25. Minimum Spanning Trees

Motivation, Greedy, Algorithm Kruskal, General Rules, ADT Union-Find, Algorithm Jarnik, Prim, Dijkstra, ,Algorithm Jarnik, Prim, Dijkstra ,Fibonacci Heaps

[Ottman/Widmayer, Kap. 9.6, 6.2, 6.1, Cormen et al, Kap. 23, 19]

Problem

Given: Undirected, weighted, connected graph G = (V, E, c). *Wanted:* Minimum Spanning Tree T = (V, E'): connected, cycle-free subgraph $E' \subset E$, such that $\sum_{e \in E'} c(e)$ minimal.

- Network-Design: find the cheapest / shortest network that connects all nodes.
- Approximation of a solution of the travelling salesman problem: find a round-trip, as short as possible, that visits each node once.

Recall:

- Greedy algorithms compute the solution stepwise choosing locally optimal solutions.
- Most problems cannot be solved with a greedy algorithm.
- The Minimum Spanning Tree problem can be solved with a greedy strategy.

Construct T by adding the cheapest edge that does not generate a cycle.

Construct T by adding the cheapest edge that does not generate a cycle.

Construct T by adding the cheapest edge that does not generate a cycle.

Construct T by adding the cheapest edge that does not generate a cycle.

Construct T by adding the cheapest edge that does not generate a cycle.

Construct T by adding the cheapest edge that does not generate a cycle.

Algorithm MST-Kruskal(G)

Input: Weighted Graph G = (V, E, c)**Output:** Minimum spanning tree with edges A.

```
Sort edges by weight c(e_1) \leq ... \leq c(e_m)

A \leftarrow \emptyset

for k = 1 to |E| do

\downarrow if (V, A \cup \{e_k\}) acyclic then

\downarrow A \leftarrow A \cup \{e_k\}
```

return (V, A, c)

Correctness

At each point in the algorithm (V, A) is a forest, a set of trees. MST-Kruskal considers each edge e_k exactly once and either chooses or rejects e_k

Notation (snapshot of the state in the running algorithm)

- *A*: Set of selected edges
- R: Set of rejected edges
- U: Set of yet undecided edges

Cut

A cut of G is a partition S, V - S of V. ($S \subseteq V$).

An edge crosses a cut when one of its endpoints is in S and the other is in $V \setminus S.$

- Selection rule: choose a cut that is not crossed by a selected edge. Of all undecided edges that cross the cut, select the one with minimal weight.
- Rejection rule: choose a cycle without rejected edges. Of all undecided edges of the cycle, reject those with maximal weight.

Kruskal applies both rules:

- 1 A selected e_k connects two connection components, otherwise it would generate a cycle. e_k is minimal, i.e. a cut can be chosen such that e_k crosses and e_k has minimal weight.
- 2 A rejected e_k is contained in a cycle. Within the cycle e_k has minimal weight.

Correctness

Theorem

Every algorithm that applies the rules above in a step-wise manner until $U = \emptyset$ is correct.

Consequence: MST-Kruskal is correct.

Invariant: At each step there is a minimal spanning tree that contains all selected and none of the rejected edges.

If both rules satisfy the invariant, then the algorithm is correct. Induction:

At beginning: U = E, $R = A = \emptyset$. Invariant obviously holds.

Invariant is preserved at each step of the algorithm.

• At the end: $U = \emptyset$, $R \cup A = E \Rightarrow (V, A)$ is a spanning tree.

Proof of the theorem: show that both rules preserve the invariant.

Selection rule preserves the invariant

At each step there is a minimal spanning tree T that contains all selected and none of the rejected edges.

Choose a cut that is not crossed by a selected edge. Of all undecided edges that cross the cut, select the egde e with minimal weight.

- Case 1: $e \in T$ (done)
- Case 2: $e \notin T$. Then $T \cup \{e\}$ contains a cycle that contains eCycle must have a second edge e' that also crosses the cut.⁴⁹ Because $e' \notin R$, $e' \in U$. Thus $c(e) \leq c(e')$ and $T' = T \setminus \{e'\} \cup \{e\}$ is also a minimal spanning tree (and c(e) = c(e')).

⁴⁹Such a cycle contains at least one node in S and one node in $V \setminus S$ and therefore at lease to edges between S and $V \setminus S$.

Rejection rule preserves the invariant

At each step there is a minimal spanning tree T that contains all selected and none of the rejected edges.

Choose a cycle without rejected edges. Of all undecided edges of the cycle, reject an edge e with maximal weight.

- Case 1: $e \notin T$ (done)
- Case 2: $e \in T$. Remove e from T, This yields a cut. This cut must be crossed by another edge e' of the cycle. Because $c(e') \leq c(e)$, $T' = T \setminus \{e\} \cup \{e'\}$ is also minimal (and c(e) = c(e')).

Implementation Issues

Consider a set of sets $i \equiv A_i \subset V$. To identify cuts and cycles: membership of the both ends of an edge to sets?

General problem: partition (set of subsets) .e.g. $\{\{1,2,3,9\},\{7,6,4\},\{5,8\},\{10\}\}$

Required: Abstract data type "Union-Find" with the following operations

- Make-Set(*i*): create a new set represented by *i*.
- Find(e): name of the set i that contains e.
- Union(i, j): union of the sets with names i and j.

Union-Find Algorithm MST-Kruskal(*G***)**

Input: Weighted Graph G = (V, E, c)**Output:** Minimum spanning tree with edges A.

Sort edges by weight $c(e_1) < ... < c(e_m)$ $A \leftarrow \emptyset$ for k = 1 to |V| do MakeSet(k)for k = 1 to m do $(u, v) \leftarrow e_k$ if $Find(u) \neq Find(v)$ then Union(Find(u), Find(v)) $A \leftarrow A \cup e_k$ else

return (V, A, c)

// conceptual: $R \leftarrow R \cup e_k$

Implementation Union-Find

ldea: tree for each subset in the partition, e.g. $\{\{1,2,3,9\},\{7,6,4\},\{5,8\},\{10\}\}$

roots = names (representatives) of the sets, trees = elements of the sets

Implementation Union-Find

Representation as array:

 Index
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

 Parent
 1
 1
 6
 5
 6
 5
 5
 3
 10

Implementation Union-Find

Make-Set(i)	$p[i] \leftarrow i$; return i
Find(i)	while $(p[i] \neq i)$ do $i \leftarrow p[i]$ return i
Union (i, j) ⁵⁰	$p[j] \leftarrow i;$

 $^{{}^{50}}i$ and j need to be names (roots) of the sets. Otherwise use Union(Find(i),Find(j))

Optimisation of the runtime for Find

Tree may degenerate. Example: Union(8, 7), Union(7, 6), Union(6, 5), ...

 Index
 1
 2
 3
 4
 5
 6
 7
 8
 ...

 Parent
 1
 1
 2
 3
 4
 5
 6
 7
 8
 ...

Worst-case running time of Find in $\Theta(n)$.

Optimisation of the runtime for Find

Idea: always append smaller tree to larger tree. Requires additional size information (array) g

Make-Set(*i*) $p[i] \leftarrow i; g[i] \leftarrow 1;$ return *i*

 $\begin{array}{ll} \text{if } g[j] > g[i] \text{ then } \operatorname{swap}(i,j) \\ \text{Union}(i,j) & p[j] \leftarrow i \\ \text{if } g[i] = g[j] \text{ then } g[i] \leftarrow g[i] + 1 \end{array}$

 \Rightarrow Tree depth (and worst-case running time for Find) in $\Theta(\log n)$

Theorem

The method above (union by size) preserves the following property of the trees: a tree of height h has at least 2^h nodes.

Immediate consequence: runtime Find = $O(\log n)$.

[Proof]

Induction: by assumption, sub-trees have at least 2^{h_i} nodes. WLOG: $h_2 \leq h_1$

• $h_2 < h_1$:

$$h(T_1 \oplus T_2) = h_1 \Rightarrow g(T_1 \oplus T_2) \ge 2^h$$

• $h_2 = h_1$:

$$g(T_1) \ge g(T_2) \ge 2^{h_2}$$

$$\Rightarrow g(T_1 \oplus T_2) = g(T_1) + g(T_2) \ge 2 \cdot 2^{h_2} = 2^{h(T_1 \oplus T_2)}$$

Further improvement

Link all nodes to the root when Find is called.

Find(*i*): $j \leftarrow i$ while $(p[i] \neq i)$ do $i \leftarrow p[i]$ while $(j \neq i)$ do $\begin{pmatrix} t \leftarrow j \\ j \leftarrow p[j] \\ p[t] \leftarrow i \end{pmatrix}$

return i

Cost: amortised *nearly* constant (inverse of the Ackermann-function).⁵¹

⁵¹We do not go into details here.

Running time of Kruskal's Algorithm

Sorting of the edges: Θ(|E| log |E|) = Θ(|E| log |V|). ⁵²
Initialisation of the Union-Find data structure Θ(|V|)
|E|× Union(Find(x),Find(y)): O(|E| log |E|) = O(|E| log |V|).
Overal Θ(|E| log |V|).

⁵²because G is connected: $|V| \le |E| \le |V|^2$

Algorithm of Jarnik (1930), Prim, Dijkstra (1959)

Idea: start with some $v \in V$ and grow the spanning tree from here by the acceptance rule.

$$\begin{array}{l} A \leftarrow \emptyset \\ S \leftarrow \{v_0\} \\ \text{for } i \leftarrow 1 \text{ to } |V| \text{ do} \\ \\ & \left[\begin{array}{c} \text{Choose cheapest } (u, v) \text{ mit } u \in S, v \not\in S \\ A \leftarrow A \cup \{(u, v)\} \\ S \leftarrow S \cup \{v\} \ // \text{ (Coloring)} \end{array} \right] \end{array}$$

Remark: a union-Find data structure is not required. It suffices to color nodes when they are added to S.

Running time

Trivially $\mathcal{O}(|V| \cdot |E|)$.

Improvement (like with Dijkstra's ShortestPath)

With Min-Heap: costs

- Initialization (node coloring) $\mathcal{O}(|V|)$
- $\blacksquare |V| \times \mathsf{ExtractMin} = \mathcal{O}(|V| \log |V|),$
- $\blacksquare |E| \times \text{ Insert or DecreaseKey: } \mathcal{O}(|E| \log |V|),$

 $\mathcal{O}(|E| \cdot \log |V|)$

• With a Fibonacci-Heap: $\mathcal{O}(|E| + |V| \cdot \log |V|)$.

Fibonacci Heaps

Data structure for elements with key with operations

- MakeHeap(): Return new heap without elements
- Insert(H, x): Add x to H
- Minimum(H): return a pointer to element m with minimal key
- ExtractMin(H): return and remove (from H) pointer to the element m
- Union (H_1, H_2) : return a heap merged from H_1 and H_2
- DecreaseKey(H, x, k): decrease the key of x in H to k
- **Delete** (H, x): remove element x from H

Advantage over binary heap?

	Binary Heap	Fibonacci Heap
	(worst-Case)	(amortized)
MakeHeap	$\Theta(1)$	$\Theta(1)$
Insert	$\Theta(\log n)$	$\Theta(1)$
Minimum	$\Theta(1)$	$\Theta(1)$
ExtractMin	$\Theta(\log n)$	$\Theta(\log n)$
Union	$\Theta(n)$	$\Theta(1)$
DecreaseKey	$\Theta(\log n)$	$\Theta(1)$
Delete	$\Theta(\log n)$	$\Theta(\log n)$

Structure

Set of trees that respect the Min-Heap property. Nodes that can be marked.

Implementation

Doubly linked lists of nodes with a marked-flag and number of children. Pointer to minimal Element and number nodes.

Simple Operations

- MakeHeap (trivial)
- Minimum (trivial)
- Insert(H, e)
 - Insert new element into root-list
 - 2 If key is smaller than minimum, reset min-pointer.
- Union (H_1, H_2)
 - **1** Concatenate root-lists of H_1 and H_2
 - 2 Reset min-pointer.
- Delete(H, e)
 - **1** DecreaseKey($H, e, -\infty$)
 - 2 ExtractMin(H)

ExtractMin

- $\hfill\ensuremath{\blacksquare}$ Remove minimal node m from the root list
- **2** Insert children of m into the root list
- ³ Merge heap-ordered trees with the same degrees until all trees have a different degree: Array of degrees $a[0, \ldots, n]$ of elements, empty at beginning. For each element e of the root list:
 - **a** Let g be the degree of e

b If
$$a[g] = nil: a[g] \leftarrow e$$
.

c If $e' := a[g] \neq nil$: Merge e with e' resulting in e'' and set $a[g] \leftarrow nil$. Set e'' unmarked. Re-iterate with $e \leftarrow e''$ having degree g + 1.

DecreaseKey (H, e, k)

- **1** Remove e from its parent node p (if existing) and decrease the degree of p by one.
- **2** Insert(H, e)
- Avoid too thin trees:
 - a If p = nil then done.
 - **b** If p is unmarked: mark p and done.
 - If p marked: unmark p and cut p from its parent pp. Insert (H, p). Iterate with $p \leftarrow pp$.

Estimation of the degree

Theorem

Let p be a node of a F-Heap H. If child nodes of p are sorted by time of insertion (Union), then it holds that the *i*th child node has a degree of at least i - 2.

Proof: p may have had more children and lost by cutting. When the *i*th child p_i was linked, p and p_i must at least have had degree i - 1. p_i may have lost at least one child (marking!), thus at least degree i - 2 remains.

Estimation of the degree

Theorem

Every node p with degree k of a F-Heap is the root of a subtree with at least F_{k+1} nodes. (*F*: Fibonacci-Folge)

Proof: Let S_k be the minimal number of successors of a node of degree k in a F-Heap plus 1 (the node itself). Clearly $S_0 = 1$, $S_1 = 2$. With the previous theorem $S_k \ge 2 + \sum_{i=0}^{k-2} S_i$, $k \ge 2$ (p and nodes p_1 each 1). For Fibonacci numbers it holds that (induction) $F_k \ge 2 + \sum_{i=2}^{k} F_i$, $k \ge 2$ and thus (also induction) $S_k \ge F_{k+2}$.

Fibonacci numbers grow exponentially fast ($\mathcal{O}(\varphi^k)$) Consequence: maximal degree of an arbitrary node in a Fibonacci-Heap with n nodes is $\mathcal{O}(\log n)$.

Amortized worst-case analysis Fibonacci Heap

t(H): number of trees in the root list of H, m(H): number of marked nodes in H not within the root-list, Potential function $\Phi(H) = t(H) + 2 \cdot m(H)$. At the beginnning $\Phi(H) = 0$. Potential always non-negative.

Amortized costs:

- Insert(H, x): t'(H) = t(H) + 1, m'(H) = m(H), Increase of the potential: 1, Amortized costs $\Theta(1) + 1 = \Theta(1)$
- Minimum(*H*): Amortized costs = real costs = $\Theta(1)$
- Union(H_1, H_2): Amortized costs = real costs = $\Theta(1)$

- **Number trees in the root list** t(H).
- **Real costs of ExtractMin operation** $O(\log n + t(H))$.
- When merged still $\mathcal{O}(\log n)$ nodes.
- Number of markings can only get smaller when trees are merged
- Thus maximal amortized costs of ExtractMin

$$\mathcal{O}(\log n + t(H)) + \mathcal{O}(\log n) - \mathcal{O}(t(H)) = \mathcal{O}(\log n).$$

- Assumption: DecreaseKey leads to c cuts of a node from its parent node, real costs O(c)
- c nodes are added to the root list
- Delete (c-1) mark flags, addition of at most one mark flag
- Amortized costs of DecreaseKey:

$$\mathcal{O}(c) + (t(H) + c) + 2 \cdot (m(H) - c + 2)) - (t(H) + 2m(H)) = \mathcal{O}(1)$$