
23. Graphs

Notation, Representation, Graph Traversal (DFS, BFS), Topological
Sorting , Reflexive transitive closure, Connected components
[Ottman/Widmayer, Kap. 9.1 - 9.4,Cormen et al, Kap. 22]

672

Königsberg 1736

673

[Multi]Graph

A

B

D

C

edge

node

674

Cycles

Is there a cycle through the town (the
graph) that uses each bridge (each edge)
exactly once?
Euler (1736): no.
Such a cycle is called Eulerian path.
Eulerian path⇔ each node provides an
even number of edges (each node is of an
even degree).
‘⇒” is straightforward, “⇐” ist a bit more difficult but still elementary.

A

B

D

C

675

Notation
1

2 3

4 5

undirected

V ={1, 2, 3, 4, 5}
E ={{1, 2}, {1, 3}, {2, 3}, {2, 4},
{2, 5}, {3, 4}, {3, 5}, {4, 5}}

1

2 3

4 5

directed

V ={1, 2, 3, 4, 5}
E ={(1, 3), (2, 1), (2, 5), (3, 2),

(3, 4), (4, 2), (4, 5), (5, 3)}
676

Notation

A directed graph consists of a set V = {v1, . . . , vn} of nodes
(Vertices) and a set E ⊆ V × V of Edges. The same edges may not
be contained more than once.

1 2

3 4 5

loop

677

Notation
An undirected graph consists of a set V = {v1, . . . , vn} of nodes a
and a set E ⊆ {{u, v}|u, v ∈ V } of edges. Edges may bot be
contained more than once.45

1

2

3 4

5

undirected graph

45As opposed to the introductory example – it is then called multi-graph.
678

Notation

An undirected graph G = (V,E) without loops where E comprises
all edges between pairwise different nodes is called complete.

1

2

3 4

5

a complete undirected graph

679

Notation

A graph where V can be partitioned into disjoint sets U and W such
that each e ∈ E provides a node in U and a node in W is called
bipartite.

680

Notation

A weighted graph G = (V,E, c) is a graph G = (V,E) with an edge
weight function c : E → R. c(e) is called weight of the edge e.

0

1

2

3

4

5

2

1.5

4

1

4

3

681

Notation
For directed graphs G = (V,E)

w ∈ V is called adjacent to v ∈ V , if (v, w) ∈ E
Predecessors of v ∈ V : N−(v) := {u ∈ V |(u, v) ∈ E}.
Successors: N+(v) := {u ∈ V |(v, u) ∈ E}

N−(v) N+(v)

v

p1

p2

p3

s1

s2

682

Notation

For directed graphs G = (V,E)

In-Degree: deg−(v) = |N−(v)|,
Out-Degree: deg+(v) = |N+(v)|

v

deg−(v) = 3, deg+(v) = 2

w

deg−(w) = 1, deg+(w) = 1

683

Notation

For undirected graphs G = (V,E):

w ∈ V is called adjacent to v ∈ V , if {v, w} ∈ E

Neighbourhood of v ∈ V : N(v) = {w ∈ V |{v, w} ∈ E}
Degree of v: deg(v) = |N(v)| with a special case for the loops:
increase the degree by 2.

v

deg(v) = 5

w

deg(w) = 2

684

Relationship between node degrees and number of
edges

For each graph G = (V,E) it holds

1
∑

v∈V deg−(v) =
∑

v∈V deg+(v) = |E|, for G directed
2
∑

v∈V deg(v) = 2|E|, for G undirected.

685

Paths

Path: a sequence of nodes 〈v1, . . . , vk+1〉 such that for each
i ∈ {1 . . . k} there is an edge from vi to vi+1 .
Length of a path: number of contained edges k.
Weight of a path (in weighted graphs):

∑k
i=1 c((vi, vi+1)) (bzw.∑k

i=1 c({vi, vi+1}))
Simple path: path without repeating vertices

686

Connectedness

An undirected graph is called connected, if for eacheach pair
v, w ∈ V there is a connecting path.
A directed graph is called strongly connected, if for each pair
v, w ∈ V there is a connecting path.
A directed graph is called weakly connected, if the corresponding
undirected graph is connected.

687

Simple Observations

generally: 0 ≤ |E| ∈ O(|V |2)
connected graph: |E| ∈ Ω(|V |)
complete graph: |E| = |V |·(|V |−1)

2 (undirected)

Maximally |E| = |V |2 (directed),|E| = |V |·(|V |+1)
2 (undirected)

688

Cycles

Cycle: path 〈v1, . . . , vk+1〉 with v1 = vk+1

Simple cycle: Cycle with pairwise different v1, . . . , vk, that does
not use an edge more than once.
Acyclic: graph without any cycles.

Conclusion: undirected graphs cannot contain cycles with length 2
(loops have length 1)

689

Representation using a Matrix
Graph G = (V,E) with nodes v1 . . . , vn stored as adjacency matrix
AG = (aij)1≤i,j≤n with entries from {0, 1}. aij = 1 if and only if edge
from vi to vj.

1 2

4

3

5




0 1 1 1 0
0 0 0 0 0
0 1 0 1 1
0 0 0 0 0
0 0 1 0 1




Memory consumption Θ(|V |2). AG is symmetric, if G undirected.
690

Representation with a List
Many graphs G = (V,E) with nodes
v1, . . . , vn provide much less than n2

edges. Representation with adjacency
list: Array A[1], . . . , A[n], Ai comprises a
linked list of nodes in N+(vi).

1 2

4

3

5

1 2 3 4 5

2

3

4

2

4

5

3

5

Memory Consumption Θ(|V |+ |E|).
691

Runtimes of simple Operations

Operation Matrix List

Find neighbours/successors of v ∈ V Θ(n) Θ(deg+ v)

find v ∈ V without neighbour/successor Θ(n2) Θ(n)

(u, v) ∈ E ? Θ(1) Θ(deg+ v)

Insert edge Θ(1) Θ(1)

Delete edge Θ(1) Θ(deg+ v)

692

Depth First Search

693

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.

a b c

d e f

g h i

aa bb cc

ffdd eeee

gg hh i

Order a, b, c, f, d, e, g, h, i

Adjazenzliste
a b c d e f g h i

b c f e b h e

d f i

e

694

Colors

Conceptual coloring of nodes

white: node has not been discovered yet.
grey: node has been discovered and is marked for traversal /
being processed.
black: node was discovered and entirely processed.

695

Algorithm Depth First visit DFS-Visit(G, v)

Input: graph G = (V,E), Knoten v.

v.color ← grey
foreach w ∈ N+(v) do

if w.color = white then
DFS-Visit(G,w)

v.color ← black

Depth First Search starting from node v. Running time (without
recursion): Θ(deg+ v)

696

Algorithm Depth First visit DFS-Visit(G)

Input: graph G = (V,E)

foreach v ∈ V do
v.color ← white

foreach v ∈ V do
if v.color = white then

DFS-Visit(G,v)

Depth First Search for all nodes of a graph. Running time:
Θ(|V |+ ∑

v∈V (deg+(v) + 1)) = Θ(|V |+ |E|).

697

Iterative DFS-Visit(G, v)
Input: graph G = (V,E), v ∈ V with v.color = white

Stack S ← ∅
v.color ← grey; S.push(v) // invariant: grey nodes always on stack
while S 6= ∅ do

w ← nextWhiteSuccessor(v) // code: next slide
if w 6= null then

w.color ← grey; S.push(w)
v ← w // work on w. parent remains on the stack

else
v.color ← black // no grey successors, v becomes black
if S 6= ∅ then

v ← S.pop() // visit/revisit next node
if v.color = grey then S.push(v)

Memory Consumption Stack Θ(|V |)

698

nextWhiteSuccessor(v)

Input: node v ∈ V
Output: Successor node u of v with u.color = white, null otherwise

foreach u ∈ N+(v) do
if u.color = white then

return u

return null

699

Interpretation of the Colors

When traversing the graph, a tree (or Forest) is built. When nodes
are discovered there are three cases

White node: new tree edge
Grey node: Zyklus (“back-egde”)
Black node: forward- / cross edge

700

Breadth First Search

701

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.

a b c

d e f

g h i

aaaa bb

dd eee

cc

f

gg hh i

Order a, b, d, e, c, f, g, h, i

Adjazenzliste
a b c d e f g h i

b c f e b h i

d f

e

702

(Iterative) BFS-Visit(G, v)
Input: graph G = (V,E)

Queue Q← ∅
v.color ← grey
enqueue(Q, v)
while Q 6= ∅ do

w ← dequeue(Q)
foreach c ∈ N+(w) do

if c.color = white then
c.color ← grey
enqueue(Q, c)

w.color ← black

Algorithm requires extra space of O(|V |).
703

Main program BFS-Visit(G)

Input: graph G = (V,E)

foreach v ∈ V do
v.color ← white

foreach v ∈ V do
if v.color = white then

BFS-Visit(G,v)

Breadth First Search for all nodes of a graph. Running time:
Θ(|V |+ |E|).

704

Topological Sorting

Evaluation Order?
705

Topological Sorting

Topological Sorting of an acyclic directed graph G = (V,E):

Bijective mapping
ord : V → {1, . . . , |V |}

such that
ord(v) < ord(w) ∀ (v, w) ∈ E.

Identify i with Element vi := ord1(i). Topological sorting =̂
〈v1, . . . , v|V |〉.

706

(Counter-)Examples

1

2

3 4

5

Cyclic graph: cannot be sorted topologically.

Unterhose Hose

Socken Schuhe

Unterhemd Pullover

Mantel

Uhr

A possible toplogical sorting of the graph:
Unterhemd,Pullover,Unterhose,Uhr,Hose,Mantel,Socken,Schuhe

707

Observation

Theorem
A directed graph G = (V,E) permits a topological sorting if and only
if it is acyclic.

Proof “⇒”: If G contains a cycle it cannot permit a topological
sorting, because in a cycle 〈vi1, . . . , vim〉 it would hold that
vi1 < · · · < vim < vi1.

708

Inductive Proof Opposite Direction

Base case (n = 1): Graph with a single node without loop can be
sorted topologically, setord(v1) = 1.
Hypothesis: Graph with n nodes can be sorted topologically
Step (n→ n + 1):

1 G contains a node vq with in-degree deg−(vq) = 0. Otherwise iteratively
follow edges backwards – after at most n + 1 iterations a node would be
revisited. Contradiction to the cycle-freeness.

2 Graph without node vq and without its edges can be topologically sorted
by the hypothesis. Now use this sorting and set ord(vi)← ord(vi) + 1 for
all i 6= q and set ord(vq)← 1.

709

Preliminary Sketch of an Algorithm

Graph G = (V,E). d← 1

1 Traverse backwards starting from any node until a node vq with
in-degree 0 is found.

2 If no node with in-degree 0 found after n stepsm, then the graph
has a cycle.

3 Set ord(vq)← d.
4 Remove vq and his edges from G.
5 If V 6= ∅ , then d← d + 1, go to step 1.

Worst case runtime: Θ(|V |2).
710

Improvement

Idea?

Compute the in-degree of all nodes in advance and traverse the
nodes with in-degree 0 while correcting the in-degrees of following
nodes.

711

Algorithm Topological-Sort(G)
Input: graph G = (V,E).
Output: Topological sorting ord

Stack S ← ∅
foreach v ∈ V do A[v]← 0
foreach (v, w) ∈ E do A[w]← A[w] + 1 // Compute in-degrees
foreach v ∈ V with A[v] = 0 do push(S, v) // Memorize nodes with in-degree

0
i← 1
while S 6= ∅ do

v ← pop(S); ord[v]← i; i← i + 1 // Choose node with in-degree 0
foreach (v, w) ∈ E do // Decrease in-degree of successors

A[w]← A[w]− 1
if A[w] = 0 then push(S,w)

if i = |V |+ 1 then return ord else return “Cycle Detected”
712

Algorithm Correctness
Theorem
Let G = (V,E) be a directed acyclic graph. Algorithm
TopologicalSort(G) computes a topological sorting ord for G with
runtime Θ(|V |+ |E|).

Proof: follows from previous theorem:

1 Decreasing the in-degree corresponds with node removal.

2 In the algorithm it holds for each node v with A[v] = 0 that either the node
has in-degree 0 or that previously all predecessors have been assigned a
value ord[u]← i and thus ord[v] > ord[u] for all predecessors u of v. Nodes
are put to the stack only once.

3 Runtime: inspection of the algorithm (with some arguments like with graph
traversal) 713

Algorithm Correctness

Theorem
Let G = (V,E) be a directed graph containing a cycle. Algorithm
TopologicalSort(G) terminates within Θ(|V |+ |E|) steps and detects
a cycle.

Proof: let 〈vi1 , . . . , vik〉 be a cycle in G. In each step of the algorithm remains
A[vij] ≥ 1 for all j = 1, . . . , k. Thus k nodes are never pushed on the stack und
therefore at the end it holds that i ≤ V + 1− k.

The runtime of the second part of the algorithm can become shorter. But the
computation of the in-degree costs already Θ(|V |+ |E|).

714

Alternative: Algorithm DFS-Topsort(G, v)
Input: graph G = (V,E), node v, node list L.

if v.color = grey then
stop (Cycle)

if v.color = black then
return

v.color ← grey
foreach w ∈ N+(v) do

DFS-Topsort(G,w)

v.color ← black
Add v to head of L

Call this algorithm for each node that has not yet been visited.
Asymptotic Running Time Θ(|V |+ |E|).

715

Adjacency Matrix Product
1 2

4

3

5

B := A2
G =




0 1 1 1 0
0 0 0 0 0
0 1 0 1 1
0 0 0 0 0
0 0 1 0 1




2

=




0 1 0 1 1
0 0 0 0 0
0 0 1 0 1
0 0 0 0 0
0 1 1 1 2




716

Interpretation

Theorem

Let G = (V,E) be a graph and k ∈ N. Then the element a(k)i,j of the

matrix (a
(k)
i,j)1≤i,j≤n = (AG)k provides the number of paths with

length k from vi to vj .

717

Proof

By Induction.

Base case: straightforward for k = 1. ai,j = a
(1)
i,j .

Hypothesis: claim is true for all k ≤ l
Step (l→ l + 1):

a
(l+1)
i,j =

n∑

k=1

a
(l)
i,k · ak,j

ak,j = 1 iff egde k to j, 0 otherwise. Sum counts the number paths
of length l from node vi to all nodes vk that provide a direct direction
to node vj, i.e. all paths with length l + 1.

i k j

(l)

(l)

718

Example: Shortest Path

Question: is there a path from i to j? How long is the shortest path?

Answer: exponentiate AG until for some k < n it holds that a(k)i,j > 0.

k provides the path length of the shortest path. If a(k)i,j = 0 for all
1 ≤ k < n, then there is no path from i to j.

719

Example: Number triangles
Question: How many triangular path does an undirected graph
contain?

Answer: Remove all cycles (diagonal entries). Compute A3
G. a(3)ii

determines the number of paths of length 3 that contain i. There are
6 different permutations of a triangular path. Thus for the number of
triangles:

∑n
i=1 a

(3)
ii /6.

1

2

3 4

5




0 0 1 1 1
0 0 1 1 1
1 1 0 1 1
1 1 1 0 0
1 1 1 0 0




3

=




4 4 8 8 8
4 4 8 8 8
8 8 8 8 8
8 8 8 4 4
8 8 8 4 4



⇒ 24/6 = 4
Dreiecke.

720

Relation

Given a finite set V

(Binary) Relation R on V : Subset of the cartesian product
V × V = {(a, b)|a ∈ V, b ∈ V }
Relation R ⊆ V × V is called

reflexive, if (v, v) ∈ R for all v ∈ V

symmetric, if (v, w) ∈ R⇒ (w, v) ∈ R

transitive, if (v, x) ∈ R, (x,w) ∈ R⇒ (v, w) ∈ R

The (Reflexive) Transitive Closure R∗ of R is the smallest extension
R ⊆ R∗ ⊆ V × V such that R∗ is reflexive and transitive.

721

Graphs and Relations

Graph G = (V,E)
adjacencies AG =̂ Relation E ⊆ V × V over V

reflexive⇔ ai,i = 1 for all i = 1, . . . , n. (loops)
symmetric⇔ ai,j = aj,i for all i, j = 1, . . . , n (undirected)
transitive ⇔ (u, v) ∈ E, (v, w) ∈ E ⇒ (u,w) ∈ E. (reachability)

722

Example: Equivalence Relation

Equivalence relation ⇔ symmetric, transitive, reflexive relation ⇔
collection of complete, undirected graphs where each element has a
loop.

Example: Equivalence classes of the num-
bers {0, ..., 7} modulo 3

0
1

2

3

4
5

6

7

1

4

7

2

5

723

Reflexive Transitive Closure
Reflexive transitive closure of G ⇔ Reachability relation E∗:
(v, w) ∈ E∗ iff ∃ path from node v to w.




0 1 0 0 1
0 0 0 1 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0




1

2

3 4

5

G = (V,E)

⇒




1 1 1 1 1
0 1 1 1 0
0 1 1 1 0
0 1 1 1 0
0 1 1 1 1




1

2

3 4

5

G∗ = (V,E∗)

724

Computation of the Reflexive Transitive Closure

Goal: computation of B = (bij)1≤i,j≤n with bij = 1⇔ (vi, vj) ∈ E∗

Observation: aij = 1 already implies (vi, vj) ∈ E∗.

First idea:

Start with B ← A and set bii = 1 for each i (Reflexivity.).
Iterate over i, j, k and set bij = 1, if bik = 1 and bkj = 1. Then all
paths with lenght 1 and 2 taken into account.
Repeated iteration⇒ all paths with length 1 . . . 4 taken into
account.
dlog2 ne iterations required. ⇒ running time n3 dlog2 ne

725

Improvement: Algorithm of Warshall (1962)

Inductive procedure: all paths known over nodes from {vi : i < k}.
Add node vk.

1

2

3 4

5




1 1 1 1 1
0 1 1 1 0
0 1 1 1 0
0 1 1 1 0
0 1 1 1 1




726

Algorithm TransitiveClosure(AG)

Input: Adjacency matrix AG = (aij)i,j=1...n

Output: Reflexive transitive closure B = (bij)i,j=1...n of G

B ← AG

for k ← 1 to n do
akk ← 1 // Reflexivity
for i← 1 to n do

for j ← 1 to n do
bij ← max{bij, bik · bkj} // All paths via vk

return B

Runtime Θ(n3).

727

Correctness of the Algorithm (Induction)
Invariant (k): all paths via nodes with maximal index < k
considered.

Base case (k = 1): All directed paths (all edges) in AG

considered.
Hypothesis: invariant (k) fulfilled.
Step (k → k + 1): For each path from vi to vj via nodes with
maximal index k: by the hypothesis bik = 1 and bkj = 1. Therefore
in the k-th iteration: bij ← 1.

vi vk vj

(v<k) (v<k)

728

Connected Components

Connected components of an undirected graph G: equivalence
classes of the reflexive, transitive closure of G. Connected
component = subgraph G′ = (V ′, E ′), E ′ = {{v, w} ∈ E|v, w ∈ V ′}
with
{{v, w} ∈ E|v ∈ V ′ ∨w ∈ V ′} = E = {{v, w} ∈ E|v ∈ V ′ ∧w ∈ V ′}

1 2

3 4 5

6 7

Graph with connected compo-
nents {1, 2, 3, 4}, {5, 7}, {6}.

729

Computation of the Connected Components

Computation of a partitioning of V into pairwise disjoint subsets
V1, . . . , Vk

such that each Vi contains the nodes of a connected component.
Algorithm: depth-first search or breadth-first search. Upon each
new start of DFSSearch(G, v) or BFSSearch(G, v) a new empty
connected component is created and all nodes being traversed
are added.

730

