22. Greedy Algorithms

Fractional Knapsack Problem, Huffman Coding [Cormen et al, Kap.
16.1, 16.3]



The Fractional Knapsack Problem

set of n € Nitems {1,...,n} Each item i has value v; € N and
weight w; € N. The maximum weight is given as W € N. Input is

—1,...

Wanted: Fractions 0 < ¢; < 1 (1 <12 < n) that maximise the sum
> i1 @i viunder Y g - w; < WL



Greedy heuristics

Sort the items decreasingly by value per weight v; /w;.
Assumption v; /w; > v;11 /Wi

Let j = max{0 < k <n:>" , w; < W}. Set
mg=1foralll < <y.

W gj+1 = %ﬁ‘llwl

mqg=0forall:>j+1.

That is fast: ©(nlogn) for sorting and ©(n) for the computation of
the qi-



Correctness

Assumption: optimal solution (7;) (1 < i < n).

The knapsack is full: >, r; - w; = >, ¢ - w; = W.

Consider k: smallest ¢ with r; £ ¢; Definition of greedy: ¢, > 7. Let
r=q — 1 > 0.

Construct a new solution (77): r; = r;Vi < k. . = q;. Remove
weight >, | 0; = = - wy, from items k + 1 to n. This works because
D i i Wy = D iy G Wi



Correctness

n

n
Vg (%
/
E TV = TRk + TWp— + E (riw; — 6;)—
i=k = k+1
> TR + :L’wk— + E 5 —
w w w
k i—ht1 i k
n
Vg (%)
= 1L + :z:wk— — :z:wk— + rlwl = o
w .
k i=k+1 =k

Thus (r}) is also optimal. lterative application of this idea generates
the solution (g;).
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Goal: memory-efficient saving of a sequence of characters using a
binary code with code words..
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File consisting of 100.000 characters from the alphabet {a, ..., f}.

a b c d e f
Frequency (Thousands) 45 13 12 16 9 5
Code word with fix length 000 001 010 011 100 101
Code word variable length 0 101 100 111 1101 1100




Huffman-Codes

Goal: memory-efficient saving of a sequence of characters using a
binary code with code words..

Example
File consisting of 100.000 characters from the alphabet {a, ..., f}.

a b c d e f
Frequency (Thousands) 45 13 12 16 9 5
Code word with fix length 000 001 010 011 100 101
Code word variable length 0 101 100 111 1101 1100

File size (code with fix length): 300.000 bits.
File size (code with variable length): 224.000 bits.
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Huffman-Codes

m Consider prefix-codes: no code word can start with a different
codeword.

m Prefix codes can, compared with other codes, achieve the optimal
data compression (without proof here).

m Encoding: concatenation of the code words without stop character
(difference to morsing).
affe—0-1100-1100-1101 — 0110011001101

m Decoding simple because prefixcode
0110011001101 — 0 - 1100 - 1100 - 1101 — af fe



Code trees
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Properties of the Code Trees

m An optimal coding of a file is alway represented by a complete
binary tree: every inner node has two children.

m Let C be the set of all code words, f(c) the frequency of a
codeword ¢ and dr(c) the depth of a code word in tree 7. Define

the cost of a tree as

B(T) = f(c) - dr(c).

ceC

(cost = number bits of the encoded file)

In the following a code tree is called optimal when it minimizes the
costs.
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Algorithm Idea

Tree construction bottom

up

m Start with the set C of
code words

m Replace iteriatively the
two nodes with smallest
frequency by a new
parent node.
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Algorithm Huffman(C)

Input: code words ¢ € C

Output: Root of an optimal code tree
n <+ |C|

Q<+ C

fori=1ton—1do
allocate a new node z
z.left <— ExtractMin(Q)
z.right <— ExtractMin(Q)
z.freq + z.left.freq + z.right.freq

 Insert(Q, 2)
return ExtractMin(Q)

/ /
/
/ //

extract word with minimal frequency.



Analyse

Use a heap: build Heap in O(n). Extract-Min in O(logn) for n
Elements. Yields a runtime of O(nlogn).



The greedy approach is correct

Theorem

Let x, y be two symbols with smallest frequencies in C' and let T (C")
be an optimal code tree to the alphabet C' = C' — {x,y} + {z} with a
new symbol z with f(z) = f(x) + f(y). Then the tree T(C') that is
constructed from T'(C") by replacing the node = by an inner node
with children x and y is an optimal code tree for the alphabet C'.




Proof

It holds that f(x) - dr(z) + f(y) - dr(y) =

(f(x) + f(y)) - (dr(2) +1) = f(2) - drr(x) + f(x) + f(y). Thus
B(T") = B(T) — f(z) = f(y)-

Assumption: 7" is not optimal. Then there is an optimal tree 7" with
B(T") < B(T). We assume that x and y are brothers in T". Let T""
be the tree where the inner node with children x and y is replaced by
z. Then it holds that

B(T") = B(T") — f(z) — f(y) < B(T) — f(z) — f(y) = B(T").
Contradiction to the optimality of 7".

The assumption that = and y are brothers in 7" can be justified
because a swap of elements with smallest frequency to the lowest
level of the tree can at most decrease the value of B.
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