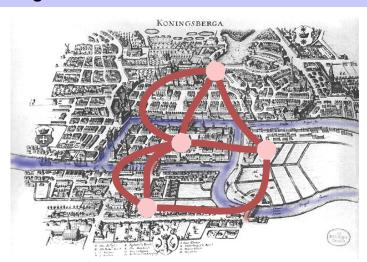
23. Graphs

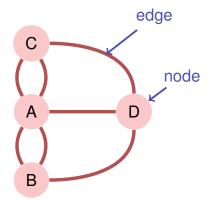
Notation, Representation, Graph Traversal (DFS, BFS), Topological Sorting, Reflexive transitive closure, Connected components [Ottman/Widmayer, Kap. 9.1 - 9.4, Cormen et al, Kap. 22]

Königsberg 1736



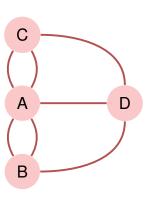
672

[Multi]Graph



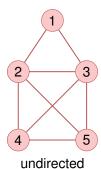
Cycles

- Is there a cycle through the town (the graph) that uses each bridge (each edge) exactly once?
- Euler (1736): no.
- Such a *cycle* is called *Eulerian path*.
- Eulerian path ⇔ each node provides an even number of edges (each node is of an even degree).

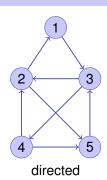


^{&#}x27; \Rightarrow " is straightforward, " \Leftarrow " ist a bit more difficult but still elementary.

Notation



$$\begin{array}{ll} V = & \{1,2,3,4,5\} \\ E = & \{\{1,2\},\{1,3\},\{2,3\},\{2,4\}, \\ & \{2,5\},\{3,4\},\{3,5\},\{4,5\}\} \end{array} \qquad \begin{array}{ll} V = & \{1,2,3,4,5\} \\ E = & \{(1,3),(2,1),(2,5),(3,2), \\ & (3,4),(4,2),(4,5),(5,3)\} \end{array}$$

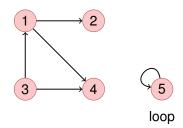


$$V = \{1, 2, 3, 4, 5\}$$

$$E = \{(1, 3), (2, 1), (2, 5), (3, 2), (3, 4), (4, 5), (5, 3)\}$$

Notation

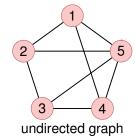
A *directed graph* consists of a set $V = \{v_1, \dots, v_n\}$ of nodes (*Vertices*) and a set $E \subseteq V \times V$ of Edges. The same edges may not be contained more than once.



676

Notation

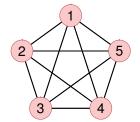
An *undirected graph* consists of a set $V = \{v_1, \dots, v_n\}$ of nodes a and a set $E \subseteq \{\{u,v\}|u,v\in V\}$ of edges. Edges may bot be contained more than once.45



 $^{^{45}}$ As opposed to the introductory example – it is then called multi-graph.

Notation

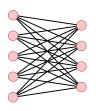
An undirected graph G = (V, E) without loops where E comprises all edges between pairwise different nodes is called *complete*.



a complete undirected graph

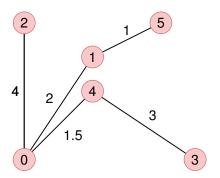
Notation

A graph where V can be partitioned into disjoint sets U and W such that each $e \in E$ provides a node in U and a node in W is called bipartite.



Notation

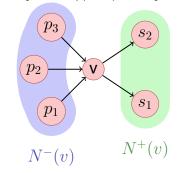
A weighted graph G = (V, E, c) is a graph G = (V, E) with an edge *weight function* $c: E \to \mathbb{R}$. c(e) is called *weight* of the edge e.



Notation

For directed graphs G = (V, E)

- $w \in V$ is called adjacent to $v \in V$, if $(v, w) \in E$
- Predecessors of $v \in V$: $N^-(v) := \{u \in V | (u, v) \in E\}$. Successors: $N^+(v) := \{u \in V | (v, u) \in E\}$



Notation

For directed graphs G = (V, E)

■ *In-Degree*: $deg^{-}(v) = |N^{-}(v)|$, Out-Degree: $\deg^+(v) = |N^+(v)|$

$$\deg^-(v) = 3$$
, $\deg^+(v) = 2$ $\deg^-(w) = 1$, $\deg^+(w) = 1$

$$\deg^-(w) = 1, \deg^+(w) = 1$$

Notation

For undirected graphs G = (V, E):

- $w \in V$ is called *adjacent* to $v \in V$, if $\{v, w\} \in E$
- Neighbourhood of $v \in V$: $N(v) = \{w \in V | \{v, w\} \in E\}$
- *Degree* of v: deg(v) = |N(v)| with a special case for the loops: increase the degree by 2.

$$\deg(w) = 2$$

Relationship between node degrees and number of edges

For each graph G = (V, E) it holds

- $\sum_{v \in V} \deg^-(v) = \sum_{v \in V} \deg^+(v) = |E|$, for G directed
- $\sum_{v \in V} \deg(v) = 2|E|$, for G undirected.

Paths

- *Path*: a sequence of nodes $\langle v_1, \dots, v_{k+1} \rangle$ such that for each $i \in \{1 \dots k\}$ there is an edge from v_i to v_{i+1} .
- **Length** of a path: number of contained edges k.
- Weight of a path (in weighted graphs): $\sum_{i=1}^k c((v_i, v_{i+1}))$ (bzw. $\sum_{i=1}^k c(\{v_i, v_{i+1}\})$)
- Simple path: path without repeating vertices

Connectedness

- An undirected graph is called *connected*, if for each each pair $v, w \in V$ there is a connecting path.
- A directed graph is called *strongly connected*, if for each pair $v, w \in V$ there is a connecting path.
- A directed graph is called weakly connected, if the corresponding undirected graph is connected.

Simple Observations

Cycles

lacksquare generally: $0 \le |E| \in \mathcal{O}(|V|^2)$

lacksquare connected graph: $|E| \in \Omega(|V|)$

• complete graph: $|E| = \frac{|V| \cdot (|V| - 1)}{2}$ (undirected)

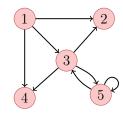
■ Maximally $|E| = |V|^2$ (directed), $|E| = \frac{|V| \cdot (|V| + 1)}{2}$ (undirected)

- **Cycle**: path $\langle v_1, \dots, v_{k+1} \rangle$ with $v_1 = v_{k+1}$
- **Simple cycle:** Cycle with pairwise different v_1, \ldots, v_k , that does not use an edge more than once.
- Acyclic: graph without any cycles.

Conclusion: undirected graphs cannot contain cycles with length 2 (loops have length 1)

Representation using a Matrix

Graph G=(V,E) with nodes v_1,\ldots,v_n stored as *adjacency matrix* $A_G=(a_{ij})_{1\leq i,j\leq n}$ with entries from $\{0,1\}$. $a_{ij}=1$ if and only if edge from v_i to v_j .

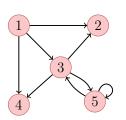


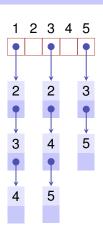
$$\left(\begin{array}{ccccc}
0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1
\end{array}\right)$$

Memory consumption $\Theta(|V|^2)$. A_G is symmetric, if G undirected.

Representation with a List

Many graphs G=(V,E) with nodes v_1,\ldots,v_n provide much less than n^2 edges. Representation with *adjacency list*: Array $A[1],\ldots,A[n]$, A_i comprises a linked list of nodes in $N^+(v_i)$.



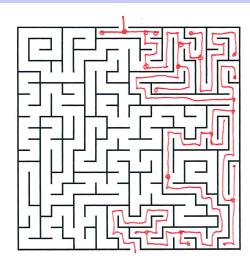


Memory Consumption $\Theta(|V| + |E|)$.

Runtimes of simple Operations

Operation	Matrix	List
Find neighbours/successors of $v \in V$	$\Theta(n)$	$\Theta(\deg^+ v)$
$\text{find } v \in V \text{ without neighbour/successor}$	$\Theta(n^2)$	$\Theta(n)$
$(u,v) \in E$?	$\Theta(1)$	$\Theta(\deg^+ v)$
Insert edge	$\Theta(1)$	$\Theta(1)$
Delete edge	$\Theta(1)$	$\Theta(\deg^+ v)$

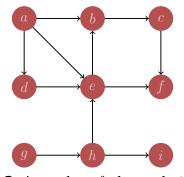
Depth First Search



2

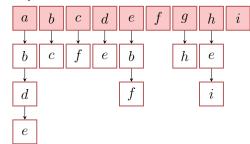
Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.



Order a, b, c, f, d, e, g, h, i

Adjazenzliste



Colors

Conceptual coloring of nodes

- white: node has not been discovered yet.
- grey: node has been discovered and is marked for traversal / being processed.
- **black:** node was discovered and entirely processed.

Algorithm Depth First visit DFS-Visit(G, v)

Depth First Search starting from node v. Running time (without recursion): $\Theta(\deg^+ v)$

Algorithm Depth First visit DFS-Visit(*G***)**

```
\begin{array}{l} \textbf{Input:} \  \, \textbf{graph} \,\, G = (V,E) \\ \textbf{foreach} \,\, v \in V \,\, \textbf{do} \\ \quad \big\lfloor \,\, v.color \leftarrow \text{ white} \\ \textbf{foreach} \,\, v \in V \,\, \textbf{do} \\ \quad \big\lfloor \,\, \textbf{if} \,\, v.color = \text{ white} \,\, \textbf{then} \\ \quad \big\lfloor \,\, \text{DFS-Visit}(\mathsf{G,v}) \\ \end{array}
```

Depth First Search for all nodes of a graph. Running time: $\Theta(|V| + \sum_{v \in V} (\deg^+(v) + 1)) = \Theta(|V| + |E|).$

596

Iterative DFS-Visit(G, v)

```
Input: graph G = (V, E), v \in V with v.color = white
Stack S \leftarrow \emptyset
v.color \leftarrow \mathsf{grey}; S.\mathsf{push}(v)
                                                  // invariant: grey nodes always on stack
while S \neq \emptyset do
     w \leftarrow \mathsf{nextWhiteSuccessor}(v)
                                                                               // code: next slide
     if w \neq \text{null then}
           w.color \leftarrow \mathsf{grey}; S.\mathsf{push}(w)
                                               // work on w. parent remains on the stack
           v \leftarrow w
     else
                                                    // no grey successors, v becomes black
           v.color \leftarrow \mathsf{black}
          if S \neq \emptyset then
                v \leftarrow S.pop()
                                                                      // visit/revisit next node
                if v.color = grey then S.push(v)
                                                                      Memory Consumption Stack \Theta(|V|)
```

$\mathsf{nextWhiteSuccessor}(v)$

```
Input: node v \in V
Output: Successor node u of v with u.color = white, null otherwise foreach u \in N^+(v) do

if u.color = white then

return u
```

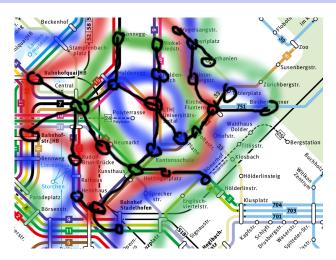
Interpretation of the Colors

When traversing the graph, a tree (or Forest) is built. When nodes are discovered there are three cases

■ White node: new tree edge

Grey node: Zyklus ("back-egde")Black node: forward- / cross edge

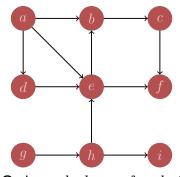
Breadth First Search



00

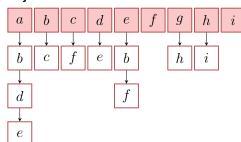
Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.



Order a, b, d, e, c, f, g, h, i

Adjazenzliste



(Iterative) BFS-Visit(G, v)

```
\begin{aligned} & \textbf{Input:} \ \text{graph} \ G = (V, E) \\ & \text{Queue} \ Q \leftarrow \emptyset \\ & v.color \leftarrow \text{grey} \\ & \text{enqueue}(Q, v) \\ & \textbf{while} \ Q \neq \emptyset \ \textbf{do} \\ & w \leftarrow \text{dequeue}(Q) \\ & \textbf{foreach} \ c \in N^+(w) \ \textbf{do} \\ & & \text{if} \ c.color = \text{white} \ \textbf{then} \\ & & c.color \leftarrow \text{grey} \\ & & \text{enqueue}(Q, c) \\ & w.color \leftarrow \text{black} \end{aligned}
```

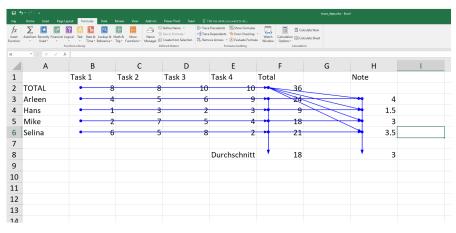
Algorithm requires extra space of $\mathcal{O}(|V|)$.

Main program BFS-Visit(G)

```
\begin{array}{l} \textbf{Input:} \  \, \mathsf{graph} \,\, G = (V,E) \\ \textbf{foreach} \,\, v \in V \,\, \textbf{do} \\ \quad \big\lfloor \,\, v.color \leftarrow \mathsf{white} \\ \textbf{foreach} \,\, v \in V \,\, \textbf{do} \\ \quad \big\lfloor \,\, \mathbf{if} \,\, v.color = \mathsf{white} \,\, \mathbf{then} \\ \quad \big\lfloor \,\, \mathsf{BFS-Visit}(\mathsf{G,v}) \\ \end{array}
```

Breadth First Search for all nodes of a graph. Running time: $\Theta(|V|+|E|).$

Topological Sorting



Evaluation Order?

704

Topological Sorting

Topological Sorting of an acyclic directed graph G = (V, E):

Bijective mapping

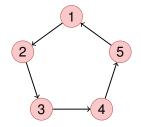
ord :
$$V \to \{1, \dots, |V|\}$$

such that

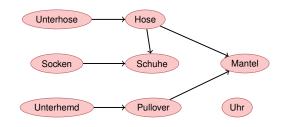
$$\operatorname{ord}(v) < \operatorname{ord}(w) \ \forall \ (v, w) \in E.$$

Identify i with Element $v_i := \operatorname{ord}^1(i)$. Topological sorting $\widehat{=} \langle v_1, \dots, v_{|V|} \rangle$.

(Counter-)Examples



Cyclic graph: cannot be sorted topologically.



A possible toplogical sorting of the graph: Unterhemd,Pullover,Unterhose,Uhr,Hose,Mantel,Socken,Schuhe

Observation

Theorem

A directed graph G=(V,E) permits a topological sorting if and only if it is acyclic.

Proof " \Rightarrow ": If G contains a cycle it cannot permit a topological sorting, because in a cycle $\langle v_{i_1}, \dots, v_{i_m} \rangle$ it would hold that $v_{i_1} < \dots < v_{i_m} < v_{i_1}$.

Inductive Proof Opposite Direction

- Base case (n = 1): Graph with a single node without loop can be sorted topologically, setord $(v_1) = 1$.
- \blacksquare Hypothesis: Graph with n nodes can be sorted topologically
- \blacksquare Step $(n \rightarrow n+1)$:
 - If G contains a node v_q with in-degree $\deg^-(v_q)=0$. Otherwise iteratively follow edges backwards after at most n+1 iterations a node would be revisited. Contradiction to the cycle-freeness.
 - 2 Graph without node v_q and without its edges can be topologically sorted by the hypothesis. Now use this sorting and set $\operatorname{ord}(v_i) \leftarrow \operatorname{ord}(v_i) + 1$ for all $i \neq q$ and set $\operatorname{ord}(v_q) \leftarrow 1$.

708

70

Preliminary Sketch of an Algorithm

Graph G = (V, E). $d \leftarrow 1$

- $\,\,$ Traverse backwards starting from any node until a node v_q with in-degree 0 is found.
- If no node with in-degree 0 found after n stepsm, then the graph has a cycle.
- **Set** $\operatorname{ord}(v_q) \leftarrow d$.
- Remove v_q and his edges from G.
- If $V \neq \emptyset$, then $d \leftarrow d+1$, go to step 1.

Worst case runtime: $\Theta(|V|^2)$.

Improvement

Idea?

Compute the in-degree of all nodes in advance and traverse the nodes with in-degree 0 while correcting the in-degrees of following nodes.

Algorithm Topological-Sort(*G*)

```
\begin{array}{l} \textbf{Input: graph } G = (V, E). \\ \textbf{Output: Topological sorting ord} \\ \textbf{Stack } S \leftarrow \emptyset \\ \textbf{foreach } v \in V \ \textbf{do } A[v] \leftarrow 0 \\ \textbf{foreach } (v, w) \in E \ \textbf{do } A[w] \leftarrow A[w] + 1 \ // \ \texttt{Compute in-degrees} \\ \textbf{foreach } v \in V \ \textbf{with } A[v] = 0 \ \textbf{do } \textbf{push}(S, v) \ // \ \texttt{Memorize nodes with in-degree} \\ 0 \\ i \leftarrow 1 \\ \textbf{while } S \neq \emptyset \ \textbf{do} \\ v \leftarrow \texttt{pop}(S); \ \text{ord}[v] \leftarrow i; \ i \leftarrow i+1 \ // \ \texttt{Choose node with in-degree} \ 0 \\ \textbf{foreach } (v, w) \in E \ \textbf{do } \ // \ \texttt{Decrease in-degree} \ \text{of successors} \\ A[w] \leftarrow A[w] - 1 \\ \textbf{if } A[w] = 0 \ \textbf{then } \textbf{push}(S, w) \\ \end{array}
```

if i = |V| + 1 then return ord else return "Cycle Detected"

Algorithm Correctness

Theorem

Let G = (V, E) be a directed acyclic graph. Algorithm TopologicalSort(G) computes a topological sorting ord for G with runtime $\Theta(|V| + |E|)$.

Proof: follows from previous theorem:

- 1 Decreasing the in-degree corresponds with node removal.
- In the algorithm it holds for each node v with A[v]=0 that either the node has in-degree 0 or that previously all predecessors have been assigned a value $\operatorname{ord}[u] \leftarrow i$ and thus $\operatorname{ord}[v] > \operatorname{ord}[u]$ for all predecessors u of v. Nodes are put to the stack only once.
- 3 Runtime: inspection of the algorithm (with some arguments like with graph traversal)

Algorithm Correctness

Theorem

Let G=(V,E) be a directed graph containing a cycle. Algorithm TopologicalSort(G) terminates within $\Theta(|V|+|E|)$ steps and detects a cycle.

Proof: let $\langle v_{i_1}, \dots, v_{i_k} \rangle$ be a cycle in G. In each step of the algorithm remains $A[v_{i_j}] \geq 1$ for all $j=1,\dots,k$. Thus k nodes are never pushed on the stack und therefore at the end it holds that $i \leq V+1-k$.

The runtime of the second part of the algorithm can become shorter. But the computation of the in-degree costs already $\Theta(|V|+|E|)$.

Alternative: Algorithm DFS-Topsort(G, v)

Call this algorithm for each node that has not yet been visited. Asymptotic Running Time $\Theta(|V|+|E|)$.

712

Adjacency Matrix Product

$$B := A_G^2 = \begin{pmatrix} 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix}^2 = \begin{pmatrix} 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 2 \end{pmatrix}$$

Interpretation

Theorem

Let G = (V, E) be a graph and $k \in \mathbb{N}$. Then the element $a_{i,j}^{(k)}$ of the $matrix\ (a_{i,j}^{(k)})_{1\leq i,j\leq n}=(A_G)^k$ provides the number of paths with length k from v_i to v_i .

716

Proof

By Induction.

Base case: straightforward for
$$k=1$$
. $a_{i,j}=a_{i,j}^{(1)}$. Hypothesis: claim is true for all $k\leq l$ Step ($l\to l+1$):
$$a_{i,j}^{(l+1)}=\sum_{k=1}^n a_{i,k}^{(l)}\cdot a_{k,j}$$

 $a_{k,j}=1$ iff egde k to j, 0 otherwise. Sum counts the number paths of length l from node v_i to all nodes v_k that provide a direct direction to node v_i , i.e. all paths with length l+1.

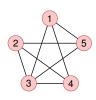
Example: Shortest Path

Question: is there a path from i to j? How long is the shortest path? *Answer:* exponentiate A_G until for some k < n it holds that $a_{i,j}^{(k)} > 0$. k provides the path length of the shortest path. If $a_{i,j}^{(k)}=0$ for all $1 \le k < n$, then there is no path from i to j.

Example: Number triangles

Question: How many triangular path does an undirected graph contain?

Answer: Remove all cycles (diagonal entries). Compute A_G^3 . $a_{ii}^{(3)}$ determines the number of paths of length 3 that contain i. There are 6 different permutations of a triangular path. Thus for the number of triangles: $\sum_{i=1}^{n} a_{ii}^{(3)}/6$.



Relation

Given a finite set V

(Binary) **Relation** R on V: Subset of the cartesian product $V \times V = \{(a,b)|a \in V, b \in V\}$

Relation $R \subseteq V \times V$ is called

- **reflexive**, if $(v,v) \in R$ for all $v \in V$
- **symmetric**, if $(v, w) \in R \Rightarrow (w, v) \in R$
- **Transitive**, if $(v, x) \in R$, $(x, w) \in R \Rightarrow (v, w) \in R$

The (Reflexive) Transitive Closure R^* of R is the smallest extension $R \subseteq R^* \subseteq V \times V$ such that R^* is reflexive and transitive.

Graphs and Relations

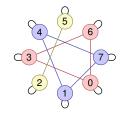
Graph G=(V,E) adjacencies $A_G \cong \text{Relation } E \subseteq V \times V \text{ over } V$

- **reflexive** $\Leftrightarrow a_{i,i} = 1$ for all i = 1, ..., n. (loops)
- **symmetric** $\Leftrightarrow a_{i,j} = a_{j,i}$ for all $i, j = 1, \dots, n$ (undirected)
- *transitive* \Leftrightarrow $(u,v) \in E$, $(v,w) \in E \Rightarrow (u,w) \in E$. (reachability)

Example: Equivalence Relation

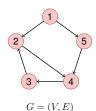
Equivalence relation \Leftrightarrow symmetric, transitive, reflexive relation \Leftrightarrow collection of complete, undirected graphs where each element has a loop.

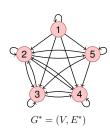
Example: Equivalence classes of the numbers $\{0,...,7\}$ modulo 3



Reflexive Transitive Closure

Reflexive transitive closure of $G \Leftrightarrow \textit{Reachability relation } E^*$: $(v, w) \in E^*$ iff \exists path from node v to w.





Computation of the Reflexive Transitive Closure

Goal: computation of $B=(b_{ij})_{1\leq i,j\leq n}$ with $b_{ij}=1\Leftrightarrow (v_i,v_j)\in E^*$ Observation: $a_{ij}=1$ already implies $(v_i,v_j)\in E^*$.

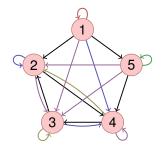
First idea:

- Start with $B \leftarrow A$ and set $b_{ii} = 1$ for each i (Reflexivity.).
- Iterate over i, j, k and set $b_{ij} = 1$, if $b_{ik} = 1$ and $b_{kj} = 1$. Then all paths with length 1 and 2 taken into account.
- Repeated iteration \Rightarrow all paths with length $1 \dots 4$ taken into account.
- lacksquare $\lceil \log_2 n \rceil$ iterations required. \Rightarrow running time $n^3 \lceil \log_2 n \rceil$

724

Improvement: Algorithm of Warshall (1962)

Inductive procedure: all paths known over nodes from $\{v_i : i < k\}$. Add node v_k .



$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

Algorithm TransitiveClosure(A_G)

Input: Adjacency matrix $A_G = (a_{ij})_{i,j=1...n}$ **Output:** Reflexive transitive closure $B = (b_{ij})_{i,j=1...n}$ of G

$$\begin{array}{c|c} B \leftarrow A_G \\ \textbf{for } k \leftarrow 1 \textbf{ to } n \textbf{ do} \\ \hline & a_{kk} \leftarrow 1 \\ \textbf{for } i \leftarrow 1 \textbf{ to } n \textbf{ do} \\ \hline & \textbf{for } j \leftarrow 1 \textbf{ to } n \textbf{ do} \\ \hline & b_{ij} \leftarrow \max\{b_{ij}, b_{ik} \cdot b_{kj}\} \end{array} \qquad // \text{ All paths via } v_k$$

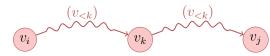
return B

Runtime $\Theta(n^3)$.

Correctness of the Algorithm (Induction)

Invariant (k): all paths via nodes with maximal index < k considered.

- Base case (k = 1): All directed paths (all edges) in A_G considered.
- **Hypothesis**: invariant (*k*) fulfilled.
- **Step** $(k \to k+1)$: For each path from v_i to v_j via nodes with maximal index k: by the hypothesis $b_{ik} = 1$ and $b_{kj} = 1$. Therefore in the k-th iteration: $b_{ij} \leftarrow 1$.



728

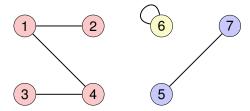
Computation of the Connected Components

- Computation of a partitioning of V into pairwise disjoint subsets V_1, \ldots, V_k
- \blacksquare such that each V_i contains the nodes of a connected component.
- Algorithm: depth-first search or breadth-first search. Upon each new start of DFSSearch(G, v) or BFSSearch(G, v) a new empty connected component is created and all nodes being traversed are added.

Connected Components

Connected components of an undirected graph G: equivalence classes of the reflexive, transitive closure of G. Connected component = subgraph G'=(V',E'), $E'=\{\{v,w\}\in E|v,w\in V'\}$ with

$$\{\{v,w\} \in E | v \in V' \lor w \in V'\} = E = \{\{v,w\} \in E | v \in V' \land w \in V'\}$$



Graph with connected components $\{1, 2, 3, 4\}, \{5, 7\}, \{6\}.$