u,v) = c(u,v).

Thus

|f| :f<SvT> :ZZf<u,v):ZZC(U,U) :C<SvT>

uesS vel

Practical Consideration

In an implementation of the Ford-Fulkerson algorithm the negative
flow egdes are usually not stored because their value always equals
the negated value of the antiparallel edge.

f(uvv) < f(u U) + Cf(p)
f(/U7 U) — f(i), u) - Cf(p)

is then transformed to
if (u,v) € E then

o fu,v) & fu,v) 4+ cp(p)

else

L) = fo,u) = er(p)

Algorithm Ford-Fulkerson(G, s, t)

Input: Flow network G = (V, E, ¢)
Output: Maximal flow f.

for (u,v) € E do
- flu,v) =0
while Exists path p : s ~» t in rest network Gy do
cp(p) « min{cy(u,v) : (u,v) € p}
foreach (u,v) € p do
f(u,v) < f(u,v) + cs(p)
N f(vvu) — f(v,u) - Cf(p)

Analysis

m The Ford-Fulkerson algorithm does not
necessarily have to converge for irrational
capacities. For integers or rational numbers it
terminates.

m For an integer flow, the algorithms requires
maximally | fi..«| iterations of the while loop
(because the flow increases minimally by 1).
Search a single increasing path (e.g. with
DFS or BFS) O(|E|) Therefore O(fuax| E|)-

U

10 OO/’ \1‘0 00

S 1 t

l()()()\4 A]O()

v

With an unlucky choice the al-
gorithm may require up to 2000
iterations here.

838

Edmonds-Karp Algorithm

Choose in the Ford-Fulkerson-Method for finding a path in G the
expansion path of shortest possible length (e.g. with BFS)

839

Application: maximal bipartite matching

Given: bipartite undirected graph G = (V, E).
M: M C Esuchthat|{me M :vem}| <l1lforallveV.

Maximal Matching M: Matching M, such that |M| > |M’| for each
matching M.

-
X

/

NAV

841

Edmonds-Karp Algorithm

When the Edmonds-Karp algorithm is applied to some integer
valued flow network G = (V, E) with source s and sink t then the
number of flow increases applied by the algorithm is in O(|V'| - | E|).

= Overal asymptotic runtime: O(|V| - |E|?)

[Without proof]

840

Corresponding flow network

Construct a flow network that corresponds to the partition L, R of a
bipartite graph with source s and sink ¢, with directed edges from s
to L, from L to R and from R to ¢t. Each edge has capacity 1.

ét

OV
/N
NQY

842

Integer number theorem

If the capacities of a flow network are integers, then the maximal
flow generated by the Ford-Fulkerson method provides integer
numbers for each f(u,v), u,v € V.

[without proof]

Consequence: Ford-Fulkerson generates for a flow network that
corresponds to a bipartite graph a maximal matching

M ={(u,v): f(u,v) = 1}.

843

