20. Dynamic Programming i

Subset sum problem, knapsack problem, greedy algorithm vs
dynamic programming [Ottman/Widmayer, Kap. 7.2, 7.3, 5.7,
Cormen et al, Kap. 15,35.5]

612

Subset Sum Problem

Consider n € N numbers a4, ...,a, € N.

Goal: decide if a selection I C {1,...,n} exists such that
Ya= Y
i€l ie{l,...,n}\I

614

Task

Partition the set of the “item” above into two set such that both sets
have the same value.

A solution:

613

Naive Algorithm

Check for each bit vector b = (by,...,b,) € {0,1}", if

n

=1

1=1

Worst case: n steps for each of the 2" bit vectors b. Number of
steps: O(n - 2").

615

Algorithm with Partition

m Partition the input into two equally sized parts a4, . .
an/2+1, ceey Qp.

m lterate over all subsets of the two parts and compute partial sum
St Sk, (k=1,2).

m Sort the partial sums: S} < 55 <-.- < S¥ ..

m Check if there are partial sums such that S5} + 57 = 33" a; =: h

.,y o @nd

Startwithi = 1, j = 2"/2,

If S} + S7 = h then finished

If S} +57 > hthenj <« j—1
If S} + 57 < htheni<i+1

616

Analysis

m Generate partial sums for each part: O(2"/2 - n).
m Each sorting: O(2"/%1log(2"/?)) = O(n2"/?).
m Merge: O(2"/?)

Overal running time
@ (n : 2”/2> =0 (n (\/i)n) :

Substantial improvement over the naive method —
but still exponential!

618

Example

Set {1,6,2, 3,4} with value sum 16 has 32 subsets.

Partitioning into {1,6} , {2, 3,4} yields the following 12 subsets with
value sums:

{1,6} {2,3,4}
{1 {6y {16y [{3 {2} {3} {4} {23} {24} (3.4} {234}

06702345 6 9

< One possible solution: {1, 3,4}

Dynamic programming

Task: let z = 1" | ;. Find a selection I C {1,...,n}, such that

Zie] @; = 2.

DP-table: [0,...,n] x [0, ..., z|-table 7" with boolean entries. T'[k, s
specifies if there is a selection I;; C {1,...,k} such that

Zz‘elk a; = s.

Initialization: 7'[0, 0] = true. T'[0, s|] = false for s > 1.
Computation:

Tk —1,s]
Tk—1,s)|VT[k—1,s— ag]

if s < a
if s > ay

Tk, s| < {

for increasing k£ and then within k& increasing s.

617

619

Example

{1,6,2,5} summe s

0123456789 10 11 12 13 14

o N O = O
I/I/
/

e o o o . e e o o o . [] [] [] []
Determination of the solution: if T'[k, s] = T'[k — 1, s] then aj, unused and continue with T'[k — 1, s] , otherwise aj, used

and continue with T'[k — 1, s — az] .

620

Explained

The algorithm does not necessarily provide a polynomial run time. z
is an number and not a quantity!

Input length of the algorithm = number bits to reasonably represent
the data. With the number 2z this would be (= log z.

Consequently the algorithm requires O(n - 2¢) fundamental
operations and has a run time exponential in ¢.

If, however, z is polynomial in n then the algorithm has polynomial
run time in n. This is called pseudo-polynomial.

622

That is mysterious

The algorithm requires a number of O(n - z) fundamental operations.

What is going on now? Does the algorithm suddenly have
polynomial running time?

621

NP

It is known that the subset-sum algorithm belongs to the class of
NP-complete problems (and is thus NP-hard).

P: Set of all problems that can be solved in polynomial time.

NP: Set of all problems that can be solved Nondeterministically in
Polynomial time.

Implications:

m NP contains P.

m Problems can be verified in polynomial time.

m Under the not (yet?) proven assumption*! that NP # P, there is no
algorithm with polynomial run time for the problem considered

——above.

41The most important unsolved question of theoretical computer science. 623

The knapsack problem

We pack our suitcase with ...

m toothbrush m Toothbrush m toothbrush
m dumbell set m Air balloon m coffe machine
m coffee machine m Pocket knife m pocket knife
m uh oh —too heavy. m identity card m identity card
m dumbell set m Uh oh —too heavy.

m Uh oh —too heavy.
Aim to take as much as possible with us. But some things are more
valuable than others!

Greedy heuristics

Sort the items decreasingly by value per weight v; /w;: Permutation p
with vpi/wpi > U1)¢+1/wpi+1

Add items in this order (I < I U {p;}), if the maximum weight is not
exceeded.

That is fast: ©(nlogn) for sorting and ©(n) for the selection. But is it
good?

626

Knapsack problem

Given:

m setof n € Nitems {1,...,n}.

m Each item ¢ has value v; € N and weight w; € N.
m Maximum weight W € N.

m Input is denoted as E = (v, w;)i=1..._n-

Wanted:
aselection I C {1,...,n} that maximises) _._; v; under
Zz’e[w; < W.
Counterexample
Ulzl w1:1 Ul/wlzl

UQZW—l UJQ:W UQ/ZUQZM

Greed algorithm chooses {v; } with value 1.
Best selection: {v,} with value W — 1 and weight V.

Greedy heuristics can be arbitrarily bad.

Dynamic Programming

Partition the maximum weight.

Three dimensional table m|i, w, v] (“doable”) of boolean values.
mli, w,v] = true if and only if

m A selection of the first ¢ parts exists (0 <7 < n)

m with overal weight w (0 < w < W) and
m avalueofatleastv (0 <v <> " v).

Observation

The definition of the problem obviously implies that

m for m[i, w,v] = true it holds:
mli', w,v] = true Vi’ > 1,
mli,w', v] = true Vo' > w,
mli, w,v'] = true Vo' <.

m fpr m[i, w,v] = false it holds:
mli',w,v] = false Vi’ <1,
mli,w', v] = false Vu' < w,
mli, w,v'] = false Vv’ > v.

This strongly suggests that we do not need a 3d table!

Computation of the DP table

Initially

m m[i,w, 0] < true fir alle i > 0 und alle w > 0.
m m[0,w,v] < false flr alle w > 0 und alle v > 0.

Computation

if w>w;undv > v;
otherwise.

mli — 1w, 0] Vm[i — 1,w — w;, v — vy

increasing in ¢ and for each ¢ increasing in w and for fixed : and w
increasing by v.
Solution: largest v, such that m[i, w, v] = true for some i and w.

2d DP table

Table entry t[i, w] contains, instead of boolean values, the largest v,
that can be achieved*? with

mitems1,...,2(0 <7< n)
m at maximum weight w (0 < w < W).

42We could have followed a similar idea in order to reduce the size of the sparse table.
631

Computation

Initially
m t[0,w] < 0 for all w > 0.
We compute

i, w] < {t“‘ bl

if w < w;
max{t[i — 1,w|,t[i — 1,w —w;] +v;} otherwise.

increasing by ¢+ and for fixed ¢ increasing by w.

Solution is located in t[n, w]

632

Analysis

The two algorithms for the knapsack problem provide a run time in
O(n-W->" v;) (3d-table) and ©(n - W) (2d-table) and are thus
both pseudo-polynomial, but they deliver the best possible result.

The greedy algorithm is very fast butmight deliver an arbitrarily bad
result.

Now we consider a solution between the two extremes.

634

Example
E=1{(2,3),(4,5),(1,1)} w

—_—

012 3 45 6 7

R S SN S
\o\\\x\\g\g

(1,L1) 01 3456 89

0

Reading out the solution: if ¢[i, w] = ¢[i — 1, w] then item ¢ unused and continue with ¢[i — 1, w] otherwise used and

continue with ¢[i — 1, s — w;] .

21. Dynamic Programming lll

FPTAS [Ottman/Widmayer, Kap. 7.2, 7.3, Cormen et al, Kap.
15,35.5]

635

Approximation

Lete € (0,1) given. Let Iy an optimal selection.
No try to find a valid selection I with

Zviz (1—8)2?}1'.

el 1€ opt

Sum of weights may not violate the weight limit.

Computation

Initially

m g[0,0] « 0
m ¢[0, v] < oo (Value v cannot be achieved with 0 items.).

Computation

i, 0] gli — 1, v] falls v < v;
gt min{g[i — 1,v],g[i — 1,v —v;] + w;} sonst.

incrementally in 7 and for fixed 7 increasing in v.
Solution can be found at largest index v with g[n, v] < w.

Different formulation of the algorithm

Before: weight limit w — maximal value v
Reversed: value v — minimal weight w

= alternative table g[i, v] provides the minimum weight with

m a selection of the first 7 items (0 <7 < n) that
m provide a value of exactly v (0 < v < Y7).

Example
E={(2,3),(4,5),(1,1)} v
o 1 2 3 4 5 6 7 8 9
) 0coo 00 0 00 O 00 0O 00 00
(2,3) OM@ 00
z‘ (4,5) z\oo 00 2\00 4\00 o0 6\00

1 oo 2 3 4 5 oo 6 7

Read out the solution: if g[i, v] = g[¢ — 1, v] then item ¢ unused and continue with g[¢ — 1, v] otherwise used and continue

with g[i — 1,b — v;] .

639

The approximation trick

Pseduopolynomial run time gets polynmial if the number of occuring
values can be bounded by a polynom of the input length.

Let K > 0 be chosen appropriately. Replace values v; by “rounded
values” v; = |v;/ K | delivering a new input £ = (w;, 0;)i=1...n-

Apply the algorithm on the input E’ with the same weight limit V.

640

Properties of the new algorithm

m Selection of items in £’ is also admissible in E. Weight remains
unchanged!

m Run time of the algorithm is bounded by O(n? - v/ K)
(Vmax := max{v;|1 <i < n})

642

Idea

Example K =5
Values

1,2,3,4,5,6,7,8,9,10,...,98,99,100
_>
0,0,0,0,1,1,1,1,1,2,...,19,19, 20

Obviously less different values

641

How good is the approximation?

It holds that v
w-KgK[?}ﬂf@gw
Let I;,, be an optimal solution of £’. Then

[Topt| <1

Zvi —n-K < Z(vi—K)gzu(-ﬁi):KZﬁi
ie]opt ie[opt iEIopt ie[opt
Igptoptimal iel’ 7; 1§

opt opt opt

643

Choice of K

Requirement:

Zviz (1—8)2111-.

iel’ 1€ opt

Inequality from above:

Zviz Zvi —n-K

i€l i€ Iopt

Zielopt Ui

n

thus: K = ¢

644

FPTAS

Such a family of algorithms is called an approximation scheme: the
choice of € controls both running time and approximation quality.

The runtime O(n?/¢) is a polynom in n and in 1. The scheme is
therefore also called a FPTAS - Fully Polynomial Time
Approximation Scheme

646

Choice of K

Do Ui . .
Choose K = s%. The optimal sum is unknown. Therefore we
choose K’ = gtuas 43

It holds that vy, < Zidom v; and thus K’ < K and the
approximation is even slightly better.

The run time of the algorithm is bounded by

O(n* - Vimax/K') = O(n? - Vax/ (€ - Vmax /1)) = O(n?/¢).

43\We can assume that items 4 with w; > TV have been removed in the first place.

21. Dynamic Programming lll

Optimal Search Tree [Ottman/Widmayer, Kap. 5.7]

645

647

Optimal binary Search Trees Example

Given: search probabilities p; for each key k; (1 = 1,...,n) and ¢; of
each interval d; (z = 0, ..., n) between search keys of a binary
searchtree. Y " pi+> . yqi = 1.

Wanted: optimal search tree 7" with key depths depth(-), that

minimizes the expected search costs i| 0 1 2 3 4 5
Di 0.15 0.10 0.05 0.10 0.20

gi | 0.05 0.10 0.05 0.05 0.05 0.10

Expected Frequencies

C(T) = sz‘ - (depth(k;) + 1) + Z ¢; - (depth(d;) + 1)

=1+ sz’ - depth(k;) + Z ¢; - depth(d;)

1=1 1=0

648 649

Example Structure of a optimal binary search tree

ko
/k\ ’“/ \k Subtree with keys k. k. and intervals d d: must b
. . m Subtree with keys k;, ..., k; and intervals d;_, ..., d; must be
do/ \dl k4/ \d5

/ 1\ /4\ optimal for the respective sub-problem.**
dO dl]€3 k

: / \ m Consider all subtrees with roots £, and optimal subtrees for keys
/ \ / \ ks dy ki,..., k.1 and kr+1,...,kj
d [ds [dy | ds / \
Search tree with expected d ds
costs 2.8 Search tree with expected
costs 2.75

#4The usual argument: if it was not optimal, it could be replaced by a better solution improving the overal solution.
650 651

Sub-trees for Searching

14157 i LRSI k‘i.,]*l
/N /N /N VRN
di A dj di—l e dr—l dr e dj di*l Co dj—l

empty left subtree non-empty left and

right subtrees

empty right subtree

Expected Search Costs

Let e[i, j] be the costs of an optimal search tree with nodes
ki, ... k;.

Base case ¢|i, i — 1], expected costs d;_;

g:i D+ Z{:¢—1 qi-

If £, is the root of an optimal search tree with keys k;, . .

Let w(i,j) =
-]Cj, then

eli, j| = pr + (eli,r = 1|+ w(i,r — 1)) + (e[r + 1, j] + w(r + 1,7))
with w(i, j) = w(i,r — 1) + p, + w(r + 1,5):

eli,jl =eli,r — 1] +elr+1,j] +w(i, j).

Expected Search Costs

Let depth,.(k) be the depth of a node k in the sub-tree T'. Let k be
the root of subtrees 7, and 77, and T_ be the left and right sub-tree
of T,.. Then

depthy(k;) = depthy, (k;) +1, (i <7
depthp(k;) = depthTRT(ki) +1,(i>r)

~—

Dynamic Programming

if j=i—1,

. di-1
€ Z7 -
i, {mlni<r<j{e[z, r—1+e[r+1,j]+wli,jl} ifi<y

Computation

Tablese[l...n+1,0...nJ,w[l...n+1,0...m],r[l...n,1...n]
Initially
W oefi,i— 1] < ¢_1, w[i,i— 1] < ¢ forall 1 <i<n+ 1.
We compute
eli,j] = .Iglig.{e[z',r — 1] +e[r+1,75] + wli, 5]}
ISrs)

rli, j] = arg min {e[i,r — 1] + e[r + 1, 7] + wli, j]}

1<r<j

for intervals [i, j] with increasing lengths [= 1,. .., n, each for
i=1,...,n—1+ 1. Resultin ¢[1, n], reconstruction via ». Runtime
O(n?).

656

Example

i|

0

1

2

3

4 5

Dbi

T W N = O .

0.05

0.45

0.90

1.25

1.75

2.75
1

0.15 0.10 0.05 0.10 0.20
g; | 0.05 0.10 0.05 0.05 0.05 0.10

0.10

0.40

0.70

1.20

2.00
2

0.05
0.25
0.60
1.30
3

0.05

0.30 0.05
0.90 0.50 0.10

4

5

6

i

T W N = O .

T o W N = S

0.05

0.30

0.45

0.55

0.70

1.00
1

=N NN~ e

0.10

0.25

0.35

0.50

0.80
2

DO NNN

w

0.05

0.15

0.30

0.60
3

W Ut A~ W

0.05

0.20 0.05
0.50 0.35

4

5

0.10
6

i

