20. Dynamic Programming II

Subset sum problem, knapsack problem, greedy algorithm vs dynamic programming [Ottman/Widmayer, Kap. 7.2, 7.3, 5.7, Cormen et al, Kap. 15,35.5]

Task

Partition the set of the "item" above into two set such that both sets have the same value.

Task

Partition the set of the "item" above into two set such that both sets have the same value.

A solution:

Subset Sum Problem

Consider $n \in \mathbb{N}$ numbers $a_1, \ldots, a_n \in \mathbb{N}$.

Goal: decide if a selection $I \subseteq \{1, \dots, n\}$ exists such that

$$\sum_{i \in I} a_i = \sum_{i \in \{1, \dots, n\} \setminus I} a_i.$$

Naive Algorithm

Check for each bit vector $b = (b_1, \dots, b_n) \in \{0, 1\}^n$, if

$$\sum_{i=1}^{n} b_i a_i \stackrel{?}{=} \sum_{i=1}^{n} (1 - b_i) a_i$$

Naive Algorithm

Check for each bit vector $b = (b_1, \dots, b_n) \in \{0, 1\}^n$, if

$$\sum_{i=1}^{n} b_i a_i \stackrel{?}{=} \sum_{i=1}^{n} (1 - b_i) a_i$$

Worst case: n steps for each of the 2^n bit vectors b. Number of steps: $\mathcal{O}(n \cdot 2^n)$.

■ Partition the input into two equally sized parts $a_1, \ldots, a_{n/2}$ and $a_{n/2+1}, \ldots, a_n$.

- Partition the input into two equally sized parts $a_1, \ldots, a_{n/2}$ and $a_{n/2+1}, \ldots, a_n$.
- Iterate over all subsets of the two parts and compute partial sum $S_1^k, \ldots, S_{2^{n/2}}^k$ (k = 1, 2).

- Partition the input into two equally sized parts $a_1, \ldots, a_{n/2}$ and $a_{n/2+1}, \ldots, a_n$.
- Iterate over all subsets of the two parts and compute partial sum $S_1^k, \ldots, S_{2^{n/2}}^k$ (k = 1, 2).
- Sort the partial sums: $S_1^k \leq S_2^k \leq \cdots \leq S_{2^{n/2}}^k$.

- Partition the input into two equally sized parts $a_1, \ldots, a_{n/2}$ and $a_{n/2+1}, \ldots, a_n$.
- Iterate over all subsets of the two parts and compute partial sum $S_1^k, \ldots, S_{2^{n/2}}^k$ (k = 1, 2).
- Sort the partial sums: $S_1^k \leq S_2^k \leq \cdots \leq S_{2^{n/2}}^k$.
- Check if there are partial sums such that $S_i^1 + S_j^2 = \frac{1}{2} \sum_{i=1}^n a_i =: h$

- Partition the input into two equally sized parts $a_1, \ldots, a_{n/2}$ and $a_{n/2+1}, \ldots, a_n$.
- Iterate over all subsets of the two parts and compute partial sum $S_1^k, \ldots, S_{2^{n/2}}^k$ (k = 1, 2).
- Sort the partial sums: $S_1^k \leq S_2^k \leq \cdots \leq S_{2^{n/2}}^k$.
- Check if there are partial sums such that $S_i^1 + S_j^2 = \frac{1}{2} \sum_{i=1}^n a_i =: h$
 - Start with $i = 1, j = 2^{n/2}$.

- Partition the input into two equally sized parts $a_1, \ldots, a_{n/2}$ and $a_{n/2+1}, \ldots, a_n$.
- Iterate over all subsets of the two parts and compute partial sum $S_1^k, \ldots, S_{2^{n/2}}^k$ (k = 1, 2).
- Sort the partial sums: $S_1^k \leq S_2^k \leq \cdots \leq S_{2^{n/2}}^k$.
- Check if there are partial sums such that $S_i^1 + S_j^2 = \frac{1}{2} \sum_{i=1}^n a_i =: h$
 - Start with $i = 1, j = 2^{n/2}$.
 - If $S_i^1 + S_j^2 = h$ then finished

- Partition the input into two equally sized parts $a_1, \ldots, a_{n/2}$ and $a_{n/2+1}, \ldots, a_n$.
- Iterate over all subsets of the two parts and compute partial sum $S_1^k, \ldots, S_{2^{n/2}}^k$ (k = 1, 2).
- Sort the partial sums: $S_1^k \leq S_2^k \leq \cdots \leq S_{2^{n/2}}^k$.
- Check if there are partial sums such that $S_i^1 + S_j^2 = \frac{1}{2} \sum_{i=1}^n a_i =: h$
 - Start with $i = 1, j = 2^{n/2}$.
 - If $S_i^1 + S_j^2 = h$ then finished
 - If $S_i^1 + S_j^2 > h$ then $j \leftarrow j 1$

- Partition the input into two equally sized parts $a_1, \ldots, a_{n/2}$ and $a_{n/2+1}, \ldots, a_n$.
- Iterate over all subsets of the two parts and compute partial sum $S_1^k, \ldots, S_{2^{n/2}}^k$ (k = 1, 2).
- Sort the partial sums: $S_1^k \leq S_2^k \leq \cdots \leq S_{2^{n/2}}^k$.
- Check if there are partial sums such that $S_i^1 + S_j^2 = \frac{1}{2} \sum_{i=1}^n a_i =: h$
 - Start with $i = 1, j = 2^{n/2}$.
 - If $S_i^1 + S_j^2 = h$ then finished
 - If $S_i^1 + \tilde{S_j^2} > h$ then $j \leftarrow j 1$
 - If $S_i^1 + S_j^2 < h$ then $i \leftarrow i + 1$

Set $\{1, 6, 2, 3, 4\}$ with value sum 16 has 32 subsets.

Set $\{1, 6, 2, 3, 4\}$ with value sum 16 has 32 subsets.

Partitioning into $\{1,6\}$, $\{2,3,4\}$ yields the following 12 subsets with value sums:

Set $\{1, 6, 2, 3, 4\}$ with value sum 16 has 32 subsets.

Partitioning into $\{1,6\}$, $\{2,3,4\}$ yields the following 12 subsets with value sums:

Set $\{1, 6, 2, 3, 4\}$ with value sum 16 has 32 subsets.

Partitioning into $\{1,6\}$, $\{2,3,4\}$ yields the following 12 subsets with value sums:

Set $\{1, 6, 2, 3, 4\}$ with value sum 16 has 32 subsets.

Partitioning into $\{1,6\}$, $\{2,3,4\}$ yields the following 12 subsets with value sums:

Set $\{1, 6, 2, 3, 4\}$ with value sum 16 has 32 subsets.

Partitioning into $\{1,6\}$, $\{2,3,4\}$ yields the following 12 subsets with value sums:

Set $\{1, 6, 2, 3, 4\}$ with value sum 16 has 32 subsets.

Partitioning into $\{1,6\}$, $\{2,3,4\}$ yields the following 12 subsets with value sums:

 \Leftrightarrow One possible solution: $\{1, 3, 4\}$

Analysis

- Generate partial sums for each part: $\mathcal{O}(2^{n/2} \cdot n)$.
- Each sorting: $\mathcal{O}(2^{n/2}\log(2^{n/2})) = \mathcal{O}(n2^{n/2})$.
- Merge: $\mathcal{O}(2^{n/2})$

Overal running time

$$\mathcal{O}\left(n\cdot 2^{n/2}\right) = \mathcal{O}\left(n\left(\sqrt{2}\right)^n\right).$$

Substantial improvement over the naive method – but still exponential!

Task: let $z = \frac{1}{2} \sum_{i=1}^{n} a_i$. Find a selection $I \subset \{1, \dots, n\}$, such that $\sum_{i \in I} a_i = z$.

Task: let $z=\frac{1}{2}\sum_{i=1}^n a_i$. Find a selection $I\subset\{1,\ldots,n\}$, such that $\sum_{i\in I}a_i=z$.

DP-table: $[0,\ldots,n] \times [0,\ldots,z]$ -table T with boolean entries. T[k,s] specifies if there is a selection $I_k \subset \{1,\ldots,k\}$ such that $\sum_{i\in I_k} a_i = s$.

Task: let $z=\frac{1}{2}\sum_{i=1}^n a_i$. Find a selection $I\subset\{1,\ldots,n\}$, such that $\sum_{i\in I}a_i=z$.

DP-table: $[0,\ldots,n] \times [0,\ldots,z]$ -table T with boolean entries. T[k,s] specifies if there is a selection $I_k \subset \{1,\ldots,k\}$ such that $\sum_{i\in I_k} a_i = s$.

Initialization: T[0,0] = true. T[0,s] = false for s > 1.

Task: let $z=\frac{1}{2}\sum_{i=1}^n a_i$. Find a selection $I\subset\{1,\ldots,n\}$, such that $\sum_{i\in I}a_i=z$.

DP-table: $[0,\ldots,n] \times [0,\ldots,z]$ -table T with boolean entries. T[k,s] specifies if there is a selection $I_k \subset \{1,\ldots,k\}$ such that $\sum_{i\in I_k} a_i = s$.

Initialization: T[0,0] = true. T[0,s] = false for s > 1.

Computation:

$$T[k,s] \leftarrow \begin{cases} T[k-1,s] & \text{if } s < a_k \\ T[k-1,s] \lor T[k-1,s-a_k] & \text{if } s \ge a_k \end{cases}$$

for increasing \boldsymbol{k} and then within \boldsymbol{k} increasing \boldsymbol{s} .

Determination of the solution: if T[k,s]=T[k-1,s] then a_k unused and continue with T[k-1,s] , otherwise a_k used and continue with $T[k-1,s-a_k]$.

That is mysterious

The algorithm requires a number of $\mathcal{O}(n \cdot z)$ fundamental operations.

That is mysterious

The algorithm requires a number of $\mathcal{O}(n \cdot z)$ fundamental operations.

What is going on now? Does the algorithm suddenly have polynomial running time?

That is mysterious

The algorithm requires a number of $\mathcal{O}(n \cdot z)$ fundamental operations.

What is going on now? Does the algorithm suddenly have polynomial running time?

The algorithm does not necessarily provide a polynomial run time. z is an *number* and not a *quantity*!

The algorithm does not necessarily provide a polynomial run time. z is an *number* and not a *quantity*!

Input length of the algorithm \cong number bits to *reasonably* represent the data. With the number z this would be $\zeta = \log z$.

The algorithm does not necessarily provide a polynomial run time. z is an *number* and not a *quantity*!

Input length of the algorithm \cong number bits to *reasonably* represent the data. With the number z this would be $\zeta = \log z$.

Consequently the algorithm requires $\mathcal{O}(n\cdot 2^\zeta)$ fundamental operations and has a run time exponential in ζ .

The algorithm does not necessarily provide a polynomial run time. z is an *number* and not a *quantity*!

Input length of the algorithm \cong number bits to *reasonably* represent the data. With the number z this would be $\zeta = \log z$.

Consequently the algorithm requires $\mathcal{O}(n\cdot 2^\zeta)$ fundamental operations and has a run time exponential in ζ .

If, however, z is polynomial in n then the algorithm has polynomial run time in n. This is called *pseudo-polynomial*.

NP

It is known that the subset-sum algorithm belongs to the class of *NP*-complete problems (and is thus *NP-hard*).

⁴¹The most important unsolved question of theoretical computer science.

NP

It is known that the subset-sum algorithm belongs to the class of *NP*-complete problems (and is thus *NP-hard*).

P: Set of all problems that can be solved in polynomial time.

NP: Set of all problems that can be solved Nondeterministically in Polynomial time.

⁴¹The most important unsolved question of theoretical computer science.

NP

It is known that the subset-sum algorithm belongs to the class of *NP*-complete problems (and is thus *NP-hard*).

P: Set of all problems that can be solved in polynomial time.

NP: Set of all problems that can be solved Nondeterministically in Polynomial time.

Implications:

above.

- NP contains P.
- Problems can be verified in polynomial time.
- Under the not (yet?) proven assumption⁴¹ that NP ≠ P, there is no algorithm with polynomial run time for the problem considered

⁴¹The most important unsolved guestion of theoretical computer science.

We pack our suitcase with ...

- toothbrush
- dumbell set
- coffee machine
- uh oh too heavy.

We pack our suitcase with ...

- toothbrush
- dumbell set
- coffee machine
- uh oh too heavy.

- Toothbrush
- Air balloon
- Pocket knife
- identity card
- dumbell set
- Uh oh too heavy.

We pack our suitcase with ...

- toothbrush
- dumbell set
- coffee machine
- uh oh too heavy.

- Toothbrush
- Air balloon
- Pocket knife
- identity card
- dumbell set
- Uh oh too heavy.

- toothbrush
- coffe machine
- pocket knife
- identity card
- Uh oh too heavy.

We pack our suitcase with ...

- toothbrush
- dumbell set
- coffee machine
- uh oh too heavy.

- Toothbrush
- Air balloon
- Pocket knife
- identity card
- dumbell set
- Uh oh too heavy.

- toothbrush
- coffe machine
- pocket knife
- identity card
- Uh oh too heavy.

Aim to take as much as possible with us. But some things are more valuable than others!

Knapsack problem

Given:

- \blacksquare set of $n \in \mathbb{N}$ items $\{1, \ldots, n\}$.
- Each item i has value $v_i \in \mathbb{N}$ and weight $w_i \in \mathbb{N}$.
- Maximum weight $W \in \mathbb{N}$.
- Input is denoted as $E = (v_i, w_i)_{i=1,...,n}$.

Knapsack problem

Given:

- \blacksquare set of $n \in \mathbb{N}$ items $\{1, \dots, n\}$.
- Each item i has value $v_i \in \mathbb{N}$ and weight $w_i \in \mathbb{N}$.
- Maximum weight $W \in \mathbb{N}$.
- Input is denoted as $E = (v_i, w_i)_{i=1,...,n}$.

Wanted:

a selection $I \subseteq \{1, \dots, n\}$ that maximises $\sum_{i \in I} v_i$ under $\sum_{i \in I} w_i \leq W$.

Greedy heuristics

Sort the items decreasingly by value per weight v_i/w_i : Permutation p with $v_{p_i}/w_{p_i} \ge v_{p_{i+1}}/w_{p_{i+1}}$

Greedy heuristics

Sort the items decreasingly by value per weight v_i/w_i : Permutation p with $v_{p_i}/w_{p_i} \ge v_{p_{i+1}}/w_{p_{i+1}}$

Add items in this order ($I \leftarrow I \cup \{p_i\}$), if the maximum weight is not exceeded.

Greedy heuristics

Sort the items decreasingly by value per weight v_i/w_i : Permutation p with $v_{p_i}/w_{p_i} \geq v_{p_{i+1}}/w_{p_{i+1}}$

Add items in this order ($I \leftarrow I \cup \{p_i\}$), if the maximum weight is not exceeded.

That is fast: $\Theta(n \log n)$ for sorting and $\Theta(n)$ for the selection. But is it good?

Counterexample

$$v_1 = 1$$
 $w_1 = 1$ $v_1/w_1 = 1$ $v_2 = W - 1$ $w_2 = W$ $v_2/w_2 = \frac{W-1}{W}$

Counterexample

$$v_1 = 1$$
 $w_1 = 1$ $v_1/w_1 = 1$ $v_2 = W - 1$ $w_2 = W$ $v_2/w_2 = \frac{W-1}{W}$

Greed algorithm chooses $\{v_1\}$ with value 1. Best selection: $\{v_2\}$ with value W-1 and weight W. Greedy heuristics can be arbitrarily bad.

Dynamic Programming

Partition the maximum weight.

Dynamic Programming

Partition the maximum weight.

Three dimensional table m[i, w, v] ("doable") of boolean values.

Dynamic Programming

Partition the maximum weight.

Three dimensional table m[i,w,v] ("doable") of boolean values.

m[i, w, v] =true if and only if

- A selection of the first i parts exists $(0 \le i \le n)$
- with overal weight w ($0 \le w \le W$) and
- **a** value of at least v ($0 \le v \le \sum_{i=1}^n v_i$).

Computation of the DP table

Initially

- $lacksquare m[i,w,0] \leftarrow \text{true für alle } i \geq 0 \text{ und alle } w \geq 0.$
- $lacksquare m[0,w,v] \leftarrow$ false für alle $w \geq 0$ und alle v > 0.

Computation of the DP table

Initially

- \blacksquare $m[i, w, 0] \leftarrow$ true für alle $i \ge 0$ und alle $w \ge 0$.
- \blacksquare $m[0, w, v] \leftarrow$ false für alle $w \ge 0$ und alle v > 0.

Computation

$$m[i,w,v] \leftarrow \begin{cases} m[i-1,w,v] \vee m[i-1,w-w_i,v-v_i] & \text{if } w \geq w_i \text{ und } v \geq v_i \\ m[i-1,w,v] & \text{otherwise.} \end{cases}$$

increasing in i and for each i increasing in w and for fixed i and w increasing by v.

Solution: largest v, such that m[i, w, v] = true for some i and w.

Observation

The definition of the problem obviously implies that

- for m[i,w,v]= true it holds: m[i',w,v]= true $\forall i'\geq i$, m[i,w',v]= true $\forall w'\geq w$, m[i,w,v']= true $\forall v'\leq v.$
- fpr m[i, w, v] = false it holds: m[i', w, v] = false $\forall i' \leq i$, m[i, w', v] = false $\forall w' \leq w$, m[i, w, v'] = false $\forall v' \geq v$.

This strongly suggests that we do not need a 3d table!

2d DP table

Table entry t[i, w] contains, instead of boolean values, the largest v, that can be achieved⁴² with

- items $1, \ldots, i \ (0 \le i \le n)$
- **a**t maximum weight w ($0 \le w \le W$).

63

⁴²We could have followed a similar idea in order to reduce the size of the sparse table.

Computation

Initially

 \bullet $t[0,w] \leftarrow 0$ for all $w \geq 0$.

We compute

$$t[i,w] \leftarrow \begin{cases} t[i-1,w] & \text{if } w < w_i \\ \max\{t[i-1,w],t[i-1,w-w_i]+v_i\} & \text{otherwise.} \end{cases}$$

increasing by i and for fixed i increasing by w.

Solution is located in t[n, w]

$$E = \{(2,3), (4,5), (1,1)\}$$
 $w \longrightarrow 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7$

$$E = \{(2,3), (4,5), (1,1)\}$$

$$0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7$$

$$\emptyset \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$E = \{(2,3), (4,5), (1,1)\}$$

$$0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7$$

$$0 \quad 0 \quad 0$$

$$(2,3) \quad 0 \quad 0 \quad 3 \quad 3 \quad 3 \quad 3$$

$$E = \{(2,3), (4,5), (1,1)\}$$

$$0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7$$

$$\emptyset \quad 0 \quad 0$$

$$(2,3) \quad 0 \quad 0 \quad 3 \quad 3 \quad 3 \quad 3$$

$$i \quad (4,5) \quad 0 \quad 0 \quad 3 \quad 3 \quad 5 \quad 5 \quad 8 \quad 8$$

$$E = \{(2,3), (4,5), (1,1)\} \qquad \underbrace{w} \qquad 0 \qquad 1 \qquad 2 \qquad 3 \qquad 4 \qquad 5 \qquad 6 \qquad 7$$

$$\emptyset \qquad 0 \qquad 0$$

$$(2,3) \qquad 0 \qquad 0 \qquad 3 \qquad 3 \qquad 3 \qquad 3 \qquad 3$$

$$i \qquad (4,5) \qquad 0 \qquad 0 \qquad 3 \qquad 3 \qquad 5 \qquad 5 \qquad 8 \qquad 8$$

$$(1,1) \qquad 0 \qquad 1 \qquad 3 \qquad 4 \qquad 5 \qquad 6 \qquad 8 \qquad 9$$

$$E = \{(2,3), (4,5), (1,1)\} \qquad \underbrace{w} \qquad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7$$

$$\emptyset \qquad 0_{\kappa} \quad 0_{\kappa} \quad 0_{\kappa} \quad 0_{\kappa} \quad 0_{\kappa} \quad 0_{\kappa} \quad 0 \quad 0$$

$$(2,3) \qquad 0_{\kappa} \quad 0_{\kappa} \quad 0_{\kappa} \quad 0_{\kappa} \quad 0 \quad 0$$

$$(4,5) \qquad 0_{\kappa} \quad 0 \quad 3_{\kappa} \quad 3 \quad 5_{\kappa} \quad 5 \quad 8_{\kappa} \quad 8$$

$$(1,1) \qquad 0 \quad 1 \quad 3 \quad 4 \quad 5 \quad 6 \quad 8 \quad 9$$

Reading out the solution: if t[i,w]=t[i-1,w] then item i unused and continue with t[i-1,w] otherwise used and continue with $t[i-1,s-w_i]$.

Analysis

The two algorithms for the knapsack problem provide a run time in $\Theta(n\cdot W\cdot \sum_{i=1}^n v_i)$ (3d-table) and $\Theta(n\cdot W)$ (2d-table) and are thus both pseudo-polynomial, but they deliver the best possible result.

The greedy algorithm is very fast butmight deliver an arbitrarily bad result.

Now we consider a solution between the two extremes.

21. Dynamic Programming III

FPTAS [Ottman/Widmayer, Kap. 7.2, 7.3, Cormen et al, Kap. 15,35.5]

Approximation

Let $\varepsilon \in (0,1)$ given. Let I_{opt} an optimal selection.

No try to find a valid selection *I* with

$$\sum_{i \in I} v_i \ge (1 - \varepsilon) \sum_{i \in I_{\mathsf{opt}}} v_i.$$

Sum of weights may not violate the weight limit.

Different formulation of the algorithm

Before: weight limit $w \to \text{maximal value } v$

Reversed: value $v \to \text{minimal weight } w$

- \Rightarrow alternative table g[i, v] provides the minimum weight with
- **a** a selection of the first i items $(0 \le i \le n)$ that
- **provide** a value of exactly v ($0 \le v \le \sum_{i=1}^{n} v_i$).

Computation

Initially

- $g[0,0] \leftarrow 0$
- $g[0,v] \leftarrow \infty$ (Value v cannot be achieved with 0 items.).

Computation

$$g[i,v] \leftarrow \begin{cases} g[i-1,v] & \text{falls } v < v_i \\ \min\{g[i-1,v], g[i-1,v-v_i] + w_i\} & \text{sonst.} \end{cases}$$

incrementally in i and for fixed i increasing in v.

Solution can be found at largest index v with $g[n, v] \leq w$.

$$E = \{(2,3), (4,5), (1,1)\}$$

$$0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9$$

$$E = \{(2,3), (4,5), (1,1)\}$$

$$0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9$$

$$\emptyset \quad 0 \quad \infty \quad \infty$$

$$E = \{(2,3), (4,5), (1,1)\}$$

$$0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9$$

$$\emptyset \quad 0 \quad \infty \quad \infty$$

$$(2,3) \quad 0 \quad \infty \quad \infty \quad 2 \quad \infty \quad \infty \quad \infty \quad \infty \quad \infty$$

$$E = \{(2,3), (4,5), (1,1)\}$$

$$0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9$$

$$\emptyset \quad 0 \leftarrow \infty \quad \infty \quad \infty \quad \infty \quad \infty \quad \infty \quad \infty$$

$$(2,3) \quad 0 \leftarrow \infty \quad \infty \quad 2 \leftarrow \infty \quad \infty \quad \infty \quad \infty$$

$$i \quad (4,5) \quad 0 \quad \infty \quad \infty \quad 2 \quad \infty \quad 4 \quad \infty \quad \infty \quad 6 \quad \infty$$

$$E = \{(2,3), (4,5), (1,1)\} \qquad v \longrightarrow 0 \qquad 1 \qquad 2 \qquad 3 \qquad 4 \qquad 5 \qquad 6 \qquad 7 \qquad 8 \qquad 9$$

$$\emptyset \qquad 0 \longleftarrow \infty \quad \infty$$

$$(2,3) \qquad 0 \longleftarrow \infty \quad \infty \quad 2 \longleftarrow \infty \quad \infty \quad \infty \quad \infty$$

$$i \qquad (4,5) \qquad 0_{\kappa} \quad \infty \quad \infty \quad 2_{\kappa} \quad \infty \quad 4_{\kappa} \quad \infty \quad \infty \quad 6_{\kappa} \quad \infty$$

$$(1,1) \qquad 0 \qquad 1 \quad \infty \quad 2 \quad 3 \quad 4 \quad 5 \quad \infty \quad 6 \quad 7$$

$$E = \{(2,3), (4,5), (1,1)\} \qquad v \longrightarrow 0 \qquad 1 \qquad 2 \qquad 3 \qquad 4 \qquad 5 \qquad 6 \qquad 7 \qquad 8 \qquad 9$$

$$\emptyset \qquad 0 \longleftarrow \infty \quad \infty$$

$$i \longrightarrow (4,5) \quad 0_{\kappa} \quad \infty \quad \infty \quad 2_{\kappa} \quad \infty \quad 4_{\kappa} \quad \infty \quad \infty \quad 6_{\kappa} \quad \infty$$

$$(1,1) \quad 0 \quad 1 \quad \infty \quad 2 \quad 3 \quad 4 \quad 5 \quad \infty \quad 6 \quad 7$$

Read out the solution: if g[i,v]=g[i-1,v] then item i unused and continue with g[i-1,v] otherwise used and continue with $g[i-1,b-v_i]$.

The approximation trick

Pseduopolynomial run time gets polynmial if the number of occuring values can be bounded by a polynom of the input length.

Let K>0 be chosen appropriately. Replace values v_i by "rounded values" $\tilde{v_i}=\lfloor v_i/K \rfloor$ delivering a new input $E'=(w_i,\tilde{v_i})_{i=1...n}$.

Apply the algorithm on the input E^\prime with the same weight limit W.

Idea

Example
$$K=5$$

Values

$$1, 2, 3, 4, 5, 6, 7, 8, 9, 10, \dots, 98, 99, 100$$
 \rightarrow
 $0, 0, 0, 0, 1, 1, 1, 1, 1, 2, \dots, 19, 19, 20$

Obviously less different values

Properties of the new algorithm

- Selection of items in E' is also admissible in E. Weight remains unchanged!
- Run time of the algorithm is bounded by $\mathcal{O}(n^2 \cdot v_{\max}/K)$ $(v_{\max} := \max\{v_i | 1 \le i \le n\})$

How good is the approximation?

It holds that

$$v_i - K \le K \cdot \left| \frac{v_i}{K} \right| = K \cdot \tilde{v_i} \le v_i$$

Let I'_{ont} be an optimal solution of E'. Then

$$\left(\sum_{i \in I_{\mathrm{opt}}} v_i \right) - n \cdot K \overset{|I_{\mathrm{opt}}| \leq n}{\leq} \sum_{i \in I_{\mathrm{opt}}} (v_i - K) \leq \sum_{i \in I_{\mathrm{opt}}} (K \cdot \tilde{v_i}) = K \sum_{i \in I_{\mathrm{opt}}} \tilde{v_i}$$

$$\leq K \sum_{i \in I_{\mathrm{opt}}'} K \sum_{i \in I_{\mathrm{opt}}'} \tilde{v_i} = \sum_{i \in I_{\mathrm{opt}}'} K \cdot \tilde{v_i} \leq \sum_{i \in I_{\mathrm{opt}}'} v_i.$$

Choice of K

Requirement:

$$\sum_{i \in I'} v_i \ge (1 - \varepsilon) \sum_{i \in I_{\mathsf{opt}}} v_i.$$

Inequality from above:

$$\sum_{i \in I_{\mathsf{opt}}'} v_i \ge \left(\sum_{i \in I_{\mathsf{opt}}} v_i\right) - n \cdot K$$

thus:
$$K = \varepsilon \frac{\sum_{i \in I_{\mathsf{opt}}} v_i}{n}$$
.

Choice of K

Choose $K=arepsilon^{\sum_{i\in I_{\mathrm{opt}}}v_i}{n}$. The optimal sum is unknown. Therefore we choose $K'=arepsilon^{\frac{n}{n}}\frac{1}{n}$.

It holds that $v_{\max} \leq \sum_{i \in I_{\text{opt}}} v_i$ and thus $K' \leq K$ and the approximation is even slightly better.

The run time of the algorithm is bounded by

$$\mathcal{O}(n^2 \cdot v_{\text{max}}/K') = \mathcal{O}(n^2 \cdot v_{\text{max}}/(\varepsilon \cdot v_{\text{max}}/n)) = \mathcal{O}(n^3/\varepsilon).$$

⁴³We can assume that items i with $w_i > W$ have been removed in the first place.

FPTAS

Such a family of algorithms is called an *approximation scheme*: the choice of ε controls both running time and approximation quality.

The runtime $\mathcal{O}(n^3/\varepsilon)$ is a polynom in n and in $\frac{1}{\varepsilon}$. The scheme is therefore also called a *FPTAS* - *Fully Polynomial Time Approximation Scheme*

21. Dynamic Programming III

Optimal Search Tree [Ottman/Widmayer, Kap. 5.7]

Optimal binary Search Trees

Given: search probabilities p_i for each key k_i ($i=1,\ldots,n$) and q_i of each interval d_i ($i=0,\ldots,n$) between search keys of a binary search tree. $\sum_{i=1}^{n} p_i + \sum_{i=0}^{n} q_i = 1$.

Optimal binary Search Trees

Given: search probabilities p_i for each key k_i ($i=1,\ldots,n$) and q_i of each interval d_i ($i=0,\ldots,n$) between search keys of a binary search tree. $\sum_{i=1}^{n} p_i + \sum_{i=0}^{n} q_i = 1$.

Wanted: optimal search tree T with key depths $\operatorname{depth}(\cdot)$, that minimizes the expected search costs

$$C(T) = \sum_{i=1}^{n} p_i \cdot (\operatorname{depth}(k_i) + 1) + \sum_{i=0}^{n} q_i \cdot (\operatorname{depth}(d_i) + 1)$$
$$= 1 + \sum_{i=1}^{n} p_i \cdot \operatorname{depth}(k_i) + \sum_{i=0}^{n} q_i \cdot \operatorname{depth}(d_i)$$

Expected Frequencies						
\overline{i}	0	1	2	3	4	5
$\overline{p_i}$		0.15	0.10	0.05	0.10	0.20
q_{i}	0.05	0.10	0.05	0.05	0.05	0.10

Search tree with expected costs 2.8

Search tree with expected costs 2.75

Structure of a optimal binary search tree

- Subtree with keys k_i, \ldots, k_j and intervals d_{i-1}, \ldots, d_j must be optimal for the respective sub-problem.⁴⁴
- Consider all subtrees with roots k_r and optimal subtrees for keys k_i, \ldots, k_{r-1} and k_{r+1}, \ldots, k_j

⁴⁴The usual argument: if it was not optimal, it could be replaced by a better solution improving the overal solution.

Sub-trees for Searching

empty left subtree

non-empty left and right subtrees

empty right subtree

Expected Search Costs

Let $\operatorname{depth}_T(k)$ be the depth of a node k in the sub-tree T. Let k be the root of subtrees T_r and T_{L_r} and T_{R_r} be the left and right sub-tree of T_r . Then

$$depth_T(k_i) = depth_{T_{L_r}}(k_i) + 1, (i < r)$$

$$depth_T(k_i) = depth_{T_{R_r}}(k_i) + 1, (i > r)$$

Expected Search Costs

Let e[i, j] be the costs of an optimal search tree with nodes k_i, \ldots, k_j .

Base case e[i, i-1], expected costs d_{i-1}

Let
$$w(i, j) = \sum_{l=i}^{j} p_l + \sum_{l=i-1}^{j} q_l$$
.

If k_r is the root of an optimal search tree with keys k_i, \ldots, k_j , then

$$e[i,j] = p_r + (e[i,r-1] + w(i,r-1)) + (e[r+1,j] + w(r+1,j))$$

with
$$w(i, j) = w(i, r - 1) + p_r + w(r + 1, j)$$
:

$$e[i,j] = e[i,r-1] + e[r+1,j] + w(i,j).$$

Dynamic Programming

$$e[i,j] = \begin{cases} q_{i-1} & \text{if } j = i-1, \\ \min_{i \leq r \leq j} \{e[i,r-1] + e[r+1,j] + w[i,j]\} & \text{if } i \leq j \end{cases}$$

Computation

Tables $e[1\dots n+1,0\dots n], w[1\dots n+1,0\dots m], r[1\dots n,1\dots n]$ Initially

 \bullet $e[i, i-1] \leftarrow q_{i-1}, w[i, i-1] \leftarrow q_{i-1} \text{ for all } 1 \leq i \leq n+1.$

We compute

$$w[i,j] = w[i,j-1] + p_j + q_j$$

$$e[i,j] = \min_{i \le r \le j} \{e[i,r-1] + e[r+1,j] + w[i,j]\}$$

$$r[i,j] = \arg\min_{i \le r \le j} \{e[i,r-1] + e[r+1,j] + w[i,j]\}$$

for intervals [i,j] with increasing lengths $l=1,\ldots,n$, each for $i=1,\ldots,n-l+1$. Result in e[1,n], reconstruction via r. Runtime $\Theta(n^3)$.

