22. Greedy Algorithms

Fractional Knapsack Problem, Huffman Coding [Cormen et al, Kap.
16.1, 16.3]

Greedy heuristics

Sort the items decreasingly by value per weight v; /w;.
Assumption v; /w; > ;i1 /w1
Let j = max{0 <k <n:> " w; <W}. Set

mg=1forall <:<y.
W—Zgzl w;

" %= Wi+1

mg=0forall:>j+1.

That is fast: ©(nlogn) for sorting and ©(n) for the computation of
the qi.

660

The Fractional Knapsack Problem

setof n € N items {1,...,n} Each item i has value v; € N and
weight w; € N. The maximum weight is given as W & N. Input is

.....

Wanted: Fractions 0 < ¢; < 1 (1 <17 < n) that maximise the sum
ZL ¢; - v; under Z:’Zl g -w; < W.

Correctness

Assumption: optimal solution (7;) (1 < i < n).

The knapsackis full: > . r;-w; =Y. ¢ -w; = W.

Consider k: smallest i with r; # ¢; Definition of greedy: ¢, > 7. Let

x=qp—1 > 0.

Construct a new solution (r}): r; = r;Vi < k. r;, = g;. Remove

weight >°" .| 0; = x - wy, from items k + 1 to n. This works because
ok T Wi = D G W

661

Correctness

E r@z—rkwk+xwk—+ E rzw,—

i= k+1

> rLup + xwk— + Z nwl— - 5 —

w W w
k i=k+1 ¢ k
n
Vi Vi V;
= LV + TWE— — xwk— + riw,— = g 0;.
k k i=k+1 ¢ i=k

Thus (r}) is also optimal. Iterative application of this idea generates
the solution (¢;).

662

Huffman-Codes

Consider prefix-codes: no code word can start with a different
codeword.

Prefix codes can, compared with other codes, achieve the optimal
data compression (without proof here).

Encoding: concatenation of the code words without stop character
(difference to morsing).

affe—0-1100-1100-1101 — 0110011001101

Decoding simple because prefixcode

0110011001101 — 0-1100- 1100 - 1101 — af fe

664

Huffman-Codes

Goal: memory-efficient saving of a sequence of characters using a
binary code with code words..

Example
File consisting of 100.000 characters from the alphabet {a, . ..

e
a b c d e f

Frequency (Thousands) 45 13 12 16 9 5

Code word with fix length 000 001 010 011 100 101

Code word variable length 0 101 100 111 1101 1100

File size (code with fix length): 300.000 bits.
File size (code with variable length): 224.000 bits.

Code trees

N,
V \ ‘7
A AVIRAN

a45 b:13 c:12 d:116 e9 f5

/\
/\

O/ \1 O/ \1
c:12 b:13O 14 1d:16
/\
f5 e9

Code words with fixed length Code words with variable length

663

665

Properties of the Code Trees

m An optimal coding of a file is alway represented by a complete
binary tree: every inner node has two children.

m Let C be the set of all code words, f(c) the frequency of a
codeword ¢ and dr(c) the depth of a code word in tree T'. Define
the cost of a tree as

BT) =3 £(c) - dr(c).
ceC

(cost = number bits of the encoded file)

In the following a code tree is called optimal when it minimizes the
costs.

666

Algorithm Huffman(C)

code words ¢ € C
Root of an optimal code tree

Input:
Output:

n < |C]
Q<+ C
fori=1ton—1do
allocate a new node z
z.left <— ExtractMin(Q)
z.right <— ExtractMin(Q)
z.freq < z.left.freq + z.right.freq
Insert(Q, 2)

return ExtractMin(Q)

/ / extract word with minimal frequency.

668

Algorithm Idea

Tree construction bottom 100

up ~__

m Start with the set C' of 95 §
code words / 30

m Replace iteriatively the 5 3

two nodes with smallest
frequency by a new
parent node.

2 14
/ \ /\
a45 b:13 c:12 d:16 e9 f5

667

Analyse

Use a heap: build Heap in O(n). Extract-Min in O(log n) for n
Elements. Yields a runtime of O(nlogn).

669

The greedy approach is correct

Theorem

Let x, y be two symbols with smallest frequencies in C and let T'(C")
be an optimal code tree to the alphabet C' = C' — {z,y} + {z} with a
new symbol z with f(z) = f(x) + f(y). Then the tree T(C) that is
constructed from T'(C") by replacing the node = by an inner node
with children x and y is an optimal code tree for the alphabet C.

670

Proof

It holds that f(z) - dr(x) + f(y) - dT() =
(f(z)+ f(y)) - (dr(z) + 1) = f(2) - dp(2) +
B(T") = B(T) — f(z) — f(y).
Assumption: 7" is not optimal. Then there is an optimal tree 7" with
B(T") < B(T). We assume that = and y are brothers in 7. Let 7"
be the tree where the inner node with children = and y is replaced by
z. Then it holds that

B(T") = B(T") — f(x) — f(y) < B(T) —
Contradiction to the optimality of 7”.

f(x) + f(y). Thus

f(x) = fly) = B(T").
The assumption that = and y are brothers in 7" can be justified
because a swap of elements with smallest frequency to the lowest
level of the tree can at most decrease the value of B.

