
19. Dynamic Programming I

Memoization, Optimal Substructure, Overlapping Sub-Problems,
Dependencies, General Procedure. Examples: Fibonacci, Rod
Cutting, Longest Ascending Subsequence, Longest Common
Subsequence, Edit Distance, Matrix Chain Multiplication (Strassen)

[Ottman/Widmayer, Kap. 1.2.3, 7.1, 7.4, Cormen et al, Kap. 15]

546

Fibonacci Numbers

(again)

Fn :=

{
n if n < 2

Fn−1 + Fn−2 if n ≥ 2.

Analysis: why ist the recursive algorithm so slow?

547

Algorithm FibonacciRecursive(n)

Input: n ≥ 0
Output: n-th Fibonacci number

if n < 2 then
f ← n

else
f ← FibonacciRecursive(n− 1) + FibonacciRecursive(n− 2)

return f

548

Analysis

T (n): Number executed operations.

n = 0, 1: T (n) = Θ(1)

n ≥ 2: T (n) = T (n− 2) + T (n− 1) + c.

T (n) = T (n− 2) + T (n− 1) + c ≥ 2T (n− 2) + c ≥ 2n/2c′ = (
√

2)nc′

Algorithm is exponential in n.

549



Reason (visual)

F47

F46

F45

F44 F43

F44

F43 F42

F45

F44

F43 F42

F43

F42 F41

Nodes with same values are evaluated (too) often.

550

Memoization

Memoization (sic) saving intermediate results.

Before a subproblem is solved, the existence of the corresponding
intermediate result is checked.
If an intermediate result exists then it is used.
Otherwise the algorithm is executed and the result is saved
accordingly.

551

Memoization with Fibonacci

F47

F46

F45

F44 F43

F44

F45

Rechteckige Knoten wurden bereits ausgewertet.

552

Algorithm FibonacciMemoization(n)

Input: n ≥ 0
Output: n-th Fibonacci number

if n ≤ 2 then
f ← 1

else if ∃memo[n] then
f ← memo[n]

else
f ← FibonacciMemoization(n− 1) + FibonacciMemoization(n− 2)
memo[n]← f

return f

553



Analysis

Computational complexity:

T (n) = T (n− 1) + c = ... = O(n).

because after the call to f(n− 1), f(n− 2) has already been
computed.

A different argument: f(n) is computed exactly once recursively for
each n. Runtime costs: n calls with Θ(1) costs per call n · c ∈ Θ(n).
The recursion vanishes from the running time computation.

Algorithm requires Θ(n) memory.38

38But the naive recursive algorithm also requires Θ(n) memory implicitly.
554

Looking closer ...

... the algorithm computes the values of F1, F2, F3,. . . in the
top-down approach of the recursion.

Can write the algorithm bottom-up. This is characteristic for dynamic
programming.

555

Algorithm FibonacciBottomUp(n)

Input: n ≥ 0
Output: n-th Fibonacci number

F [1]← 1
F [2]← 1
for i← 3, . . . , n do

F [i]← F [i− 1] + F [i− 2]

return F [n]

556

Dynamic Programming: Idea

Divide a complex problem into a reasonable number of
sub-problems
The solution of the sub-problems will be used to solve the more
complex problem
Identical problems will be computed only once

557



Dynamic Programming Consequence

Identical problems will be computed only once

⇒ Results are saved

We trade spee against

memory consumption

558

Dynamic Programming: Description

1 Use a DP-table with information to the subproblems.
Dimension of the entries? Semantics of the entries?

2 Computation of the base cases
Which entries do not depend on others?

3 Determine computation order.
In which order can the entries be computed such that dependencies are
fulfilled?

4 Read-out the solution
How can the solution be read out from the table?

Runtime (typical) = number entries of the table times required operations per entry.

559

Dynamic Programing: Description with the example

1
Dimension of the table? Semantics of the entries?
n× 1 table. nth entry contains nth Fibonacci number.

2
Which entries do not depend on other entries?
Values F1 and F2 can be computed easily and independently.

3
What is the execution order such that required entries are always available?
Fi with increasing i.

4
Wie kann sich Lösung aus der Tabelle konstruieren lassen?
Fn ist die n-te Fibonacci-Zahl.

560

Dynamic Programming = Divide-And-Conquer ?

In both cases the original problem can be solved (more easily) by
utilizing the solutions of sub-problems. The problem provides
optimal substructure.
Divide-And-Conquer algorithms (such as Mergesort):
sub-problems are independent; their solutions are required only
once in the algorithm.
DP: sub-problems are dependent. The problem is said to have
overlapping sub-problems that are required multiple-times in the
algorithm.
In order to avoid redundant computations, results are tabulated.
For sub-problems there must not be any circular dependencies.

561



Rod Cutting

Rods (metal sticks) are cut and sold.
Rods of length n ∈ N are available. A cut does not provide any
costs.
For each length l ∈ N, l ≤ n known is the value vl ∈ R+

Goal: cut the rods such (into k ∈ N pieces) that

k∑

i=1

vli is maximized subject to
k∑

i=1

li = n.

562

Rod Cutting: Example

Possibilities to cut a rod of length 4 (without permutations)

Length 0 1 2 3 4
Price 0 2 3 8 9

⇒ Best cut: 3 + 1 with value 10.

563

Wie findet man den DP Algorithms

0 Exact formulation of the wanted solution
1 Define sub-problems (and compute the cardinality)
2 Guess / Enumerate (and determine the running time for

guessing)
3 Recursion: relate sub-problems
4 Memoize / Tabularize. Determine the dependencies of the

sub-problems
5 Solve the problem

Running time = #sub-problems × time/sub-problem

564

Structure of the problem
0 Wanted: rn = maximal value of rod (cut or as a whole) with

length n.
1 sub-problems: maximal value rk for each 0 ≤ k < n

2 Guess the length of the first piece
3 Recursion

rk = max {vi + rk−i : 0 < i ≤ k} , k > 0

r0 = 0

4 Dependency: rk depends (only) on values vi, 1 ≤ i ≤ k and the
optimal cuts ri, i < k

5 Solution in rn
565



Algorithm RodCut(v,n)

Input: n ≥ 0, Prices v
Output: best value

q ← 0
if n > 0 then

for i← 1, . . . , n do
q ← max{q, vi + RodCut(v, n− i)};

return q

Running time T (n) =
∑n−1

i=0 T (i) + c ⇒39 T (n) ∈ Θ(2n)

39T (n) = T (n− 1) +
∑n−2

i=0 T (i) + c = T (n− 1) + (T (n− 1)− c) + c = 2T (n− 1) (n > 0)
566

Recursion Tree

5

4

3

2

1

1

2

1

1

3

2

1

1

2

1

1

567

Algorithm RodCutMemoized(m, v, n)
Input: n ≥ 0, Prices v, Memoization Table m
Output: best value

q ← 0
if n > 0 then

if ∃ m[n] then
q ← m[n]

else
for i← 1, . . . , n do

q ← max{q, vi + RodCutMemoized(m, v, n− i)};
m[n]← q

return q

Running time
∑n

i=1 i = Θ(n2)

568

Subproblem-Graph

Describes the mutual dependencies of the subproblems

4 3 2 1 0

and must not contain cycles

569



Construction of the Optimal Cut

During the (recursive) computation of the optimal solution for each
k ≤ n the recursive algorithm determines the optimal length of the
first rod
Store the lenght of the first rod in a separate table of length n

570

Bottom-up Description with the example

1
Dimension of the table? Semantics of the entries?
n× 1 table. nth entry contains the best value of a rod of length n.

2
Which entries do not depend on other entries?
Value r0 is 0

3
What is the execution order such that required entries are always available?
ri, i = 1, . . . , n.

4
Wie kann sich Lösung aus der Tabelle konstruieren lassen?
rn is the best value for the rod of length n.

571

Rabbit!

A rabbit sits on cite (1, 1)
of an n × n grid. It can
only move to east or south.
On each pathway there is
a number of carrots. How
many carrots does the rab-
bit collect maximally?

1, 1

1, 2

1, 3

1, 4

2, 1

2, 2

2, 3

2, 4

3, 1

3, 2

3, 3

3, 4

4, 1

4, 2

4, 3

4, 4

3

2

2

0

4

2

1

0

4

3

3

3

1

1

0

4

1

3

2

3

4

2

1

2

572

Rabbit!

Number of possible paths?
Choice of n− 1 ways to south out of
2n− 2 ways overal.

(
2n− 2

n− 1

)
∈ Ω(2n)

⇒ No chance for a naive algorithm
The path 100011

(1:to south, 0: to east)

573



Recursion

Wanted: T0,0 = maximal number carrots from (0, 0) to (n, n).

Let w(i,j)−(i′,j′) number of carrots on egde from (i, j) to (i′, j′).

Recursion (maximal number of carrots from (i, j) to (n, n)

Tij =





max{w(i,j)−(i,j+1) + Ti,j+1, w(i,j)−(i+1,j) + Ti+1,j}, i < n, j < n

w(i,j)−(i,j+1) + Ti,j+1, i = n, j < n

w(i,j)−(i+1,j) + Ti+1,j, i < n, j = n

0 i = j = n

574

Graph of Subproblem Dependencies

(1, 1)

(1, 2)

(1, 3)

(1, 4)

(2, 1)

(2, 2)

(2, 3)

(2, 4)

(3, 1)

(3, 2)

(3, 3)

(3, 4)

(4, 1)

(4, 2)

(4, 3)

(4, 4)

575

Bottom-up Description with the example

1

Dimension of the table? Semantics of the entries?
Table T with size n× n. Entry at i, j provides the maximal number of carrots
from (i, j) to (n, n).

2
Which entries do not depend on other entries?
Value Tn,n is 0

3

What is the execution order such that required entries are always available?
Ti,j with i = n↘ 1 and for each i: j = n↘ 1, (or vice-versa: j = n↘ 1 and
for each j: i = n↘ 1).

4
Wie kann sich Lösung aus der Tabelle konstruieren lassen?
T1,1 provides the maximal number of carrots.

576

Longest Ascending Sequence (LAS)

1 2 3 4 5 6 7

3 2 4 6 5 7 1

1 2 3 4 5 6 7

3 2 4 6 5 7 1

Connect as many as possible fitting ports without lines crossing.

577



Formally

Consider Sequence An = (a1, . . . , an).
Search for a longest increasing
subsequence of An.
Examples of increasing subsequences:
(3, 4, 5), (2, 4, 5, 7), (3, 4, 5, 7), (3, 7).

1 2 3 4 5 6 7

3 2 4 6 5 7 1
A

Generalization: allow any numbers, even with duplicates (still only
strictly increasing subsequences permitted). Example:
(2, 3, 3, 3, 5, 1) with increasing subsequence (2, 3, 5).

578

First idea

Let Li = longest ascending subsequence of Ai (1 ≤ i ≤ n)

Assumption: LAS Lk of Ak known for Now want to compute Lk+1 for
Ak+1 .

If ak+1 fits to Lk, then Lk+1 = Lk ⊕ ak+1?

Counterexample A5 = (1, 2, 5, 3, 4). Let A3 = (1, 2, 5) with L3 = A.
Determine L4 from L3?

It does not work this way, we cannot infer Lk+1 from Lk.

579

Second idea.

Let Li = longest ascending subsequence of Ai (1 ≤ i ≤ n)

Assumption: a LAS Lj is known for each j ≤ k. Now compute LAS
Lk+1 for k + 1.

Look at all fitting Lk+1 = Lj ⊕ ak+1 (j ≤ k) and choose a longest
sequence.

Counterexample: A5 = (1, 2, 5, 3, 4). Let A4 = (1, 2, 5, 3) with
L1 = (1), L2 = (1, 2), L3 = (1, 2, 5), L4 = (1, 2, 5). Determine L5

from L1, . . . , L4?

That does not work either: cannot infer Lk+1 from only an arbitrary
solution Lj. We need to consider all LAS. Too many.

580

Third approach

Let Mn,i = longest ascending subsequence of Ai (1 ≤ i ≤ n)

Assumption: the LAS Mj for Ak, that end with smallest element are
known for each of the lengths 1 ≤ j ≤ k.

Consider all fitting Mk,j ⊕ ak+1 (j ≤ k) and update the table of the
LAS,that end with smallest possible element.

581



Third approach Example

Example: A = (1, 1000, 1001, 4, 5, 2, 6, 7)

A LAT Mk,·
1 (1)
+ 1000 (1), (1, 1000)
+ 1001 (1), (1, 1000), (1, 1000, 1001)
+ 4 (1), (1, 4), (1, 1000, 1001)
+ 5 (1), (1, 4), (1, 4, 5)
+ 2 (1), (1, 2), (1, 4, 5)
+ 6 (1), (1, 2), (1, 4, 5), (1, 4, 5, 6)
+ 7 (1), (1, 2), (1, 4, 5), (1, 4, 5, 6), (1, 4, 5, 6, 7)

582

DP Table

Idea: save the last element of
the increasing sequence Mk,j

at slot j.
Example: 3 2 5 1 6 4
Problem: Table does not
contain the subsequence, only
the last value.
Solution: second table with the
predecessors.

Index 1 2 3 4 5 6
Wert 3 2 5 1 6 4
Predecessor −∞ −∞ 2 −∞ 5 1

Index 0 1 2 3 4 ...
(Lj)j -∞ 1 4 6 ∞

583

Dynamic Programming Algorithm LAS

1

Table dimension? Semantics?
Two tables T [0, . . . , n] and V [1, . . . , n].
T [j]: last Element of the increasing subequence Mn,j

V [j]: Value of the predecessor of aj .
Start with T [0]← −∞, T [i]←∞ ∀i > 1

2

Computation of an entry
Entries in T sorted in ascending order. For each new entry ak+1 binary
search for l, such that T [l] < ak < T [l + 1]. Set T [l + 1]← ak+1. Set
V [k] = T [l].

584

Dynamic Programming algorithm LAS

3
Computation order

Traverse the list anc compute T [k] and V [k] with ascending k

4

How can the solution be determined from the table?
Search the largest l with T [l] <∞. l is the last index of the LAS. Starting at l
search for the index i < l such that V [l] = ai, i is the predecessor of l.
Repeat with l← i until T [l] = −∞

585



Analysis

Computation of the table:

Initialization: Θ(n) Operations
Computation of the kth entry: binary search on positions {1, . . . , k} plus
constant number of assignments.

n∑

k=1

(log k +O(1)) = O(n) +
n∑

k=1

log(k) = Θ(n log n).

Reconstruction: traverse A from right to left: O(n).

Overal runtime:
Θ(n log n).

586

DNA - Comparison (Star Trek)

587

DNA - Comparison

DNA consists of sequences of four different nucleotides Adenine
Guanine Thymine Cytosine
DNA sequences (genes) thus can be described with strings of A,
G, T and C.
Possible comparison of two genes: determine the longest
common subsequence

The longest common subsequence problem is a special case of the
minimal edit distance problem. The following slides are therefore not
presented in the lectures.

588

[Longest common subsequence]

Subsequences of a string:
Subsequences(KUH): (), (K), (U), (H), (KU), (KH), (UH),
(KUH)

Problem:

Input: two strings A = (a1, . . . , am), B = (b1, . . . , bn) with lengths
m > 0 and n > 0.
Wanted: Longest common subsequecnes (LCS) of A and B.

589



[Longest Common Subsequence]

Examples:
LGT(IGEL,KATZE)=E, LGT(TIGER,ZIEGE)=IGE

Ideas to solve?

T I G E R
Z I E G E

590

[Recursive Procedure]
Assumption: solutions L(i, j) known for A[1, . . . , i] and B[1, . . . , j]
for all 1 ≤ i ≤ m and 1 ≤ j ≤ n, but not for i = m and j = n.

T I G E R
Z I E G E

Consider characters am, bn. Three possibilities:

1 A is enlarged by one whitespace. L(m,n) = L(m,n− 1)

2 B is enlarged by one whitespace. L(m,n) = L(m− 1, n)

3 L(m,n) = L(m− 1, n− 1) + δmn with δmn = 1 if am = bn and
δmn = 0 otherwise

591

[Recursion]

L(m,n)← max {L(m− 1, n− 1) + δmn, L(m,n− 1), L(m− 1, n)}
for m,n > 0 and base cases L(·, 0) = 0, L(0, ·) = 0.

∅ Z I E G E
∅ 0 0 0 0 0 0
T 0 0 0 0 0 0
I 0 0 1 1 1 1
G 0 0 1 1 2 2
E 0 0 1 2 2 3
R 0 0 1 2 2 3

592

[Dynamic Programming algorithm LCS]

1

Dimension of the table? Semantics?
Table L[0, . . . ,m][0, . . . , n]. L[i, j]: length of a LCS of the strings (a1, . . . , ai)
and (b1, . . . , bj)

2

Computation of an entry

L[0, i]← 0 ∀0 ≤ i ≤ m, L[j, 0]← 0 ∀0 ≤ j ≤ n. Computation of L[i, j]
otherwise via L[i, j] = max(L[i− 1, j − 1] + δij, L[i, j − 1], L[i− 1, j]).

593



[Dynamic Programming algorithm LCS]

3
Computation order
Rows increasing and within columns increasing (or the other way round).

4

Reconstruct solution?
Start with j = m, i = n. If ai = bj then output ai and continue with
(j, i)← (j − 1, i− 1); otherwise, if L[i, j] = L[i, j − 1] continue with
j ← j − 1 otherwise, if L[i, j] = L[i− 1, j] continue with i← i− 1 .
Terminate for i = 0 or j = 0.

594

[Analysis LCS]

Number table entries: (m+ 1) · (n+ 1).
Constant number of assignments and comparisons each. Number
steps: O(mn)

Determination of solition: decrease i or j. Maximally O(n+m)
steps.

Runtime overal:
O(mn).

595

Minimal Editing Distance

Editing distance of two sequences An = (a1, . . . , am),
Bm = (b1, . . . , bm).

Editing operations:

Insertion of a character
Deletion of a character
Replacement of a character

Question: how many editing operations at least required in order to
transform string A into string B.

TIGER ZIGER ZIEGER ZIEGE

596

Minimal Editing Distance

Wanted: cheapest character-wise transformation An → Bm with
costs

operation Levenshtein LCS40 general
Insert c 1 1 ins(c)
Delete c 1 1 del(c)
Replace c→ c′ 1(c 6= c′) ∞ · 1(c 6= c′) repl(c, c′)

Beispiel
T I G E R
Z I E G E

T I _ G E R
Z I E G E _

T→Z +E -R
Z→T -E +R

40Longest common subsequence – A special case of an editing problem
597



DP
0 E(n,m) = mimimum number edit operations (ED cost)
a1...n → b1...m

1 Subproblems E(i, j) = ED von a1...i. b1...j. #SP = n ·m
2 Guess CostsΘ(1)

a1..i → a1...i−1 (delete)
a1..i → a1...ibj (insert)
a1..i → a1...i1bj (replace)

3 Rekursion

E(i, j) = min





del(ai) + E(i− 1, j),

ins(bj) + E(i, j − 1),

repl(ai, bj) + E(i− 1, j − 1)
598

DP

4 Dependencies

⇒ Computation from left top to bottom right. Row- or
column-wise.

5 Solution in E(n,m)

599

Example (Levenshtein Distance)

E[i, j]← min
{
E[i−1, j]+1, E[i, j−1]+1, E[i−1, j−1]+1(ai 6= bj)

}

∅ Z I E G E
∅ 0 1 2 3 4 5
T 1 1 2 3 4 5
I 2 2 1 2 3 4
G 3 3 2 2 2 3
E 4 4 3 2 3 2
R 5 5 4 3 3 3

Editing steps: from bottom right to top left, following the recursion.
Bottom-Up description of the algorithm: exercise

600

Bottom-Up DP algorithm ED]

1

Dimension of the table? Semantics?
Table E[0, . . . ,m][0, . . . , n]. E[i, j]: minimal edit distance of the strings
(a1, . . . , ai) and (b1, . . . , bj)

2

Computation of an entry

E[0, i]← i ∀0 ≤ i ≤ m, E[j, 0]← i ∀0 ≤ j ≤ n. Computation of E[i, j]
otherwise via E[i, j] =
min{del(ai) +E(i− 1, j), ins(bj) +E(i, j − 1), repl(ai, bj) +E(i− 1, j − 1)}

601



Bottom-Up DP algorithm ED

3
Computation order
Rows increasing and within columns increasing (or the other way round).

4

Reconstruct solution?
Start with j = m, i = n. If E[i, j] = repl(ai, bj) + E(i− 1, j − 1) then output
ai → bj and continue with (j, i)← (j − 1, i− 1); otherwise, if
E[i, j] = del(ai) + E(i− 1, j) output del(ai) and continue with j ← j − 1
otherwise, if E[i, j] = ins(bj) + E(i, j − 1), continue with i← i− 1 .
Terminate for i = 0 and j = 0.

602

Matrix-Chain-Multiplication

Task: Computation of the product A1 ·A2 · ... ·An of matrices A1, . . . ,
An.

Matrix multiplication is associative, i.e. the order of evalution can be
chosen arbitrarily

Goal: efficient computation of the product.

Assumption: multiplicaiton of an (r× s)-matrix with an (s× u)-matrix
provides costs r · s · u.

603

Does it matter?

·

A1

1

k
k

1 ·

A2

1

k

A3

=

A1 · A2

·

A3

=

A1 · A2 · A3

k2 Operationen! k2 Operationen!

·

1

k

A1

k
1 ·

A2

1

k

A3

=

A1

·

A2 · A3

=

A1 · A2 · A3

k Operationen!k Operationen!

604

Recursion

Assume that the best possible computation of (A1 · A2 · · ·Ai) and
(Ai+1 · Ai+2 · · ·An) is known for each i.
Compute best i, done.

n× n-table M . entry M [p, q] provides costs of the best possible
bracketing (Ap · Ap+1 · · ·Aq).

M [p, q]← min
p≤i<q

(M [p, i] +M [i+ 1, q] + costs of the last multiplication)

605



Computation of the DP-table

Base cases M [p, p]← 0 for all 1 ≤ p ≤ n.
Computation of M [p, q] depends on M [i, j] with p ≤ i ≤ j ≤ q,
(i, j) 6= (p, q).
In particular M [p, q] depends at most from entries M [i, j] with
i− j < q − p.
Consequence: fill the table from the diagonal.

606

Analysis

DP-table has n2 entries. Computation of an entry requires
considering up to n− 1 other entries.

Overal runtime O(n3).

Readout the order from M : exercise!

607

Digression: matrix multiplication
Consider the mutliplicaiton of two n× n matrices.

Let

A = (aij)1≤i,j≤n, B = (bij)1≤i,j≤n, C = (cij)1≤i,j≤n,

C = A ·B

then

cij =
n∑

k=1

aikbkj.

Naive algorithm requires Θ(n3) elementary multiplications.
608

Divide and Conquer

C = ABA

B

e f

g h

a b

c d

ea + fc eb + fd

ga + hc gb + hd

609



Divide and Conquer

Assumption n = 2k.
Number of elementary multiplications:
M(n) = 8M(n/2), M(1) = 1.
yields M(n) = 8log2 n = nlog2 8 = n3. No
advantage

e f

g h

a b

c d

ea + fc eb + fd

ga + hc gb + hd

610

Strassen’s Matrix Multiplication
Nontrivial observation by Strassen (1969):
It suffices to compute the seven products
A = (e+ h) · (a+ d), B = (g + h) · a,
C = e · (b− d), D = h · (c− a), E = (e+ f) · d,
F = (g − e) · (a+ b), G = (f − h) · (c+ d). Denn:
ea+ fc = A+D − E +G, eb+ fd = C + E,
ga+ hc = B +D, gb+ hd = A−B + C + F .

This yields M ′(n) = 7M(n/2),M ′(1) = 1.
Thus M ′(n) = 7log2 n = nlog2 7 ≈ n2.807.

Fastest currently known algorithm:
O(n2.37)

e f

g h

a b

c d

ea + fc eb + fd

ga + hc gb + hd

611


