
25. Minimum Spanning Trees

Motivation, Greedy, Algorithm Kruskal, General Rules, ADT
Union-Find, Algorithm Jarnik, Prim, Dijkstra, ,Algorithm Jarnik, Prim,
Dijkstra ,Fibonacci Heaps

[Ottman/Widmayer, Kap. 9.6, 6.2, 6.1, Cormen et al, Kap. 23, 19]

775

Problem

Given: Undirected, weighted, connected graph G = (V,E, c).

Wanted: Minimum Spanning Tree T = (V,E ′): connected, cycle-free
subgraph E ′ ⊂ E, such that

∑
e∈E′ c(e) minimal.

s

t

u

v

w

x

1

1

2

4
3

2

2
6

776

Application Examples

Network-Design: find the cheapest / shortest network that
connects all nodes.
Approximation of a solution of the travelling salesman problem:
find a round-trip, as short as possible, that visits each node once.

777

Greedy Procedure

Recall:

Greedy algorithms compute the solution stepwise choosing locally
optimal solutions.
Most problems cannot be solved with a greedy algorithm.
The Minimum Spanning Tree problem can be solved with a greedy
strategy.

778

Greedy Idea (Kruskal, 1956)

Construct T by adding the cheapest edge that does not generate a
cycle.

s

t

u

v

w

x

1

1

2

4
3

2

2
6

(Solution is not unique.)

779

Greedy Idea (Kruskal, 1956)

Construct T by adding the cheapest edge that does not generate a
cycle.

s

t

u

v

w

x

1

1

2

4
3

2

2
6

(Solution is not unique.)

779

Greedy Idea (Kruskal, 1956)

Construct T by adding the cheapest edge that does not generate a
cycle.

s

t

u

v

w

x

1

1

2

4
3

2

2
6

(Solution is not unique.)

779

Greedy Idea (Kruskal, 1956)

Construct T by adding the cheapest edge that does not generate a
cycle.

s

t

u

v

w

x

1

1

2

4
3

2

2
6

(Solution is not unique.)

779

Greedy Idea (Kruskal, 1956)

Construct T by adding the cheapest edge that does not generate a
cycle.

s

t

u

v

w

x

1

1

2

4
3

2

2
6

(Solution is not unique.)

779

Greedy Idea (Kruskal, 1956)

Construct T by adding the cheapest edge that does not generate a
cycle.

s

t

u

v

w

x

1

1

2

4
3

2

2
6

(Solution is not unique.)

779

Algorithm MST-Kruskal(G)

Input: Weighted Graph G = (V,E, c)
Output: Minimum spanning tree with edges A.

Sort edges by weight c(e1) ≤ ... ≤ c(em)
A← ∅
for k = 1 to |E| do

if (V,A ∪ {ek}) acyclic then
A← A ∪ {ek}

return (V,A, c)

780

Correctness

At each point in the algorithm (V,A) is a forest, a set of trees.

MST-Kruskal considers each edge ek exactly once and either
chooses or rejects ek

Notation (snapshot of the state in the running algorithm)

A: Set of selected edges
R: Set of rejected edges
U : Set of yet undecided edges

781

Cut
A cut of G is a partition S, V − S of V . (S ⊆ V).

An edge crosses a cut when one of its endpoints is in S and the
other is in V \ S.

S

V \ S

782

Rules

1 Selection rule: choose a cut that is not crossed by a selected
edge. Of all undecided edges that cross the cut, select the one
with minimal weight.

2 Rejection rule: choose a cycle without rejected edges. Of all
undecided edges of the cycle, reject those with maximal weight.

783

Rules

Kruskal applies both rules:

1 A selected ek connects two connection components, otherwise
it would generate a cycle. ek is minimal, i.e. a cut can be chosen
such that ek crosses and ek has minimal weight.

2 A rejected ek is contained in a cycle. Within the cycle ek has
minimal weight.

784

Correctness

Theorem
Every algorithm that applies the rules above in a step-wise manner
until U = ∅ is correct.

Consequence: MST-Kruskal is correct.

785

Selection invariant

Invariant: At each step there is a minimal spanning tree that contains
all selected and none of the rejected edges.

If both rules satisfy the invariant, then the algorithm is correct.
Induction:

At beginning: U = E, R = A = ∅. Invariant obviously holds.
Invariant is preserved at each step of the algorithm.
At the end: U = ∅, R ∪ A = E ⇒ (V,A) is a spanning tree.

Proof of the theorem: show that both rules preserve the invariant.

786

Selection rule preserves the invariant

At each step there is a minimal spanning tree T that contains all selected and none of the rejected edges.

Choose a cut that is not crossed by a selected edge. Of all undecided edges that cross the cut, select the egde e with
minimal weight.

Case 1: e ∈ T (done)
Case 2: e 6∈ T . Then T ∪ {e} contains a cycle that contains e
Cycle must have a second edge e′ that also crosses the cut.49

Because e′ 6∈ R , e′ ∈ U . Thus c(e) ≤ c(e′) and T ′ = T \ {e′}∪{e}
is also a minimal spanning tree (and c(e) = c(e′)).

49Such a cycle contains at least one node in S and one node in V \ S and therefore at lease to edges between S and
V \ S.

787

Rejection rule preserves the invariant

At each step there is a minimal spanning tree T that contains all selected and none of the rejected edges.

Choose a cycle without rejected edges. Of all undecided edges of the cycle, reject an edge e with maximal weight.

Case 1: e 6∈ T (done)
Case 2: e ∈ T . Remove e from T , This yields a cut. This cut must
be crossed by another edge e′ of the cycle. Because c(e′) ≤ c(e) ,
T ′ = T \ {e} ∪ {e′} is also minimal (and c(e) = c(e′)).

788

Implementation Issues

Consider a set of sets i ≡ Ai ⊂ V . To identify cuts and cycles:
membership of the both ends of an edge to sets?

789

Implementation Issues

General problem: partition (set of subsets) .e.g.
{{1, 2, 3, 9}, {7, 6, 4}, {5, 8}, {10}}
Required: Abstract data type “Union-Find” with the following
operations

Make-Set(i): create a new set represented by i.
Find(e): name of the set i that contains e .
Union(i, j): union of the sets with names i and j.

790

Union-Find Algorithm MST-Kruskal(G)
Input: Weighted Graph G = (V,E, c)
Output: Minimum spanning tree with edges A.

Sort edges by weight c(e1) ≤ ... ≤ c(em)
A← ∅
for k = 1 to |V | do

MakeSet(k)

for k = 1 to m do
(u, v)← ek
if Find(u) 6= Find(v) then

Union(Find(u),Find(v))
A← A ∪ ek

else // conceptual: R← R ∪ ek

return (V,A, c)

791

Implementation Union-Find

Idea: tree for each subset in the partition,e.g.
{{1, 2, 3, 9}, {7, 6, 4}, {5, 8}, {10}}

1

2 3

9

6

7 4

5

8

10

roots = names (representatives) of the sets,
trees = elements of the sets

792

Implementation Union-Find

1

2 3

9

6

7 4

5

8

10

Representation as array:

Index 1 2 3 4 5 6 7 8 9 10
Parent 1 1 1 6 5 6 5 5 3 10

793

Implementation Union-Find

Index 1 2 3 4 5 6 7 8 9 10
Parent 1 1 1 6 5 6 5 5 3 10

Make-Set(i) p[i]← i; return i

Find(i) while (p[i] 6= i) do i← p[i]
return i

Union(i, j) 50 p[j]← i;

50i and j need to be names (roots) of the sets. Otherwise use Union(Find(i),Find(j))
794

Optimisation of the runtime for Find

Tree may degenerate. Example: Union(8, 7), Union(7, 6),
Union(6, 5), ...

Index 1 2 3 4 5 6 7 8 ..
Parent 1 1 2 3 4 5 6 7 ..

Worst-case running time of Find in Θ(n).

795

Optimisation of the runtime for Find

Idea: always append smaller tree to larger tree. Requires additional
size information (array) g

Make-Set(i) p[i]← i; g[i]← 1; return i

Union(i, j)
if g[j] > g[i] then swap(i, j)
p[j]← i
if g[i] = g[j] then g[i]← g[i] + 1

⇒ Tree depth (and worst-case running time for Find) in Θ(log n)

796

[Observation]

Theorem
The method above (union by size) preserves the following property
of the trees: a tree of height h has at least 2h nodes.

Immediate consequence: runtime Find = O(log n).

(not shown in class) 797

[Proof]

Induction: by assumption, sub-trees have at
least 2hi nodes. WLOG: h2 ≤ h1

h2 < h1:

h(T1 ⊕ T2) = h1 ⇒ g(T1 ⊕ T2) ≥ 2h

h2 = h1:

g(T1) ≥ g(T2) ≥ 2h2

⇒g(T1 ⊕ T2) = g(T1) + g(T2) ≥ 2 · 2h2 = 2h(T1⊕T2)

T1

T2

h1

h2

(not shown in class) 798

Further improvement

Link all nodes to the root when Find is called.

Find(i):
j ← i
while (p[i] 6= i) do i← p[i]
while (j 6= i) do

t← j
j ← p[j]
p[t]← i

return i

Cost: amortised nearly constant (inverse of the
Ackermann-function).51

51We do not go into details here.
799

Running time of Kruskal’s Algorithm

Sorting of the edges: Θ(|E| log |E|) = Θ(|E| log |V |). 52

Initialisation of the Union-Find data structure Θ(|V |)
|E|× Union(Find(x),Find(y)): O(|E| log |E|) = O(|E| log |V |).

Overal Θ(|E| log |V |).

52because G is connected: |V | ≤ |E| ≤ |V |2
800

Algorithm of Jarnik (1930), Prim, Dijkstra (1959)

Idea: start with some v ∈ V and grow the spanning tree from here
by the acceptance rule.

A← ∅
S ← {v0}
for i← 1 to |V | do

Choose cheapest (u, v) mit u ∈ S, v 6∈ S
A← A ∪ {(u, v)}
S ← S ∪ {v} // (Coloring)

S

V \ S

Remark: a union-Find data structure is not required. It suffices to
color nodes when they are added to S.

801

Running time

Trivially O(|V | · |E|).
Improvement (like with Dijkstra’s ShortestPath)

With Min-Heap: costs

Initialization (node coloring) O(|V |)
|V |× ExtractMin = O(|V | log |V |),
|E|× Insert or DecreaseKey: O(|E| log |V |),

O(|E| · log |V |)
With a Fibonacci-Heap: O(|E|+ |V | · log |V |).

802

Fibonacci Heaps

Data structure for elements with key with operations

MakeHeap(): Return new heap without elements
Insert(H, x): Add x to H

Minimum(H): return a pointer to element m with minimal key
ExtractMin(H): return and remove (from H) pointer to the element
m

Union(H1, H2): return a heap merged from H1 and H2

DecreaseKey(H, x, k): decrease the key of x in H to k

Delete (H, x): remove element x from H

803

Advantage over binary heap?

Binary Heap Fibonacci Heap
(worst-Case) (amortized)

MakeHeap Θ(1) Θ(1)
Insert Θ(log n) Θ(1)
Minimum Θ(1) Θ(1)
ExtractMin Θ(log n) Θ(log n)
Union Θ(n) Θ(1)
DecreaseKey Θ(log n) Θ(1)
Delete Θ(log n) Θ(log n)

804

Structure

Set of trees that respect the Min-Heap property. Nodes that can be
marked.

23 7 3

18

39

52 38

41

17

30

24

26

35

46

min

805

Implementation

Doubly linked lists of nodes with a marked-flag and number of
children. Pointer to minimal Element and number nodes.

23 7 3

18

39

52 38

41

17

30

24

26

35

46

min
n = 14

0 0 3 2 2

1

0

0 1

0

0 1

0

0

806

Simple Operations
MakeHeap (trivial)
Minimum (trivial)
Insert(H, e)

1 Insert new element into root-list
2 If key is smaller than minimum, reset min-pointer.

Union (H1, H2)
1 Concatenate root-lists of H1 and H2

2 Reset min-pointer.

Delete(H, e)
1 DecreaseKey(H, e,−∞)
2 ExtractMin(H)

807

ExtractMin

1 Remove minimal node m from the root list
2 Insert children of m into the root list
3 Merge heap-ordered trees with the same degrees until all trees

have a different degree:
Array of degrees a[0, . . . , n] of elements, empty at beginning.
For each element e of the root list:

a Let g be the degree of e
b If a[g] = nil: a[g]← e.
c If e′ := a[g] 6= nil: Merge e with e′ resutling in e′′ and set a[g]← nil.

Set e′′ unmarked. Re-iterate with e← e′′ having degree g + 1.

808

DecreaseKey (H, e, k)

1 Remove e from its parent node p (if existing) and decrease the
degree of p by one.

2 Insert(H, e)
3 Avoid too thin trees:

a If p = nil then done.
b If p is unmarked: mark p and done.
c If p marked: unmark p and cut p from its parent pp. Insert (H, p). Iterate

with p← pp.

809

Estimation of the degree

Theorem
Let p be a node of a F-Heap H. If child nodes of p are sorted by time
of insertion (Union), then it holds that the ith child node has a
degree of at least i− 2.

Proof: p may have had more children and lost by cutting. When the ith child pi
was linked, p and pi must at least have had degree i− 1. pi may have lost at least
one child (marking!), thus at least degree i− 2 remains.

810

Estimation of the degree

Theorem
Every node p with degree k of a F-Heap is the root of a subtree with
at least Fk+1 nodes. (F : Fibonacci-Folge)

Proof: Let Sk be the minimal number of successors of a node of degree k in a
F-Heap plus 1 (the node itself). Clearly S0 = 1, S1 = 2. With the previous theorem
Sk ≥ 2 +

∑k−2
i=0 Si, k ≥ 2 (p and nodes p1 each 1). For Fibonacci numbers it holds

that (induction) Fk ≥ 2 +
∑k

i=2 Fi, k ≥ 2 and thus (also induction) Sk ≥ Fk+2.

Fibonacci numbers grow exponentially fast (O(ϕk)) Consequence: maximal
degree of an arbitrary node in a Fibonacci-Heap with n nodes is O(log n).

811

Amortized worst-case analysis Fibonacci Heap

t(H): number of trees in the root list of H, m(H): number of marked
nodes in H not within the root-list, Potential function
Φ(H) = t(H) + 2 ·m(H). At the beginnning Φ(H) = 0. Potential
always non-negative.

Amortized costs:

Insert(H, x): t′(H) = t(H) + 1, m′(H) = m(H), Increase of the
potential: 1, Amortized costs Θ(1) + 1 = Θ(1)

Minimum(H): Amortized costs = real costs = Θ(1)

Union(H1, H2): Amortized costs = real costs = Θ(1)

812

Amortized costs of ExtractMin

Number trees in the root list t(H).
Real costs of ExtractMin operation O(log n + t(H)).
When merged still O(log n) nodes.
Number of markings can only get smaller when trees are merged
Thus maximal amortized costs of ExtractMin

O(log n + t(H)) +O(log n)−O(t(H)) = O(log n).

813

Amortized costs of DecreaseKey

Assumption: DecreaseKey leads to c cuts of a node from its
parent node, real costs O(c)

c nodes are added to the root list
Delete (c− 1) mark flags, addition of at most one mark flag
Amortized costs of DecreaseKey:

O(c) + (t(H) + c) + 2 · (m(H)− c+ 2))− (t(H) + 2m(H)) = O(1)

814

	Minimum Spanning Trees
	Motivation
	Greedy
	Algorithm Kruskal
	General Rules
	Abstract Data Type Union-Find
	Algorithm Jarnik, Prim, Dijkstra
	Fibonacci Heaps

