23. Graphs

Notation, Representation, Graph Traversal (DFS, BFS), Topological
Sorting , Reflexive transitive closure, Connected components
[Ottman/Widmayer, Kap. 9.1 - 9.4,Cormen et al, Kap. 22]

[Multi]Graph

672

edge

() _noce

674

Konigsberg 1736

Cycles

m Is there a cycle through the town (the
graph) that uses each bridge (each edge)
exactly once?

m Euler (1736): no.
m Such a cycle is called Eulerian path.

m Eulerian path < each node provides an
even number of edges (each node is of an
even degree).

‘=" is straightforward, “<=” ist a bit more difficult but still elementary.

673

675

Notation Notation

A directed graph consists of a set V' = {vy,...,v,} of nodes
(Vertices) and a set E C V x V of Edges. The same edges may not
be contained more than once.

undirected directed e‘ o QS)

V ={1,2,3,4,5} V ={1,2,3,4,5} |
E={{1,2},{1,3},{2.3},{2.4}, E={(1,3),(2.1),(2,5). (3,2). oop
{2,5},{3,4},{3,5},{4,5}} (3:4).(4,2),(4,5),(5,3)}
Notation Notation
An undirected graph consists of a set V' = {vy,...,v,} of nodes a

An undirected graph G = (V, E') without loops where E comprises

- . L . .
andaset I C {{u, v}|u,v € V} of edges. Edges may bot be all edges between pairwise different nodes is called complete.

contained more than once.*®

a complete undirected graph

undirected graph

45As opposed to the introductory example — it is then called multi-graph.

Notation Notation

A weighted graph G = (V, E, ¢) is a graph G = (V, E) with an edge

A graph where V' can be partitioned into disjoint sets U and W such weight function ¢ : E — R. c(e) is called weight of the edge e.
that each e € E provides a node in U and a node in Wis called

bipartite.

Notation Notation

For directed graphs G = (V, F)

m w e Vis called adjacentto v € V, if (v,w) € E For directed graphs G = (V, E)

n Predecesso_rs o+fv eV: N (v) :={ueV|(uv) e E}. m In-Degree: deg™ (v) = |[N~(v)],
Successors: N*(v) :=={u € V|(v,u) € E} Out-Degree: deg* (v) = [N (v)|

SWPC
(@ o v
deg™(v) = 3,deg"(v) =2 deg (w) =1, deg" (w) =1
(#)
N-(v) N*t(v) |

682

Notation

For undirected graphs G = (V, E):
m w € Viscalled adjacenttov € V, if {v,w} € E

m Neighbourhoodof v € V: N(v) = {w € V|{v,w} € E}

m Degree of v: deg(v) = |N(v)| with a special case for the loops:
increase the degree by 2.

N @

deg(v) =5 deg(w) =2

Paths

m Path: a sequence of nodes (v, ..., v;41) such that for each
i€ {l...k}thereis an edge from v; to v;;1 .

m Length of a path: number of contained edges k.
m Weight of a path (in weighted graphs): Zle c((vi,vi11)) (bzw.
S elfvn v })

m Simple path: path without repeating vertices

684

686

Relationship between node degrees and number of
edges

For each graph G = (V, E) it holds

> ey deg™(v) = 37 oy deg™ (v) = |E|, for G directed
> ,er deg(v) = 2|E|, for G undirected.

685

Connectedness

m An undirected graph is called connected, if for eacheach pair
v,w € V there is a connecting path.

m A directed graph is called strongly connected, if for each pair
v,w € V there is a connecting path.

m A directed graph is called weakly connected, if the corresponding
undirected graph is connected.

687

Simple Observations

m generally: 0 < |[E| € O(|V]?)

m connected graph: |E| € Q(|V])

m complete graph: |E| = W (undirected)

m Maximally |E| = |V |? (directed),|E| = W (undirected)

688

Representation using a Matrix

Graph G = (V, E) with nodes v; . .., v, stored as adjacency matrix
A¢ = (aij)1<i j<n With entries from {0, 1}. a;; = 1 if and only if edge
from v; to v;.

O OO OO
SO = O =
_ o O O
SO = O =
_— O = O O

Memory consumption O(|V'|?). Ag is symmetric, if G undirected.

690

Cycles

m Cycle: path (v, ..

m Simple cycle: Cycle with pairwise different vy, ..
not use an edge more than once.

m Acyclic: graph without any cycles.

. ,Uk+1> with V1 = Vk41
., Uk, that does

Conclusion: undirected graphs cannot contain cycles with length 2
(loops have length 1)

Representation with a List
Many graphs G = (V,FE) with nodes

: 12345
v1,...,v, provide much less than n? []
edges. Representation with adjacency F F?
list: Array A[l],..., A[n|, A; comprises a 3
linked list of nodes in N (v;). I

5

Ar—0O® W0
Q<0 »h<~—0 I

Memory Consumption O(|V| + |E|).

691

Runtimes of simple Operations Depth First Search

Operation Matrix List I——I
Find neighbours/successorsof v € V. ©(n) ©O(deg” v) | - I
find v € V without neighbour/successor ©(n?) ©O(n) —:;
(u,v) € E? O(1) O(deg v) |
Insert edge (1) ©() |_ |:|_
Delete edge O(1) O(deg’ v) (H
Il

692

Graph Traversal: Depth First Search Colors

Follow the path into its depth until nothing is left to visit.

0 I Adjazenzliste Conceptual coloring of nodes
g

bilcl|d
L4

c| fle

! m white: node has not been discovered yet.

m grey: node has been discovered and is marked for traversal /
being processed.

m black: node was discovered and entirely processed.

!
S fe— O e S

SR S e O

D XU S R

Order a,b,c, f,d,e, g, h,i

694

Algorithm Depth First visit DFS-Visit(G', v)

Input: graph G = (V, E'), Knoten v.

v.color < grey
foreach w € N*(v) do

if w.color = white then
. DFS-Visit(G, w)

v.color < black

Depth First Search starting from node v. Running time (without
recursion): ©(deg™ v)

696

lterative DFS-Visit(G, v)
Input: graph G = (V, E), v € V with v.color = white

Stack S « 0

v.color < grey; S.push(v)

while S # () do

w < nextWhiteSuccessor(v)

if w # null then

w.color <+ grey; S.push(w)

V4w //

// invariant: grey nodes always on stack

// code: next slide

/

work on w. parent remains on the stack
else

v.color < black // no grey successors, v becomes black
if S+ () then

v < S.pop()
if v.color = grey then S.push(v)

// visit/revisit next node

Memory Consumption Stack ©(|V|)

698

Algorithm Depth First visit DFS-Visit(G)

Input: graph G = (V, E)

foreach v € V do
‘7 v.color <+ white

foreach v € V do

if v.color = white then
. DFS-Visit(G,v)

Depth First Search for all nodes of a graph. Running time:
O(IV]+ X er(deg™(v) + 1)) = O(V| + | E]).

697

nextWhiteSuccessor(v)

Input: node v € V
Output: Successor node u of v with u.color = white, null otherwise

foreach u € N*(v) do
if u.color = white then
L return u

return null

699

Interpretation of the Colors

When traversing the graph, a tree (or Forest) is built. When nodes
are discovered there are three cases

m White node: new tree edge
m Grey node: Zyklus (“back-egde”)
m Black node: forward- / cross edge

700

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.

o Adjazenzliste
allbilc|d|e]|f i
| Vo
blc| flelbd hil i
! !

d f

!

e
o0 0

Order a,b,d,e,c, f, g, h,1

702

Breadth First Search

(Iterative) BFS-Visit(G, v)

Input: graph G = (V, E)
Queue Q <+ 0

v.color < grey
enqueue(Q, v)
while Q # () do
w <— dequeue(Q)
foreach c € N*(w) do
if c.color = white then
L c.color + grey

enqueue(Q, ¢)

w.color < black

Algorithm requires extra space of O(|V]).

701

703

Main program BFS-Visit((7)

Input: graph G = (V, E)

foreach v € V do
‘7 v.color < white

foreach v € V do

if v.color = white then
. BFS-Visit(G,v)

Breadth First Search for all nodes of a graph. Running time:
o(V]+|£]).

704

Topological Sorting

Topological Sorting of an acyclic directed graph G = (V, E):

Bijective mapping
ord: V — {1,....|V]}

such that
ord(v) < ord(w) V (v,w) € E.

Identify ¢ with Element v; := ord'(i). Topological sorting =
<U1, ceey U|V‘>.

706

Topological Sorting

A B © D H F G H
1 Task 1 Task 2 Task 3 Task 4 Total Note
2 |TOTAL 8 8 16 o)
3 Arleen 4 5 9 x\\ 4
4 |Hans 3 3 9 15
5 |Mike 7 5 4 18 3
6 |Selina 6 5 8 T 35 |
7
8 Durchschnitt 18 3
9
10
11
12
13
14

Evaluation Order?
705
(Counter-)Examples

Cyclic graph: cannot be sorted topologically.

A possible toplogical sorting of the graph:

Unterhemd,Pullover,Unterhose,Uhr,Hose,Mantel,Socken,Schuhe

707

Observation

A directed graph G = (V, E) permits a topological sorting if and only
if it is acyclic.

Proof “=-": If G contains a cycle it cannot permit a topological
sorting, because in a cycle (v;,...,v;) it would hold that
Vi < -0 <0 < U

708

Preliminary Sketch of an Algorithm

Graph G = (V,E). d + 1
Traverse backwards starting from any node until a node v, with
in-degree 0 is found.

If no node with in-degree 0 found after n stepsm, then the graph
has a cycle.

Set ord(v,) + d.
Remove v, and his edges from G.
If V #0,thend < d+ 1, go to step 1.

Worst case runtime: O(|V]?).

Inductive Proof Opposite Direction

m Base case (n = 1): Graph with a single node without loop can be
sorted topologically, setord(v;) = 1.

m Hypothesis: Graph with n nodes can be sorted topologically
m Step (n — n + 1):

E G contains a node v, with in-degree deg™ (v,) = 0. Otherwise iteratively
follow edges backwards — after at most n + 1 iterations a node would be
revisited. Contradiction to the cycle-freeness.

Graph without node v, and without its edges can be topologically sorted
by the hypothesis. Now use this sorting and set ord(v;) < ord(v;) + 1 for
all i # ¢ and set ord(v,) < 1.

709

Improvement

Idea?

Compute the in-degree of all nodes in advance and traverse the
nodes with in-degree 0 while correcting the in-degrees of following
nodes.

Algorithm Topological-Sort((7)

Input: graph G = (V, E).
Output: Topological sorting ord

Stack S < 0
foreach v € V do Afv] + 0
foreach (v, w) € E do A[w] + Alw]+ 1 // Compute in-degrees
foreach v € V with A[v] = 0 do push(S,v) // Memorize nodes with in-degree
0
1+ 1
while S # () do
v <= pop(S); ord[v] «—i; i <= i+ 1 // Choose node with in-degree 0
foreach (v, w) € F do // Decrease in-degree of successors
Alw] +— AJw] — 1
if Alw] =0 then push(S,w)

if i = |V| + 1 then return ord else return “Cycle Detected”

Algorithm Correctness

Let G = (V, E) be a directed graph containing a cycle. Algorithm
TopologicalSort(G) terminates within ©(|V'| 4+ | E|) steps and detects
a cycle.

Proof: let (v;,,...,v;,) be acycle in G. In each step of the algorithm remains
Alv;] > 1forall j = 1,... k. Thus k nodes are never pushed on the stack und
therefore at the end it holds that: <V + 1 — k.

The runtime of the second part of the algorithm can become shorter. But the
computation of the in-degree costs already O(|V| + |E|).

Algorithm Correctness

Let G = (V, E) be a directed acyclic graph. Algorithm
TopologicalSort(G) computes a topological sorting ord for G with
runtime O(|V| + | E|).

Proof: follows from previous theorem:

Decreasing the in-degree corresponds with node removal.

In the algorithm it holds for each node v with A[v] = 0 that either the node
has in-degree 0 or that previously all predecessors have been assigned a
value ord[u] « i and thus ord[v] > ord[u] for all predecessors u of v. Nodes
are put to the stack only once.

Runtime: inspection of the algorithm (with some arguments like with graph
traversal) i

Alternative: Algorithm DFS-Topsort(Gz, v)

Input: graph G = (V, E), node v, node list L.
if v.color = grey then
. stop (Cycle)

if v.color = black then
 return

v.color < grey
foreach w € N*(v) do
. DFS-Topsort(G, w)

v.color < black
Add v to head of L

Call this algorithm for each node that has not yet been visited.
Asymptotic Running Time ©(|V|+ |E|).

Adjacency Matrix Product

01110 01011
00000 00000
B=A%2=]101011 =1 00101
00000 00000
00101 01112
Proof
By Induction.

Base case: straightforward for & = 1. a; ; = ag}}. 0)

Hypothesis: claim is true for all £ <[
Step (I — [+ 1):
=Sy
k=1

ar; = 1iff egde k to j, 0 otherwise. Sum counts the number paths
of length [from node v; to all nodes v;. that provide a direct direction
to node vj, i.e. all paths with length [+ 1.

718

Interpretation

LetG = (V, E) be a graph and k € N. Then the element ag? of the

matrix (Clz(’kj))lgi,jgn = (Ag)* provides the number of paths with
length k from v; to v; .

Example: Shortest Path

Question: is there a path from i to j? How long is the shortest path?

Answer: exponentiate A¢ until for some k < n it holds that al(-? > 0.
(k)
J

k provides the path length of the shortest path. If a;’; = 0 for all

1 < k < n, then there is no path from ¢ to ;.

Example: Number triangles

Question: How many triangular path does an undirected graph

contain?

Answer: Remove all cycles (diagonal entries). Compute AZ.. ag’)

determines the number of paths of length 3 that contain . There are
6 different permutations of a triangular path. Thus for the number of

triangles: S, a!¥ /6.
0011 1)\° 448 8 8
00111 4 48 8 8 _
11011 | =|sssss|=246=4
11100 s 8 8 4 4 | Dreiecke.
11100 8 8 8 4 4

Graphs and Relations

Graph G = (V, E)

adjacencies Ag = Relation E C V x V over V

m reflexive & a;; = 1foralli =1,..., n. (loops)

W symmelric < a; j = aj; forall 7,5 = 1,...,n (undirected)

m fransitive < (u,v) € E, (v,w) € E = (u,w) € E. (reachability)

722

Relation

Given a finite set V

(Binary) Relation R on V: Subset of the cartesian product
VxV={(a,b)lacV,beV}
Relation R C V' x V is called

m reflexive, if (v,v) € Rforallv € V
m symmetric, if (v,w) € R = (w,v) € R
m fransitive, if (v,z) € R, (x,w) € R= (v,w) € R

The (Reflexive) Transitive Closure R* of R is the smallest extension
R C R* CV x V such that R* is reflexive and transitive.

Example: Equivalence Relation

Equivalence relation < symmetric, transitive, reflexive relation <
collection of complete, undirected graphs where each element has a
loop.

Example: Equivalence classes of the num-
bers {0, ..., 7} modulo 3

721

Reflexive Transitive Closure

Reflexive transitive closure of G < Reachability relation E*:
(v,w) € E* iff 3 path from node v to w.

o NEEE
o 0 010 01 1 1 0
o 1000 01 1 1 0
00100 001 1 1 1
000 1 0
(3 —4) \\y::r 4Z
Oﬁ,/’ \\7\,/5
G=(V.E) o — (V.5

724

Improvement: Algorithm of Warshall (1962)

Inductive procedure: all paths known over nodes from {v; : i < k}.
Add node vy.

OO O =
—_

—_ e

_ o O O =

726

Computation of the Reflexive Transitive Closure

Goal: computation of B = (b;;)1<i j<n With b;; = 1 & (v;,v,) € E*
Observation: a;; = 1 already implies (v;,v;) € E*.
First idea:

m Start with B < A and set b;; = 1 for each i (Reflexivity.).

m lterate over ¢, j, k and set b;; = 1, if by, = 1 and by; = 1. Then all
paths with lenght 1 and 2 taken into account.

m Repeated iteration = all paths with length 1. . .4 taken into
account.

m [log, n] iterations required. = running time n?3 [log, n]

Algorithm TransitiveClosure(A()

Input: Adjacency matrix Ag = (a;;)ij=1..
Output: Reflexive transitive closure B = (b;;); j=1..n of G

B+ AG
for k< 1tondo
agr <1 // Reflexivity
for i < 1 ton do
for j + 1 ton do
L bi; < max{b;;, by, - by, } // All paths via vy,

return B

Runtime ©(n?).

Correctness of the Algorithm (Induction)

Invariant (k): all paths via nodes with maximal index < k
considered.

m Base case (k = 1): All directed paths (all edges) in Ag
considered.

m Hypothesis: invariant (k) fulfilled.

m Step (k — k + 1): For each path from v; to v; via nodes with
maximal index £: by the hypothesis b;, = 1 and b;,; = 1. Therefore
in the k-th iteration: b;; < 1.

(vek) (vek)

,\/\/\/\/\/\\ —

Computation of the Connected Components

m Computation of a partitioning of V' into pairwise disjoint subsets
Vi,..., Vi

m such that each V; contains the nodes of a connected component.

m Algorithm: depth-first search or breadth-first search. Upon each
new start of DFSSearch(G, v) or BFSSearch(G, v) a new empty
connected component is created and all nodes being traversed
are added.

Connected Components

Connected components of an undirected graph G: equivalence
classes of the reflexive, transitive closure of G. Connected
component = subgraph G' = (V' '), F' = {{v,w} € Elv,w € V'}
with

{{v,w} e ElveV'Vw e V'} = F = {{v,w} € Elve V' Aw e V'}

@—@ ©

Graph with connected compo-
9 9 nents {1,2,3,4}, {5, 7}, {6}.

729

