23. Graphs

Notation, Representation, Graph Traversal (DFS, BFS), Topological
Sorting , Reflexive transitive closure, Connected components
[Ottman/Widmayer, Kap. 9.1 - 9.4,Cormen et al, Kap. 22]
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Cycles

m Is there a cycle through the town (the
graph) that uses each bridge (each edge)
exactly once?

m Euler (1736): no.

m Such a cycle is called Eulerian path.

m Eulerian path < each node provides an
even number of edges (each node is of an
even degree).

‘=" is straightforward, “<=" ist a bit more difficult but still elementary.



Notation

undirected directed
V ={1,2,3,4,5} V ={1,2,3,4,5}
E :{{17 2}’ {17 3}7 {27 3}7 {27 4}7 E :{(17 3)7 <2a 1)7 (27 5)7 (37 2)a

{2,5},{3,4},{3,5},{4,5}} (3,4), (4,2),(4,5), (5,3)}



Notation

A directed graph consists of a set V' = {vy, ..., v,} of nodes
(Vertices) and a set E C V' x V of Edges. The same edges may not
be contained more than once.



Notation

An undirected graph consists of a set V' = {vy,...,v,} of nodes a
and aset £ C {{u,v}|u,v € V} of edges. Edges may bot be
contained more than once.*

undirected graph

45As opposed to the introductory example — it is then called multi-graph.



Notation

An undirected graph G = (V, E') without loops where E comprises
all edges between pairwise different nodes is called complete.

a complete undirected graph



Notation

A graph where V' can be partitioned into disjoint sets U and W such
that each e € E provides a node in U and a node in Wis called

bipartite.




Notation

A weighted graph G = (V, E, ¢) is a graph G = (V, E) with an edge
weight function ¢ : E — R. ¢(e) is called weight of the edge e.
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Notation

For directed graphs G = (V, E)
m w € Viscalled adjacenttov € V, if (v,w) € F

m Predecessorsof v € V: N~ (v) := {u € V|(u,v) € E}.

Successors: N*(v) := {u € V|(v,u) € E}



Notation

For directed graphs G = (V. E)

m In-Degree: deg™ (v) = |[N~(v)],
Out-Degree: deg® (v) = [N (v)

et

deg™ (v) = 3, deg™ (v) =2

‘®

deg™ (w) = 1, degt(w) = 1
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Notation

For undirected graphs G = (V, E):

m w € Viscalled adjacenttov € V, if {v,w} € £
m Neighbourhoodof v € V: N(v) = {w € V|{v,w} € E}

m Degree of v: deg(v) = |N(v)| with a special case for the loops:
increase the degree by 2.

Ny e

deg(v) =5 deg(w) =2



Relationship between node degrees and number of
edges

For each graph G = (V, F) it holds

> ey deg” (v) = >, .y deg”(v) = | E|, for G directed
> ey deg(v) = 2|E|, for G undirected.



Paths

m Path: a sequence of nodes (vy, ..., vx11) such that for each
i € {1...k} thereis an edge from v; t0 v; 1 .
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Paths

m Path: a sequence of nodes (vy, ..., vx11) such that for each
i € {1...k} thereis an edge from v; t0 v; 1 .

m Length of a path: number of contained edges k.
m Weight of a path (in weighted graphs): Zle c((vi, vi11)) (bzw.
Yoy c{vi, viaa})

m Simple path: path without repeating vertices



Connectedness

m An undirected graph is called connected, if for eacheach pair
v,w € V there is a connecting path.

m A directed graph is called strongly connected, if for each pair
v,w € V there is a connecting path.

m A directed graph is called weakly connected, if the corresponding
undirected graph is connected.



Simple Observations

m generally: 0 < |E| € O(|V]?)
m connected graph: |E| € Q(|V)
m complete graph: |E| = w (undirected)

m Maximally |E| = |V|? (directed ),| E| = YYD (yndirected)



Cycles

m Cycle: path (vy, ..., v51) With v1 = v

m Simple cycle: Cycle with pairwise different vy, . .., v, that does
not use an edge more than once.

m Acyclic: graph without any cycles.

Conclusion: undirected graphs cannot contain cycles with length 2
(loops have length 1)



Representation using a Matrix

Graph G = (V, E) with nodes v, . .., v, stored as adjacency matrix
Ag = (aij)1<ij<n With entries from {0, 1}. a;; = 1 if and only if edge
from v; to v;.

2

@

Memory consumption ©(|V'|?). Ag is symmetric, if G undirected.

O OO OO
OO = O =
_ o O O =
SO = O =
_— O = O O



Representation with a List

Many graphs G = (V,E) with nodes
v1,...,v, provide much less than n?
edges. Representation with adjacency
list: Array A[l],..., Aln|, A; comprises a
linked list of nodes in N (v;).

Ol«<—0 W«——7"T0 O’

A—0 W0 N<—7"F0 —
Q<0 Hh<—0 ND<—0 W

Memory Consumption O(|V| + |E]).
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Operation Matrix List

Find neighbours/successors of v € V
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Insert edge

Delete edge
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Runtimes of simple Operations

Operation Matrix List

Find neighbours/successorsof v € V' O(n) ©O(deg” v)
find v € V without neighbour/successor ©(n*) ©(n)
(u,v) € E? O(1) O(deg’v)
Insert edge o) ©(1)
Delete edge O(1)



Runtimes of simple Operations

Operation

Find neighbours/successors of v € V
find v € V without neighbour/successor
(u,v) € E?

Insert edge

Delete edge
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Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.
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Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.
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Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.
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Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.
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Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.
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Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.
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Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.
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Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.

Adjazenzliste

a || b c| d| e
| |
bllc|f|e b
| J
d f
|

e

-—



Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.
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Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.
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Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.
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Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.
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Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.
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Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.
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Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.
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Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.
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Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.

e Adjazenzliste
allbilcldlelf h
| |
bllec||flleld e
| | |
d f 1
|
(&

o0 0

Order a,b,c, f,d,e, g, h,t




Colors

Conceptual coloring of nodes

m white: node has not been discovered yet.

m grey: node has been discovered and is marked for traversal /
being processed.

m black: node was discovered and entirely processed.



Algorithm Depth First visit DFS-Visit(G', v)

Input: graph G = (V, E), Knoten .

v.color < grey
foreach w € N*(v) do

if w.color = white then
DFS-Visit(G, w)

v.color < black

Depth First Search starting from node v. Running time (without
recursion): ©(deg™ v)



Algorithm Depth First visit DFS-Visit(G)

Input: graph G = (V, E)
foreach v € V do

v.color < white

foreach v € V do

if v.color = white then
DFS-Visit(G,v)

Depth First Search for all nodes of a graph. Running time:
O([V] + X ev(deg” (v) + 1)) = (V| + | E)).



lterative DFS-Visit(G, v)

Input: graph G = (V, E), v € V with v.color = white

Stack S « ()
v.color < grey; S.push(v) // invariant: grey nodes always on stack
while S # () do
w <— nextWhiteSuccessor(v) // code: next slide
if w # null then
w.color < grey; S.push(w)
V4~ w // work on w. parent remains on the stack
else
v.color < black // no grey successors, v becomes black
if S # () then
v < S.pop() // visit/revisit next node
L if v.color = grey then S.push(v)
B Memory Consumption Stack ©(|V|)




nextWhiteSuccessor(v)

Input: node v € V
Output: Successor node u of v with u.color = white, null otherwise

foreach u € N*(v) do
if u.color = white then
return u

return null



Interpretation of the Colors

When traversing the graph, a tree (or Forest) is built. When nodes
are discovered there are three cases

m White node: new tree edge
m Grey node: Zyklus (“back-egde”)
m Black node: forward- / cross edge



Breadth First Search

R %Zou

0Su senbergstr.

richbergstr.

dhaus _—
Dnlderg/

bBergstatian

8
0,54

wa®

A .,
OHblderlinsteig %:f%

“»0



Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.
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Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.
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Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.
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Follow the path in breadth and only then descend into depth.
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Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.
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Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.
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Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.
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Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.
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Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.
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Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.
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Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.

c Adjazenzliste
allbilcldlelf 9 h i
| A Lo

O 6, bl[e]rfefo] » i
[ [
d f
[

O—E—0 ;




Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.
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Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.
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Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.
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Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.
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Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.
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Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.

|

c|l fle

~ e e D

o Adjazenzliste
bl cld fl9
v b
@
@)

QD e Qe S [ 2




Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.
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(Iterative) BFS-Visit(Gz, v)

Input: graph G = (V, E)
Queue Q < ()
v.color <— grey

enqueue(Q, v)
while Q # () do
w < dequeue(Q)
foreach c € N*(w) do
if c.color = white then
c.color < grey

enqueue(Q, ¢)

w.color < black

Algorithm requires extra space of O(|V|).



Main program BFS-Visit(()

Input: graph G = (V, E)
foreach v € V do
v.color < white

foreach v € V do
if v.color = white then
BFS-Visit(G,v)

Breadth First Search for all nodes of a graph. Running time:
o(|V]+ |E]).



Topological Sorting

R
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Topological Sorting

Topological Sorting of an acyclic directed graph G = (V, E):

Bijective mapping
ord: V = {1,...,|V|}

such that
ord(v) < ord(w) V (v,w) € E.

Identify 7 with Element v; := ord' (i). Topological sorting =
<1}1, coog U|V|>-

706



(Counter-)Examples

) . A possible toplogical sorting of the graph:
Cyclic graph: cannot be sorted topologically. Unterhemd,Pullover,Unterhose,Uhr,Hose,Mantel,Socken,Schuhe



Observation

A directed graph G = (V, E') permits a topological sorting if and only
if it is acyclic.




Observation

A directed graph G = (V, E') permits a topological sorting if and only
if it is acyclic.

Proof “=": If G contains a cycle it cannot permit a topological
sorting, because in a cycle (v;,,...,v; ) it would hold that
Vi, < o0 < < Uy

1



Inductive Proof Opposite Direction

m Base case (n = 1): Graph with a single node without loop can be
sorted topologically, setord(v;) = 1.
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Inductive Proof Opposite Direction

m Base case (n = 1): Graph with a single node without loop can be
sorted topologically, setord(v;) = 1.

m Hypothesis: Graph with n nodes can be sorted topologically

m Step (n —» n + 1):

G contains a node v, with in-degree deg™ (v,) = 0. Otherwise iteratively
follow edges backwards — after at most n + 1 iterations a node would be
revisited. Contradiction to the cycle-freeness.



Inductive Proof Opposite Direction

m Base case (n = 1): Graph with a single node without loop can be
sorted topologically, setord(v;) = 1.

m Hypothesis: Graph with n nodes can be sorted topologically

m Step (n —» n + 1):

G contains a node v, with in-degree deg™ (v,) = 0. Otherwise iteratively
follow edges backwards — after at most n + 1 iterations a node would be
revisited. Contradiction to the cycle-freeness.

Graph without node v, and without its edges can be topologically sorted

by the hypothesis. Now use this sorting and set ord(v;) < ord(v;) + 1 for
all i # ¢ and set ord(v,) < 1.



Preliminary Sketch of an Algorithm
Graph G = (V, E). d < 1

Traverse backwards starting from any node until a node v, with
in-degree 0 is found.

Worst case runtime:
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Preliminary Sketch of an Algorithm

Graph G = (V, E). d < 1
Traverse backwards starting from any node until a node v, with
in-degree 0 is found.

If no node with in-degree 0 found after n stepsm, then the graph
has a cycle.

Set ord(v,) + d.
Remove v, and his edges from G.
IfV #£0,thend < d+ 1, go to step 1.

Worst case runtime: O(|V|?).



Improvement

Idea?



Improvement

Idea?

Compute the in-degree of all nodes in advance and traverse the
nodes with in-degree 0 while correcting the in-degrees of following
nodes.



Algorithm Topological-Sort(()

Input: graph G = (V, E).
Output: Topological sorting ord

Stack S « ()
foreach v € V do Afv] <~ 0
foreach (v,w) € E do A[w] + AJw]+1 // Compute in-degrees
foreach v € V with A[v] = 0 do push(S,v) // Memorize nodes with in-degree
0
1< 1
while S # () do
v < pop(S); ord[v] « ¢; i < ¢+ 1 // Choose node with in-degree 0
foreach (v,w) € £ do // Decrease in-degree of successors
Afu] + Afu] -
if Ajw|=0 then push(S, w)

if i = |V| + 1 then return ord else return “Cycle Detected”



Algorithm Correctness

Let G = (V, FE) be a directed acyclic graph. Algorithm
TopologicalSort(G) computes a topological sorting ord for G with
runtime O(|V| + |E|).




Algorithm Correctness

Let G = (V, FE) be a directed acyclic graph. Algorithm
TopologicalSort(G) computes a topological sorting ord for G with
runtime ©(|V| + |E)).

Proof: follows from previous theorem:

Decreasing the in-degree corresponds with node removal.

In the algorithm it holds for each node v with A[v] = 0 that either the node
has in-degree 0 or that previously all predecessors have been assigned a
value ord[u] « i and thus ord[v] > ord[u] for all predecessors u of v. Nodes
are put to the stack only once.

Runtime: inspection of the algorithm (with some arguments like with graph
traversal)
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Algorithm Correctness

Let G = (V, FE) be a directed graph containing a cycle. Algorithm
TopologicalSort(G) terminates within ©(|V | + |E|) steps and detects
a cycle.




Algorithm Correctness

Let G = (V, FE) be a directed graph containing a cycle. Algorithm
TopologicalSort(G) terminates within ©(|V | + |E|) steps and detects

a cycle.

Proof: let (v;,,...,v;, ) be acyclein G. In each step of the algorithm remains
Alv;,] > 1forall j =1,..., k. Thus k nodes are never pushed on the stack und
therefore at the end it holds that: < V + 1 — k.

The runtime of the second part of the algorithm can become shorter. But the
computation of the in-degree costs already O(|V| + |E|).



Alternative: Algorithm DFS-Topsort(G, v)

Input: graph G = (V, E'), node v, node list L.
if v.color = grey then
stop (Cycle)

if v.color = black then
return

v.color < grey
foreach w € N*(v) do
DFS-Topsort(G, w)

v.color < black
Add v to head of L

Call this algorithm for each node that has not yet been visited.
Asymptotic Running Time ©(|V| + | E|).



Adjacency Matrix Product

)

01011
00000
00101
00000
01112

|

01110
00000
B:=A,=|01011
00000
00101



Interpretation

LetG = (V, F) be a graph and k € N. Then the element ag}) of the

matrix (a,g’kj))lgi’jgn = (Ag)* provides the number of paths with
length k from v; to v; .




Proof

By Induction.

Base case: straightforward for k = 1. a; ; = ag}}. (0)

Hypothesis: claim is true for all £ <[
Step (1 — [ + 1): @@@_)@
aflf V= Z a(l/)f * A, (1)

k=1
ar,; = 1 iff egde & to j, 0 otherwise. Sum counts the number paths
of length [ from node v; to all nodes v that provide a direct direction
to node v;, i.e. all paths with length [ + 1.



Example: Shortest Path

Question: is there a path from 7 to 7 How long is the shortest path?



Example: Shortest Path

Question: is there a path from 7 to 7 How long is the shortest path?
(k)
J

Answer: exponentiate A¢ until for some k < n it holds that a; ;' > 0.

k provides the path length of the shortest path. If agi.) = 0 for all

1 < k < n, then there is no path from 7 to ;.



Example: Number triangles

Question: How many triangular path does an undirected graph
contain?




Example: Number triangles

Question: How many triangular path does an undirected graph
contain?
(3)

X

Answer: Remove all cycles (diagonal entries). Compute AY. a
determines the number of paths of length 3 that contain z.

00111 4 4 8 8 8
00111 4 4 8 8 8
11011 =| 8 8 8 8 8
11100 § 8 8 4 4
11100 8 8 8 4 4




Example: Number triangles

Question: How many triangular path does an undirected graph

contain?

Answer: Remove all cycles (diagonal entries). Compute A?.. agf)

determines the number of paths of length 3 that contain 2. There are
6 different permutations of a triangular path. Thus for the number of

triangles: 7, a”) /6.

3

001 1 1 4488 8
001 1 1 4488 8 _
11011 | -|sssggs|=246=4
11100 3 8 8 4 4 | Dreiecke.

11100 88 8 4 4




Relation

Given a finite set V/

(Binary) Relation R on V: Subset of the cartesian product
VxV={(ab)lacV,beV}
Relation R C V x V is called

m reflexive, if (v,v) € Rforallv e V
m symmetric, if (v,w) € R = (w,v) € R
m fransitive, if (v,z) € R, (z,w) € R= (v,w) € R

The (Reflexive) Transitive Closure R* of R is the smallest extension
R C R* CV x V such that R* is reflexive and transitive.



Graphs and Relations

Graph G = (V, E)
adjacencies Ag = Relation E C V x V over V



Graphs and Relations

Graph G = (V, E)
adjacencies Ag = Relation E C V x V over V

m reflexive & a;; = 1foralle =1,...,n. (loops)
m symmelric < a; ; = a;; foralli,7 = 1,..., n (undirected)
m fransitive < (u,v) € E, (v,w) € F = (u,w) € E. (reachability)
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Example: Equivalence Relation

Equivalence relation < symmetric, transitive, reflexive relation <
collection of complete, undirected graphs where each element has a
loop.

Example: Equivalence classes of the num- c%
bers {0, ..., 7} modulo 3 8L,




Reflexive Transitive Closure

Reflexive transitive closure of G < Reachability relation E*:
(v,w) € E*iff 3 path from node v to w.

L O e
= = e
=

(3 —=4)
G =0
G = (V,E) G* = (V,E¥)
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Computation of the Reflexive Transitive Closure

Goal: computation of B = (b;;)1<i j<n With b;; = 1 & (v;,v;) € E*
Observation: a;; = 1 already implies (v;, v;) € E*.



Computation of the Reflexive Transitive Closure

Goal: computation of B = (b;;)1<ij<n With b;; = 1 & (v, v;) € £
Observation: a;; = 1 already implies (v;, v;) € E*.
First idea:

m Start with B < A and set b;; = 1 for each i (Reflexivity.).

m lterate over i, 5,k and set b;; = 1, if b, = 1 and b;; = 1. Then all
paths with lenght 1 and 2 taken into account.

m Repeated iteration = all paths with length 1. . .4 taken into
account.

m [log, n] iterations required. = running time n3 [log, n]



Improvement: Algorithm of Warshall (1962)

Inductive procedure: all paths known over nodes from {v; : i < k}.
Add node vy.

?\ (110 0 1]

p \y 00010
(2 5 01000
00100

E 00010

3 —4) - -



Improvement: Algorithm of Warshall (1962)

Inductive procedure: all paths known over nodes from {v; : i < k}.
Add node vy.

11011
01010
01010
00100
00010




Improvement: Algorithm of Warshall (1962)

Inductive procedure: all paths known over nodes from {v; : i < k}.
Add node v.

11011
01010
01110
01100

00010




Improvement: Algorithm of Warshall (1962)

Inductive procedure: all paths known over nodes from {v; : i < k}.
Add node v.

OO O O =
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Improvement: Algorithm of Warshall (1962)

Inductive procedure: all paths known over nodes from {v; : i < k}.
Add node v.

OO O O =
—_

—_ s e e

_ o O O =




Algorithm TransitiveClosure(A)

Input: Adjacency matrix Ag = (aij)ij=1..
Output: Reflexive transitive closure B = (b;;); j=1.., of G

B+ AG
for k + 1 ton do
ape — 1 // Reflexivity
for i< 1tondo
for j < 1tondo
L bi; < max{by;, by - bp; } // All paths via vy

return B

Runtime ©(n?).



Correctness of the Algorithm (Induction)

Invariant (£): all paths via nodes with maximal index < k
considered.

m Base case (k = 1): All directed paths (all edges) in Ag
considered.

m Hypothesis: invariant (k) fulfilled.

m Step (k — & + 1): For each path from v; to v; via nodes with
maximal index k: by the hypothesis b;, = 1 and b;; = 1. Therefore
in the k-th iteration: b;; < 1.

(v<k) (<)

O i )



Connected Components

Connected components of an undirected graph G: equivalence
classes of the reflexive, transitive closure of G. Connected
component = subgraph G' = (V' E'), E' = {{v,w} € Elv,w € V'}
with

{{v,w} e EveV'vVweV'} =FE={{v,w} e Elve V' AweV'}

a—@ ©

Graph with connected compo-
@ 9 nents {1,2,3,4}, {5,7}, {6}.




Computation of the Connected Components

m Computation of a partitioning of V' into pairwise disjoint subsets
Vi, Vi

m such that each V; contains the nodes of a connected component.

m Algorithm: depth-first search or breadth-first search. Upon each
new start of DFSSearch(G, v) or BFSSearch(G, v) a new empty
connected component is created and all nodes being traversed
are added.



	Graphs
	graphs
	Representation of graphs
	Graph Traversal
	Topological Sorting
	Graphs and Relations
	Connected Components


