25. Minimum Spanning Trees

Motivation, Greedy, Algorithm Kruskal, General Rules, ADT
Union-Find, Algorithm Jarnik, Prim, Dijkstra, ,Algorithm Jarnik, Prim,
Dijkstra ,Fibonacci Heaps

[Ottman/Widmayer, Kap. 9.6, 6.2, 6.1, Cormen et al, Kap. 23, 19]

775

Application Examples

m Network-Design: find the cheapest / shortest network that
connects all nodes.

m Approximation of a solution of the travelling salesman problem:
find a round-trip, as short as possible, that visits each node once.

777

Problem

Given: Undirected, weighted, connected graph G = (V, E, ¢).

Wanted: Minimum Spanning Tree 7' = (V, E’): connected, cycle-free
subgraph £’ C E, such that) _,, c(e) minimal.

t w

AN

IZN

u X

S 6

Greedy Procedure

Recall:

m Greedy algorithms compute the solution stepwise choosing locally
optimal solutions.

m Most problems cannot be solved with a greedy algorithm.

m The Minimum Spanning Tree problem can be solved with a greedy
strategy.

778

Greedy Idea (Kruskal, 1956)

Construct 7" by adding the cheapest edge that does not generate a
cycle.

(Solution is not unique.)

Correctness

At each point in the algorithm (V A) is a forest, a set of trees.

MST-Kruskal considers each edge e, exactly once and either
chooses or rejects ¢y,

Notation (snapshot of the state in the running algorithm)

m A: Set of selected edges
m R: Set of rejected edges
m U: Set of yet undecided edges

781

Algorithm MST-Kruskal((7)

Input: Weighted Graph G = (V| E, ¢)
Output: Minimum spanning tree with edges A.
Sort edges by weight c(e;) < ... < c(ep)
A+
for k =1to |E| do
if (V, AU {ex}) acyclic then
A+ Aude}

return (V, A, c)

Cut

A cut of G is a partition S,V — Sof V. (S C V).

An edge crosses a cut when one of its endpoints is in S and the
otherisin V'\ S.

782

Rules

Selection rule: choose a cut that is not crossed by a selected

edge. Of all undecided edges that cross the cut, select the one

with minimal weight.
Rejection rule: choose a cycle without rejected edges. Of all

undecided edges of the cycle, reject those with maximal weight.

Correctness

Every algorithm that applies the rules above in a step-wise manner
until U = () is correct.

Consequence: MST-Kruskal is correct.

Rules

Kruskal applies both rules:

A selected ¢;, connects two connection components, otherwise
it would generate a cycle. e is minimal, i.e. a cut can be chosen
such that e, crosses and e; has minimal weight.

A rejected ¢ is contained in a cycle. Within the cycle e, has
minimal weight.

784

Selection invariant

Invariant: At each step there is a minimal spanning tree that contains
all selected and none of the rejected edges.

If both rules satisfy the invariant, then the algorithm is correct.
Induction:

m At beginning: U = E, R = A = (). Invariant obviously holds.
m Invariant is preserved at each step of the algorithm.
m Attheend: U =0, RUA = FE = (V, A) is a spanning tree.

Proof of the theorem: show that both rules preserve the invariant.

786

Selection rule preserves the invariant

At each step there is a minimal spanning tree T" that contains all selected and none of the rejected edges.

Choose a cut that is not crossed by a selected edge. Of all undecided edges that cross the cut, select the egde e with
minimal weight.

m Case 1: e € T (done)

m Case 2: e ¢ T. Then T'U {e} contains a cycle that contains e
Cycle must have a second edge ¢’ that also crosses the cut.*®
Because ¢’ ¢ R, e’ € U. Thus c(e) < c(e')and T" =T\ {e'} U{e}
is also a minimal spanning tree (and c(e) = ¢(¢’)).

49Such a cycle contains at least one node in S and one node in V' \ S and therefore at lease to edges between S and
V\S.

Implementation Issues

Consider a set of sets i = A; C V. To identify cuts and cycles:
membership of the both ends of an edge to sets?

A,

{

789

Rejection rule preserves the invariant

At each step there is a minimal spanning tree 7" that contains all selected and none of the rejected edges.

Choose a cycle without rejected edges. Of all undecided edges of the cycle, reject an edge e with maximal weight.

m Case 1: ¢ € T (done)

m Case 2: e € T. Remove e from T', This yields a cut. This cut must
be crossed by another edge ¢’ of the cycle. Because ¢(¢) < ¢(e) ,
T"=T\ {e} U{c'} is also minimal (and c(e) = c(¢')).

Implementation Issues

General problem: partition (set of subsets) .e.g.
{{1,2,3,9},{7,6,4},{5,8},{10}}

Required: Abstract data type “Union-Find” with the following
operations

m Make-Set(:): create a new set represented by .

m Find(e): name of the set ¢ that contains e .

m Union(z, j): union of the sets with names 7 and ;.

790

Union-Find Algorithm MST-Kruskal(()

Input: Weighted Graph G = (V, E, ¢)
Output: Minimum spanning tree with edges A.

Sort edges by weight c(e1) < ... < c(en)
A0
for k=1to |V| do
. MakeSet(k)
for k =1 tom do
(u,v) < e
if Find(u) # Find(v) then
Union(Find(u), Find(v))
A+ AU €k
else // conceptual: R <— RU ey

return (V, A, ¢)

791

Implementation Union-Find

W)) 5D 102
2/ \3 7/ \4 1
T

9

Representation as array:

Index

123456789 10
Parent 1 1 1 6 5 6 55 3 10

793

Implementation Union-Find

Idea: tree for each subset in the partition,e.g.

{{1,2,3,9},{7,6,4},{5,8}, {10}}

2 60 5> 10"
2/ ,\3 7/ \4 1
|

9

roots = names (representatives) of the sets,
trees = elements of the sets

792

Implementation Union-Find

Index

1234567289 10
Parent 1 1 1 6 5 6 55 3 10

Make-Set()

pli] < i; return i

while (p[i] # i) do i « p]i]
return ¢

Find(i)

Union(i, 5) °° p[j] « i;

50; and j need to be names (roots) of the sets. Otherwise use Union(Find(z),Find(5))
794

Optimisation of the runtime for Find

Tree may degenerate. Example: Union(8, 7), Union(7, 6),
Union(6, 5), ...

Index 1 2 3 456 7 8 ..
Parent 1 1 2 3 4 5 6 7 .
Worst-case running time of Find in ©(n).

[Observation]

The method above (union by size) preserves the following property
of the trees: a tree of height h has at least 2" nodes.

Immediate consequence: runtime Find = O(logn).

Optimisation of the runtime for Find

Idea: always append smaller tree to larger tree. Requires additional
size information (array) g

Make-Set(i) pli] < 4 g[i] < 1; return i

if g[j] > g[i] then swap(i, j)
plj] i
if g[i] = g[j] then g[i] « g[i] + 1

Union(z,)

= Tree depth (and worst-case running time for Find) in ©(logn)

796

[Proof]

Induction: by assumption, sub-trees have at
least 2" nodes. WLOG: hy < hy

CP

N

[] hg = h1: h2
15

| h2<h1:

MO Ty =h = g1 ®T) > 2" hy

g(Th) > g(Ty) > 2"

=911 & Ty) = g(Th) + g(Tp) > 2- 2" = 20T

Further improvement

Link all nodes to the root when Find is called.
Find(z):
ji
while (p[i] # i) do i « p]i]
while (5 # i) do
t+7J
j < plJ]
B plt] + i
return
Cost: amortised nearly constant (inverse of the
Ackermann-function).®’

5TWe do not go into details here.
799

Algorithm of Jarnik (1930), Prim, Dijkstra (1959)

Idea: start with some v € V' and grow the spanning tree from here
by the acceptance rule.

A0
S+ {Uo}
for i < 1to |V| do
Choose cheapest (u,v) mitu e S, v &S
A+ AU{(u,v)} oy VAS
S+« Su{v} // (Coloring) ‘ ®

Remark: a union-Find data structure is not required. It suffices to
color nodes when they are added to S.

801

Running time of Kruskal’s Algorithm

m Sorting of the edges: O(|E|log |E|) = O(|E|log |V]). %2
m Initialisation of the Union-Find data structure ©(|V])
m |E|x Union(Find(z),Find(y)): O(|E|log |E|) = O(|E|log|V]).

Overal O(|E|log |V).

52pecause G is connected: [V| < |E| < |V|?
800

Running time

Trivially O(|V| - | E]).
Improvement (like with Dijkstra’s ShortestPath)
m With Min-Heap: costs

m Initialization (node coloring) O(|V])
m |V |x ExtractMin = O(|V]log |V]),
m |E|x Insert or DecreaseKey: O(|E|log |V]),
O(|E] - log [V'])
m With a Fibonacci-Heap: O(|E| + |V| - log |V]).

802

Fibonacci Heaps Advantage over binary heap?

Data structure for elements with key with operations Binary Heap Fibonacei Heap

m MakeHeap(): Return new heap without elements (worst-Case) (amortized)
m Insert(H,z): Add = to H MakeHeap O(1) O(1)
m Minimum(): return a pointer to element m with minimal key |M”§?rt @g(()%”) 883
- . : inimum
m ExtractMin(H): return and remove (from H) pointer to the element ExtractMin O (log) O (log)
m .

, Union O(n) O(1)
m Union(H, H,): return a heap merged from H; and H, DecreaseKey O(logn) o(1)
m DecreaseKey(/1, x, k): decrease the key of z in H to k Delete O(logn) O(logn)
m Delete (H, x): remove element x from H
Structure Implementation

Doubly linked lists of nodes with a marked-flag and number of

Set of trees that respect the Min-Heap property. Nodes that can be
P P property children. Pointer to minimal Element and number nodes.

marked.

23 7 17 24
SN /\ /1 ! 4N\
1|8 52 3|8 30 2|6 46 d;ﬁffg : gnl 26T (48,
39 41 35 0 0 0

805

Simple Operations ExtractMin

m MakeHeap (trivial) . .
= Minimum (trivial) Remove minimal node m from the root list

m Insert(H,e) Insert children of m into the root list

Insert new element into root-list Merge heap-ordered trees with the same degrees until all trees

If key is smaller than minimum, reset min-pointer. have a different deqree:
- Array of degrees a?(), ..., n] of elements, empty at beginning.
= Union (Hy, i) For each element e of the root list:

Concatenate root-lists of H; and H,
Reset min-pointer. B Let g be the degree of e
@ If alg] = nil: a[g] + e.

m Delete(H, e) If ¢’ := alg] # nil: Merge e with ¢’ resutling in ¢” and set a[g] < nil.

" i ; " H
DecreaseKey(H, ¢, —oo) Set " unmarked. Re-iterate with e <— ¢” having degree g + 1.

ExtractMin(H)

807 808

DecreaseKey (H, ¢, k) Estimation of the degree

Remove e from its parent node p (if existing) and decrease the

degree of p by one. Letp be a node of a F-Heap H. If child nodes of p are sorted by time
Insert(H,) of insertion (Union), then it holds that the ith child node has a
Avoid too thin trees: degree of at least i — 2.

B If p = nil then done.

@A If pis unmarked: mark p and done.

If p marked: unmark p and cut p from its parent pp. Insert (H, p). Iterate
with p < pp.

Proof: p may have had more children and lost by cutting. When the ith child p;
was linked, p and p; must at least have had degree i — 1. p; may have lost at least
one child (marking!), thus at least degree ¢+ — 2 remains.

809 810

Estimation of the degree

Every node p with degree k of a F-Heap is the root of a subtree with
at least F, ., nodes. (F': Fibonacci-Folge)

Proof: Let Sy, be the minimal number of successors of a node of degree k in a
F-Heap plus 1 (the node itself). Clearly Sy = 1, S; = 2. With the previous theorem
Sy >2+ 3128, k> 2 (pand nodes p, each 1). For Fibonacci numbers it holds

that (induction) Fj, > 2 + ZfZQ F;, k > 2 and thus (also induction) Sy, > Fjo.

Fibonacci numbers grow exponentially fast (O(¢*)) Consequence: maximal
degree of an arbitrary node in a Fibonacci-Heap with n nodes is O(logn).

811

Amortized costs of ExtractMin

m Number trees in the root list ¢(H).

m Real costs of ExtractMin operation O(logn + t(H)).

m When merged still O(log n) nodes.

m Number of markings can only get smaller when trees are merged
m Thus maximal amortized costs of ExtractMin

O(logn +t(H)) + O(logn) — O(t(H)) = O(logn).

813

Amortized worst-case analysis Fibonacci Heap

t(H): number of trees in the root list of H, m(H): number of marked

nodes in H not within the root-list, Potential function

O(H) =1t(H)+2-m(H). At the beginnning ®(H) = 0. Potential

always non-negative.

Amortized costs:

m Insert(H,z): t'(H) =t(H) + 1, m'(H) = m(H), Increase of the
potential: 1, Amortized costs ©(1) + 1 = (1)

m Minimum(/): Amortized costs = real costs = O(1)

m Union(H,, H,): Amortized costs = real costs = O(1)

812

Amortized costs of DecreaseKey

m Assumption: DecreaseKey leads to c cuts of a node from its
parent node, real costs O(c)

m c nodes are added to the root list
m Delete (¢ — 1) mark flags, addition of at most one mark flag
m Amortized costs of DecreaseKey:

Ole)+(t(H)+c)+2-(m(H)—c+2))—(t(H)+2m(H)) = O(1)

814

