20. Dynamic Programming II

Subset sum problem, knapsack problem, greedy algorithm vs dynamic programming [Ottman/Widmayer, Kap. 7.2, 7.3, 5.7, Cormen et al, Kap. 15,35.5]

Task

Partition the set of the "item" above into two set such that both sets have the same value.

A solution:

Subset Sum Problem

Naive Algorithm

Consider $n \in \mathbb{N}$ numbers $a_1, \ldots, a_n \in \mathbb{N}$. Goal: decide if a selection $I \subseteq \{1, \ldots, n\}$ exists such that

$$\sum_{i\in I} a_i = \sum_{i\in\{1,\dots,n\}\setminus I} a_i.$$

Check for each bit vector $b = (b_1, \ldots, b_n) \in \{0, 1\}^n$, if

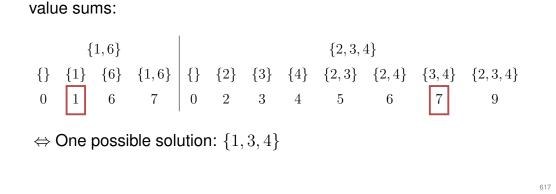
$$\sum_{i=1}^{n} b_i a_i \stackrel{?}{=} \sum_{i=1}^{n} (1 - b_i) a_i$$

Worst case: *n* steps for each of the 2^n bit vectors *b*. Number of steps: $\mathcal{O}(n \cdot 2^n)$.

Algorithm with Partition

- Partition the input into two equally sized parts $a_1, \ldots, a_{n/2}$ and $a_{n/2+1}, \ldots, a_n$.
- Iterate over all subsets of the two parts and compute partial sum $S_1^k, \ldots, S_{2^{n/2}}^k \ (k=1,2).$
- Sort the partial sums: $S_1^k \leq S_2^k \leq \cdots \leq S_{2n/2}^k$.
- Check if there are partial sums such that $S_i^1 + S_j^2 = \frac{1}{2} \sum_{i=1}^n a_i =: h$
 - Start with $i = 1, j = 2^{n/2}$.
 - If $S_i^1 + S_i^2 = h$ then finished
 - If $S_i^1 + S_j^2 > h$ then $j \leftarrow j 1$ If $S_i^1 + S_j^2 < h$ then $i \leftarrow i + 1$

Example



Partitioning into $\{1, 6\}$, $\{2, 3, 4\}$ yields the following 12 subsets with

Set $\{1, 6, 2, 3, 4\}$ with value sum 16 has 32 subsets.

Analysis

- Generate partial sums for each part: $\mathcal{O}(2^{n/2} \cdot n)$.
- Each sorting: $O(2^{n/2} \log(2^{n/2})) = O(n2^{n/2}).$
- Merge: $\mathcal{O}(2^{n/2})$

Overal running time

$$\mathcal{O}\left(n\cdot 2^{n/2}\right) = \mathcal{O}\left(n\left(\sqrt{2}\right)^n\right)$$

Substantial improvement over the naive method but still exponential!

Dynamic programming

Task: let $z = \frac{1}{2} \sum_{i=1}^{n} a_i$. Find a selection $I \subset \{1, \ldots, n\}$, such that $\sum_{i \in I} a_i = z.$

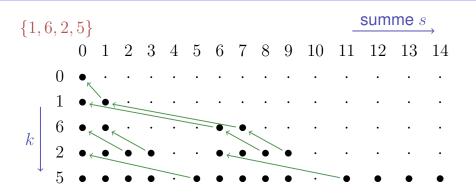
DP-table: $[0, \ldots, n] \times [0, \ldots, z]$ -table *T* with boolean entries. T[k, s]specifies if there is a selection $I_k \subset \{1, \ldots, k\}$ such that $\sum_{i \in I_k} a_i = s.$

Initialization: T[0,0] = true. T[0,s] = false for s > 1. Computation:

$$T[k,s] \leftarrow \begin{cases} T[k-1,s] & \text{if } s < a_k \\ T[k-1,s] \lor T[k-1,s-a_k] & \text{if } s \ge a_k \end{cases}$$

for increasing k and then within k increasing s.

Example



Determination of the solution: if T[k, s] = T[k - 1, s] then a_k unused and continue with T[k - 1, s], otherwise a_k used and continue with $T[k - 1, s - a_k]$.

That is mysterious

The algorithm requires a number of $\mathcal{O}(n \cdot z)$ fundamental operations. What is going on now? Does the algorithm suddenly have polynomial running time?

Explained

The algorithm does not necessarily provide a polynomial run time. *z* is an *number* and not a *quantity*!

Input length of the algorithm \cong number bits to *reasonably* represent the data. With the number z this would be $\zeta = \log z$.

Consequently the algorithm requires $\mathcal{O}(n \cdot 2^{\zeta})$ fundamental operations and has a run time exponential in ζ .

If, however, z is polynomial in n then the algorithm has polynomial run time in n. This is called *pseudo-polynomial*.

NP

620

It is known that the subset-sum algorithm belongs to the class of *NP*-complete problems (and is thus *NP-hard*).

P: Set of all problems that can be solved in polynomial time.

NP: Set of all problems that can be solved Nondeterministically in Polynomial time.

Implications:

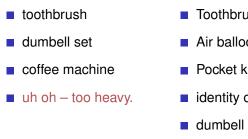
- NP contains P.
- Problems can be *verified* in polynomial time.
- Under the not (yet?) proven assumption⁴¹ that NP ≠ P, there is no algorithm with polynomial run time for the problem considered

above.

622

The knapsack problem

We pack our suitcase with ...



- Toothbrush Air balloon Pocket knife identity card
- dumbell set

- toothbrush coffe machine pocket knife
- identity card
- Uh oh too heavy.

Aim to take as much as possible with us. But some things are more valuable than others!

■ Uh oh – too heavy.

Knapsack problem

Given:

- set of $n \in \mathbb{N}$ items $\{1, \ldots, n\}$.
- Each item *i* has value $v_i \in \mathbb{N}$ and weight $w_i \in \mathbb{N}$.
- Maximum weight $W \in \mathbb{N}$.
- Input is denoted as $E = (v_i, w_i)_{i=1,\dots,n}$.

Wanted:

a selection $I \subseteq \{1, \ldots, n\}$ that maximises $\sum_{i \in I} v_i$ under $\sum_{i \in I} w_i \leq W.$

Greedy heuristics

Counterexample

Sort the items decreasingly by value per weight v_i/w_i : Permutation p with $v_{p_i}/w_{p_i} \ge v_{p_{i+1}}/w_{p_{i+1}}$

Add items in this order $(I \leftarrow I \cup \{p_i\})$, if the maximum weight is not exceeded.

That is fast: $\Theta(n \log n)$ for sorting and $\Theta(n)$ for the selection. But is it good?

$$v_1 = 1$$
 $w_1 = 1$ $v_1/w_1 = 1$
 $v_2 = W - 1$ $w_2 = W$ $v_2/w_2 = \frac{W - 1}{W}$

Greed algorithm chooses $\{v_1\}$ with value 1. Best selection: $\{v_2\}$ with value W - 1 and weight W. Greedy heuristics can be arbitrarily bad.

Dynamic Programming

Partition the maximum weight.

Three dimensional table m[i, w, v] ("doable") of boolean values. m[i, w, v] = true if and only if

- A selection of the first *i* parts exists $(0 \le i \le n)$
- with overal weight w ($0 \le w \le W$) and
- a value of at least v ($0 \le v \le \sum_{i=1}^{n} v_i$).

Computation of the DP table

Initially

- $\blacksquare m[i, w, 0] \leftarrow \text{true für alle } i \ge 0 \text{ und alle } w \ge 0.$
- $\blacksquare m[0, w, v] \leftarrow \text{false für alle } w \ge 0 \text{ und alle } v > 0.$

Computation

$$m[i, w, v] \leftarrow \begin{cases} m[i-1, w, v] \lor m[i-1, w-w_i, v-v_i] & \text{if } w \ge w_i \text{ und } v \ge v_i \\ m[i-1, w, v] & \text{otherwise.} \end{cases}$$

increasing in i and for each i increasing in w and for fixed i and w increasing by v.

Solution: largest v, such that m[i, w, v] = true for some i and w.

629

631

Observation2d DP tableThe definition of the problem obviously implies thatImage: for m[i, w, v] = true it holds:
 $m[i', w, v] = true \forall i' \geq i$,
 $m[i, w', v] = true \forall w' \geq w$,
 $m[i, w, v'] = true \forall w' \geq w$,
 $m[i, w, v'] = true \forall v' \leq v$.Table entry t[i, w] contains, instead of boolean values, the largest v,

that can be achieved⁴² with

Image: items $1, \dots, i \ (0 \leq i \leq n)$

Image: items $1, \dots, i \ (0 \leq w < W)$.

628

- m[i',w,v] =false $\forall i' \leq i$, m[i,w',v] =false $\forall w' \leq w$,
- m[i, w, v'] =false $\forall v' \ge v.$

This strongly suggests that we do not need a 3d table!

⁴²We could have followed a similar idea in order to reduce the size of the sparse table.

Computation

Initially

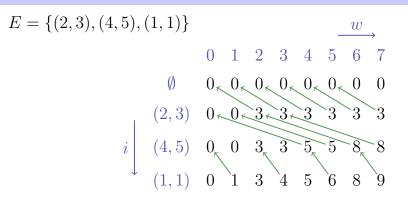
• $t[0,w] \leftarrow 0$ for all $w \ge 0$.

We compute

$$t[i, w] \leftarrow \begin{cases} t[i-1, w] & \text{if } w < w_i \\ \max\{t[i-1, w], t[i-1, w - w_i] + v_i\} & \text{otherwise.} \end{cases}$$

increasing by i and for fixed i increasing by w. Solution is located in t[n,w]

Example



Reading out the solution: if t[i, w] = t[i - 1, w] then item i unused and continue with t[i - 1, w] otherwise used and continue with $t[i - 1, s - w_i]$.

Analysis

The two algorithms for the knapsack problem provide a run time in $\Theta(n \cdot W \cdot \sum_{i=1}^{n} v_i)$ (3d-table) and $\Theta(n \cdot W)$ (2d-table) and are thus both pseudo-polynomial, but they deliver the best possible result.

The greedy algorithm is very fast butmight deliver an arbitrarily bad result.

Now we consider a solution between the two extremes.

21. Dynamic Programming III

FPTAS [Ottman/Widmayer, Kap. 7.2, 7.3, Cormen et al, Kap. 15,35.5]

Approximation

Let $\varepsilon \in (0,1)$ given. Let I_{opt} an optimal selection. No try to find a valid selection I with

$$\sum_{i \in I} v_i \ge (1 - \varepsilon) \sum_{i \in I_{\text{opt}}} v_i$$

Sum of weights may not violate the weight limit.

Different formulation of the algorithm

Before: weight limit $w \rightarrow$ maximal value v**Reversed**: value $v \rightarrow$ minimal weight w

 \Rightarrow alternative table g[i, v] provides the minimum weight with

- **a** selection of the first *i* items ($0 \le i \le n$) that
- provide a value of exactly v ($0 \le v \le \sum_{i=1}^{n} v_i$).

Computation

Initially

- $\blacksquare g[0,0] \leftarrow 0$
- $g[0, v] \leftarrow \infty$ (Value v cannot be achieved with 0 items.).

Computation

$$g[i, v] \leftarrow \begin{cases} g[i-1, v] & \text{falls } v < v_i \\ \min\{g[i-1, v], g[i-1, v-v_i] + w_i\} & \text{sonst.} \end{cases}$$

incrementally in i and for fixed i increasing in v.

Solution can be found at largest index v with $g[n, v] \leq w$.

Example

Read out the solution: if g[i, v] = g[i - 1, v] then item i unused and continue with g[i - 1, v] otherwise used and continue with $g[i - 1, b - v_i]$.

636

The approximation trick

Idea

Pseduopolynomial run time gets polynmial if the number of occuring values can be bounded by a polynom of the input length.

Let K > 0 be chosen *appropriately*. Replace values v_i by "rounded values" $\tilde{v}_i = \lfloor v_i/K \rfloor$ delivering a new input $E' = (w_i, \tilde{v}_i)_{i=1...n}$. Apply the algorithm on the input E' with the same weight limit W.

Example K = 5

Values

 $\begin{array}{c} 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, \dots, 98, 99, 100 \\ \rightarrow \\ 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, \dots, 19, 19, 20 \end{array}$

Obviously less different values

Properties of the new algorithm

How good is the approximation?

It holds that

$$v_i - K \le K \cdot \left\lfloor \frac{v_i}{K} \right\rfloor = K \cdot \tilde{v}_i \le v_i$$

641

643

Let I'_{ont} be an optimal solution of E'. Then

$$\begin{split} \left(\sum_{i \in I_{\mathsf{opt}}} v_i\right) - n \cdot K & \stackrel{|I_{\mathsf{opt}}| \le n}{\le} \sum_{i \in I_{\mathsf{opt}}} (v_i - K) \le \sum_{i \in I_{\mathsf{opt}}} (K \cdot \tilde{v}_i) = K \sum_{i \in I_{\mathsf{opt}}} \tilde{v}_i \\ & \underset{I_{\mathsf{opt}} \mathsf{optimal}}{\le} K \sum_{i \in I_{\mathsf{opt}}'} \tilde{v}_i = \sum_{i \in I_{\mathsf{opt}}'} K \cdot \tilde{v}_i \le \sum_{i \in I_{\mathsf{opt}}'} v_i. \end{split}$$

Selection of items in *E*' is also admissible in *E*. Weight remains unchanged!

Run time of the algorithm is bounded by $\mathcal{O}(n^2 \cdot v_{\max}/K)$ $(v_{\max} := \max\{v_i | 1 \le i \le n\})$

Choice of K

Requirement:

$$\sum_{i \in I'} v_i \ge (1 - \varepsilon) \sum_{i \in I_{\mathsf{opt}}} v_i.$$

Inequality from above:

$$\sum_{i \in I'_{opt}} v_i \ge \left(\sum_{i \in I_{opt}} v_i\right) - n \cdot K$$

thus: $K = \varepsilon \frac{\sum_{i \in I_{opt}} v_i}{n}$.

Choice of K

Choose $K = \varepsilon \frac{\sum_{i \in I_{opt}} v_i}{n}$. The optimal sum is unknown. Therefore we choose $K' = \varepsilon \frac{v_{max}}{n}$.⁴³

It holds that $v_{\max} \leq \sum_{i \in I_{opt}} v_i$ and thus $K' \leq K$ and the approximation is even slightly better.

The run time of the algorithm is bounded by

$$\mathcal{O}(n^2 \cdot v_{\max}/K') = \mathcal{O}(n^2 \cdot v_{\max}/(\varepsilon \cdot v_{\max}/n)) = \mathcal{O}(n^3/\varepsilon).$$

⁴³We can assume that items *i* with $w_i > W$ have been removed in the first place.

FPTAS

Such a family of algorithms is called an *approximation scheme*: the choice of ε controls both running time and approximation quality. The runtime $\mathcal{O}(n^3/\varepsilon)$ is a polynom in n and in $\frac{1}{\varepsilon}$. The scheme is therefore also called a *FPTAS - Fully Polynomial Time Approximation Scheme*

21. Dynamic Programming III

Optimal Search Tree [Ottman/Widmayer, Kap. 5.7]

Optimal binary Search Trees

Given: search probabilities p_i for each key k_i (i = 1, ..., n) and q_i of each interval d_i (i = 0, ..., n) between search keys of a binary search tree. $\sum_{i=1}^{n} p_i + \sum_{i=0}^{n} q_i = 1$.

Wanted: optimal search tree T with key depths ${\rm depth}(\cdot),$ that minimizes the expected search costs

$$C(T) = \sum_{i=1}^{n} p_i \cdot (\operatorname{depth}(k_i) + 1) + \sum_{i=0}^{n} q_i \cdot (\operatorname{depth}(d_i) + 1)$$
$$= 1 + \sum_{i=1}^{n} p_i \cdot \operatorname{depth}(k_i) + \sum_{i=0}^{n} q_i \cdot \operatorname{depth}(d_i)$$

Example

Expected Frequencies											
i	0	1	2	3	4	5					
p_i		0.15	0.10	0.05	0.10	0.20					
q_i	0.05	0.10	0.05	0.05	0.05	0.10					

649

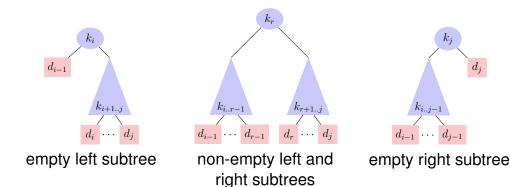
651

Structure of a optimal binary search tree

- Subtree with keys k_i, \ldots, k_j and intervals d_{i-1}, \ldots, d_j must be optimal for the respective sub-problem.⁴⁴
- Consider all subtrees with roots k_r and optimal subtrees for keys k_i, \ldots, k_{r-1} and k_{r+1}, \ldots, k_j

⁴⁴The usual argument: if it was not optimal, it could be replaced by a better solution improving the overal solution.

Sub-trees for Searching



Expected Search Costs

Let depth_{*T*}(*k*) be the depth of a node *k* in the sub-tree *T*. Let *k* be the root of subtrees T_r and T_{L_r} and T_{R_r} be the left and right sub-tree of T_r . Then

$$depth_T(k_i) = depth_{T_{L_r}}(k_i) + 1, (i < r)$$
$$depth_T(k_i) = depth_{T_{R_r}}(k_i) + 1, (i > r)$$

Expected Search Costs

Let e[i, j] be the costs of an optimal search tree with nodes k_i, \ldots, k_j .

Base case e[i, i-1], expected costs d_{i-1}

Let
$$w(i, j) = \sum_{l=i}^{j} p_l + \sum_{l=i-1}^{j} q_l$$
.

If k_r is the root of an optimal search tree with keys k_i, \ldots, k_j , then

$$e[i,j] = p_r + (e[i,r-1] + w(i,r-1)) + (e[r+1,j] + w(r+1,j))$$

with $w(i, j) = w(i, r - 1) + p_r + w(r + 1, j)$: e[i, j] = e[i, r - 1] + e[r + 1, j] + w(i, j).

$$e[i,j] = \begin{cases} q_{i-1} & \text{if } j = i-1, \\ \min_{i \le r \le j} \{ e[i,r-1] + e[r+1,j] + w[i,j] \} & \text{if } i \le j \end{cases}$$

652

655

Computation

Tables $e[1\ldots n+1,0\ldots n], w[1\ldots n+1,0\ldots m], r[1\ldots n,1\ldots n]$ Initially

•
$$e[i, i-1] \leftarrow q_{i-1}, w[i, i-1] \leftarrow q_{i-1}$$
 for all $1 \le i \le n+1$.

We compute

$$w[i, j] = w[i, j - 1] + p_j + q_j$$

$$e[i, j] = \min_{i \le r \le j} \{e[i, r - 1] + e[r + 1, j] + w[i, j]\}$$

$$r[i, j] = \arg\min_{i \le r \le j} \{e[i, r - 1] + e[r + 1, j] + w[i, j]\}$$

for intervals [i, j] with increasing lengths l = 1, ..., n, each for i = 1, ..., n - l + 1. Result in e[1, n], reconstruction via r. Runtime $\Theta(n^3)$.

Example

i	0	1	2	3	4	5
p_i		0.15	0.10	0.05	0.10	0.20
q_i	0.05	0.10	0.05	0.05	0.05	0.10

