22. Greedy Algorithms

Fractional Knapsack Problem, Huffman Coding [Cormen et al, Kap. 16.1, 16.3]

set of $n \in \mathbb{N}$ items $\{1, \ldots, n\}$ Each item *i* has value $v_i \in \mathbb{N}$ and weight $w_i \in \mathbb{N}$. The maximum weight is given as $W \in \mathbb{N}$. Input is denoted as $E = (v_i, w_i)_{i=1,\ldots,n}$.

Wanted: Fractions $0 \le q_i \le 1$ ($1 \le i \le n$) that maximise the sum $\sum_{i=1}^{n} q_i \cdot v_i$ under $\sum_{i=1}^{n} q_i \cdot w_i \le W$.

Greedy heuristics

Sort the items decreasingly by value per weight v_i/w_i . Assumption $v_i/w_i \geq v_{i+1}/w_{i+1}$ Let $j = \max\{0 \le k \le n : \sum_{i=1}^{k} w_i \le W\}$. Set \square $q_i = 1$ for all $1 \le i \le j$. $q_{j+1} = \frac{W - \sum_{i=1}^{j} w_i}{w_{i+1}}.$ $a_i = 0$ for all i > j + 1.

That is fast: $\Theta(n \log n)$ for sorting and $\Theta(n)$ for the computation of the q_i .

Correctness

Assumption: optimal solution (r_i) $(1 \le i \le n)$. The knapsack is full: $\sum_i r_i \cdot w_i = \sum_i q_i \cdot w_i = W$. Consider k: smallest i with $r_i \ne q_i$ Definition of greedy: $q_k > r_k$. Let $x = q_k - r_k > 0$.

Construct a new solution (r'_i) : $r'_i = r_i \forall i < k$. $r'_k = q_k$. Remove weight $\sum_{i=k+1}^n \delta_i = x \cdot w_k$ from items k + 1 to n. This works because $\sum_{i=k}^n r_i \cdot w_i = \sum_{i=k}^n q_i \cdot w_i$.

Correctness

$$\sum_{i=k}^{n} r'_{i} v_{i} = r_{k} v_{k} + x w_{k} \frac{v_{k}}{w_{k}} + \sum_{i=k+1}^{n} (r_{i} w_{i} - \delta_{i}) \frac{v_{i}}{w_{i}}$$

$$\geq r_{k} v_{k} + x w_{k} \frac{v_{k}}{w_{k}} + \sum_{i=k+1}^{n} r_{i} w_{i} \frac{v_{i}}{w_{i}} - \delta_{i} \frac{v_{k}}{w_{k}}$$

$$= r_{k} v_{k} + x w_{k} \frac{v_{k}}{w_{k}} - x w_{k} \frac{v_{k}}{w_{k}} + \sum_{i=k+1}^{n} r_{i} w_{i} \frac{v_{i}}{w_{i}} = \sum_{i=k}^{n} r_{i} v_{i}.$$

Thus (r'_i) is also optimal. Iterative application of this idea generates the solution (q_i) .

Goal: memory-efficient saving of a sequence of characters using a binary code with code words..

Goal: memory-efficient saving of a sequence of characters using a binary code with code words..

Exam	ple							
File c	onsisting of 100.000 cha	racte	ers fro	om the	e alpł	nabet -	$\{a,\ldots,$	$f\}$
		а	b	C	Ь	e	f	
	Frequency (Thousands)	45	13	12	16	9	5	
	Code word with fix length	000	001	010	011	100	101	
	Code word variable length	0	101	100	111	1101	1100	

Goal: memory-efficient saving of a sequence of characters using a binary code with code words..

Example									
File consisting of 100.000 characters from the alphabet $\{a, \ldots, f\}$.									
	а	b	С	d	е	f			
Frequency (Thousands)	45	13	12	16	9	5			
Code word with fix length	000	001	010	011	100	101			
Code word variable length	0	101	100	111	1101	1100			
File size (and with fix length): 200,000 bits									

File size (code with variable length): 224.000 bits.

 Consider prefix-codes: no code word can start with a different codeword.

- Consider prefix-codes: no code word can start with a different codeword.
- Prefix codes can, compared with other codes, achieve the optimal data compression (without proof here).

- Consider prefix-codes: no code word can start with a different codeword.
- Prefix codes can, compared with other codes, achieve the optimal data compression (without proof here).
- Encoding: concatenation of the code words without stop character (difference to morsing).

 $affe \rightarrow 0 \cdot 1100 \cdot 1100 \cdot 1101 \rightarrow 0110011001101$

- Consider prefix-codes: no code word can start with a different codeword.
- Prefix codes can, compared with other codes, achieve the optimal data compression (without proof here).
- Encoding: concatenation of the code words without stop character (difference to morsing).
 - $affe \rightarrow 0 \cdot 1100 \cdot 1100 \cdot 1101 \rightarrow 0110011001101$
- Decoding simple because prefixcode $0110011001101 \rightarrow 0 \cdot 1100 \cdot 1100 \cdot 1101 \rightarrow affe$

Code trees

Code words with fixed length

Code words with variable length

Properties of the Code Trees

An optimal coding of a file is alway represented by a complete binary tree: every inner node has two children.

Properties of the Code Trees

- An optimal coding of a file is alway represented by a complete binary tree: every inner node has two children.
- Let C be the set of all code words, f(c) the frequency of a codeword c and d_T(c) the depth of a code word in tree T. Define the cost of a tree as

$$B(T) = \sum_{c \in C} f(c) \cdot d_T(c).$$

(cost = number bits of the encoded file)

Properties of the Code Trees

- An optimal coding of a file is alway represented by a complete binary tree: every inner node has two children.
- Let C be the set of all code words, f(c) the frequency of a codeword c and d_T(c) the depth of a code word in tree T. Define the cost of a tree as

$$B(T) = \sum_{c \in C} f(c) \cdot d_T(c).$$

(cost = number bits of the encoded file)

In the following a code tree is called optimal when it minimizes the costs.

- Start with the set C of code words
- Replace iteriatively the two nodes with smallest frequency by a new parent node.

a:45	b:13	c:12	d:16	e:9	f:5
------	------	------	------	-----	-----

- Start with the set C of code words
- Replace iteriatively the two nodes with smallest frequency by a new parent node.

- Start with the set C of code words
- Replace iteriatively the two nodes with smallest frequency by a new parent node.

- Start with the set C of code words
- Replace iteriatively the two nodes with smallest frequency by a new parent node.

- Start with the set C of code words
- Replace iteriatively the two nodes with smallest frequency by a new parent node.

- Start with the set C of code words
- Replace iteriatively the two nodes with smallest frequency by a new parent node.

Algorithm Huffman(C)

```
Input:
                    code words c \in C
Output:
                    Root of an optimal code tree
n \leftarrow |C|
Q \leftarrow C
for i = 1 to n - 1 do
     allocate a new node z
     z.left \leftarrow ExtractMin(Q)
                                                        / extract word with minimal frequency.
     z.right \leftarrow ExtractMin(Q)
     z.\mathsf{freg} \leftarrow z.\mathsf{left}.\mathsf{freg} + z.\mathsf{right}.\mathsf{freg}
     lnsert(Q, z)
```

return ExtractMin(Q)

Use a heap: build Heap in $\mathcal{O}(n)$. Extract-Min in $O(\log n)$ for n Elements. Yields a runtime of $O(n \log n)$.

The greedy approach is correct

Theorem

Let x, y be two symbols with smallest frequencies in C and let T'(C')be an optimal code tree to the alphabet $C' = C - \{x, y\} + \{z\}$ with a new symbol z with f(z) = f(x) + f(y). Then the tree T(C) that is constructed from T'(C') by replacing the node z by an inner node with children x and y is an optimal code tree for the alphabet C.

Proof

It holds that $f(x) \cdot d_T(x) + f(y) \cdot d_T(y) = (f(x) + f(y)) \cdot (d_{T'}(z) + 1) = f(z) \cdot d_{T'}(x) + f(x) + f(y)$. Thus B(T') = B(T) - f(x) - f(y).

Assumption: T is not optimal. Then there is an optimal tree T'' with B(T'') < B(T). We assume that x and y are brothers in T''. Let T''' be the tree where the inner node with children x and y is replaced by z. Then it holds that

B(T''') = B(T'') - f(x) - f(y) < B(T) - f(x) - f(y) = B(T').Contradiction to the optimality of T'.

The assumption that x and y are brothers in T'' can be justified because a swap of elements with smallest frequency to the lowest level of the tree can at most decrease the value of B.