19. Dynamic Programming I

Memoization, Optimal Substructure, Overlapping Sub-Problems, Dependencies, General Procedure. Examples: Fibonacci, Rod Cutting, Longest Ascending Subsequence, Longest Common Subsequence, Edit Distance, Matrix Chain Multiplication (Strassen) [Ottman/Widmayer, Kap. 1.2.3, 7.1, 7.4, Cormen et al, Kap. 15]

Fibonacci Numbers

$$F_n := \begin{cases} n & \text{if } n < 2 \\ F_{n-1} + F_{n-2} & \text{if } n \ge 2. \end{cases}$$

Analysis: why ist the recursive algorithm so slow?

546

Algorithm FibonacciRecursive(n)

Input: $n \geq 0$ Output: n-th Fibonacci number if n < 2 then $\mid f \leftarrow n$ else $\mid f \leftarrow$ FibonacciRecursive(n-1) + FibonacciRecursive(n-2) return f

Analysis

T(n): Number executed operations.

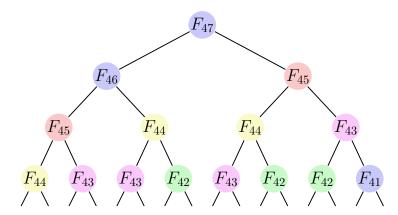
n = 0, 1: $T(n) = \Theta(1)$

 $n \ge 2$: T(n) = T(n-2) + T(n-1) + c.

 $T(n) = T(n-2) + T(n-1) + c \ge 2T(n-2) + c \ge 2^{n/2}c' = (\sqrt{2})^n c'$

Algorithm is *exponential* in n.

Reason (visual)



Nodes with same values are evaluated (too) often.

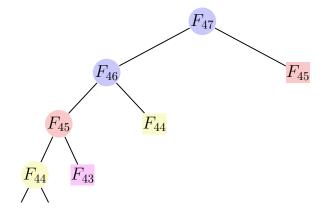
Memoization

550

Memoization (sic) saving intermediate results.

- Before a subproblem is solved, the existence of the corresponding intermediate result is checked.
- If an intermediate result exists then it is used.
- Otherwise the algorithm is executed and the result is saved accordingly.

Memoization with Fibonacci



Rechteckige Knoten wurden bereits ausgewertet.

Algorithm FibonacciMemoization(n)

```
\begin{array}{l} \textbf{Input: } n \geq 0 \\ \textbf{Output: } n\text{-th Fibonacci number} \\ \textbf{if } n \leq 2 \textbf{ then} \\ \mid f \leftarrow 1 \\ \textbf{else if } \exists \mathsf{memo}[n] \textbf{ then} \\ \mid f \leftarrow \mathsf{memo}[n] \\ \textbf{else} \\ \mid f \leftarrow \mathsf{FibonacciMemoization}(n-1) + \mathsf{FibonacciMemoization}(n-2) \\ \mid \mathsf{memo}[n] \leftarrow f \\ \textbf{return } f \end{array}
```

Analysis

Computational complexity:

$$T(n) = T(n-1) + c = \dots = \mathcal{O}(n).$$

because after the call to f(n-1), f(n-2) has already been computed.

A different argument: f(n) is computed exactly once recursively for each n. Runtime costs: n calls with $\Theta(1)$ costs per call $n \cdot c \in \Theta(n)$. The recursion vanishes from the running time computation.

Algorithm requires $\Theta(n)$ memory.³⁸

Looking closer ...

... the algorithm computes the values of F_1 , F_2 , F_3 ,... in the *top-down* approach of the recursion.

Can write the algorithm *bottom-up*. This is characteristic for *dynamic programming*.

554

Algorithm FibonacciBottomUp(n)

Input: $n \ge 0$

Output: n-th Fibonacci number

$$\begin{split} F[1] &\leftarrow 1 \\ F[2] &\leftarrow 1 \\ \text{for } i \leftarrow 3, \dots, n \text{ do} \\ & \quad \lfloor F[i] \leftarrow F[i-1] + F[i-2] \\ \text{return } F[n] \end{split}$$

Dynamic Programming: Idea

- Divide a complex problem into a reasonable number of sub-problems
- The solution of the sub-problems will be used to solve the more complex problem
- Identical problems will be computed only once

³⁸But the naive recursive algorithm also requires $\Theta(n)$ memory implicitly.

Dynamic Programming Consequence

Identical problems will be computed only once

⇒ Results are saved

We trade spee against memory consumption

Dynamic Programming: Description

Use a *DP-table* with information to the subproblems.

Dimension of the entries? Semantics of the entries?

- Computation of the base cases Which entries do not depend on others?
- Determine *computation order*.

 In which order can the entries be computed such that dependencies are fulfilled?
- 4 Read-out the *solution*How can the solution be read out from the table?

Runtime (typical) = number entries of the table times required operations per entry.

558

Dynamic Programing: Description with the example

- Dimension of the table? Semantics of the entries?
 - $n\times 1$ table. $n{\rm th}$ entry contains $n{\rm th}$ Fibonacci number.
- Which entries do not depend on other entries?
 - Values F_1 and F_2 can be computed easily and independently.
- What is the execution order such that required entries are always available? F_i with increasing i.
- Wie kann sich Lösung aus der Tabelle konstruieren lassen? F_n ist die n-te Fibonacci-Zahl.

Dynamic Programming = Divide-And-Conquer?

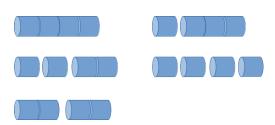
- In both cases the original problem can be solved (more easily) by utilizing the solutions of sub-problems. The problem provides optimal substructure.
- Divide-And-Conquer algorithms (such as Mergesort): sub-problems are independent; their solutions are required only once in the algorithm.
- DP: sub-problems are dependent. The problem is said to have overlapping sub-problems that are required multiple-times in the algorithm.
- In order to avoid redundant computations, results are tabulated. For *sub-problems there must not be any circular dependencies*.

Rod Cutting

- Rods (metal sticks) are cut and sold.
- Rods of length $n \in \mathbb{N}$ are available. A cut does not provide any costs.
- For each length $l \in \mathbb{N}$, $l \leq n$ known is the value $v_l \in \mathbb{R}^+$
- Goal: cut the rods such (into $k \in \mathbb{N}$ pieces) that

$$\sum_{i=1}^k v_{l_i}$$
 is maximized subject to $\sum_{i=1}^k l_i = n.$

Rod Cutting: Example



Possibilities to cut a rod of length 4 (without permutations)

Length	0	1	2	3	4	⇒ Best cut: 3 + 1 with value 1
Price	0	2	3	8	9	Desi cut. 5 + 1 with value 1

Wie findet man den DP Algorithms

- Exact formulation of the wanted solution
- Define sub-problems (and compute the cardinality)
- Guess / Enumerate (and determine the running time for guessing)
- Recursion: relate sub-problems
- Memoize / Tabularize. Determine the dependencies of the sub-problems
- Solve the problem
 Running time = #sub-problems × time/sub-problem

Structure of the problem

- Wanted: r_n = maximal value of rod (cut or as a whole) with length n.
- **1** *sub-problems*: maximal value r_k for each $0 \le k < n$
- Guess the length of the first piece
- **3** Recursion

$$r_k = \max \{v_i + r_{k-i} : 0 < i \le k\}, \quad k > 0$$

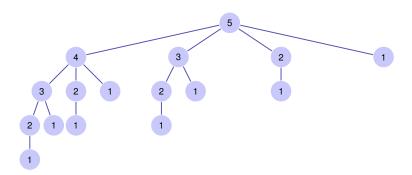
 $r_0 = 0$

- Dependency: r_k depends (only) on values v_i , $1 \le i \le k$ and the optimal cuts r_i , i < k
- **Solution** in r_n

56

Algorithm RodCut(v,n)

Recursion Tree



ECC

Algorithm RodCutMemoized(m, v, n)

Input: $n \ge 0$, Prices v, Memoization Table m

Output: best value

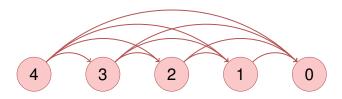
return q

$$\begin{array}{l} q \leftarrow 0 \\ \textbf{if } n > 0 \textbf{ then} \\ & \textbf{if } \exists \ m[n] \textbf{ then} \\ & | \ q \leftarrow m[n] \\ & \textbf{else} \\ & | \ \textbf{for } i \leftarrow 1, \dots, n \textbf{ do} \\ & | \ q \leftarrow \max\{q, v_i + \mathsf{RodCutMemoized}(m, v, n - i)\}; \\ & | \ m[n] \leftarrow q \end{array}$$

Running time $\sum_{i=1}^{n} i = \Theta(n^2)$

Subproblem-Graph

Describes the mutual dependencies of the subproblems



and must not contain cycles

 $^{^{39}}T(n) = T(n-1) + \sum_{i=0}^{n-2} T(i) + c = T(n-1) + (T(n-1) - c) + c = 2T(n-1) \quad (n > 0)$

Construction of the Optimal Cut

- During the (recursive) computation of the optimal solution for each $k \leq n$ the recursive algorithm determines the optimal length of the first rod
- lacktriangle Store the lenght of the first rod in a separate table of length n

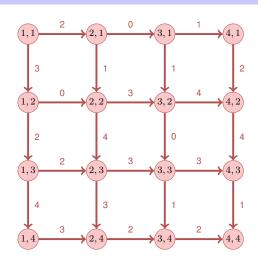
Bottom-up Description with the example

- Dimension of the table? Semantics of the entries?
 - $n \times 1$ table. nth entry contains the best value of a rod of length n.
- Which entries do not depend on other entries?
 - Value r_0 is 0
- What is the execution order such that required entries are always available? r_i , i = 1, ..., n.
- Wie kann sich Lösung aus der Tabelle konstruieren lassen? r_n is the best value for the rod of length n.

570

Rabbit!

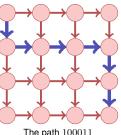
A rabbit sits on cite (1,1) of an $n \times n$ grid. It can only move to east or south. On each pathway there is a number of carrots. How many carrots does the rabbit collect maximally?



Rabbit!

Number of possible paths?

- Choice of n-1 ways to south out of 2n-2 ways overal.
 - $\binom{2n-2}{n-1} \in \Omega(2^n)$
- ⇒ No chance for a naive algorithm



The path 100011 (1:to south, 0: to east)

Recursion

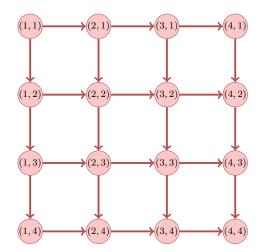
Wanted: $T_{0,0}$ = maximal number carrots from (0,0) to (n,n).

Let $w_{(i,j)-(i',j')}$ number of carrots on egde from (i,j) to (i',j').

Recursion (maximal number of carrots from (i, j) to (n, n)

$$T_{ij} = \begin{cases} \max\{w_{(i,j)-(i,j+1)} + T_{i,j+1}, w_{(i,j)-(i+1,j)} + T_{i+1,j}\}, & i < n, j < n \\ w_{(i,j)-(i,j+1)} + T_{i,j+1}, & i = n, j < n \\ w_{(i,j)-(i+1,j)} + T_{i+1,j}, & i < n, j = n \\ 0 & i = j = n \end{cases}$$

Graph of Subproblem Dependencies



Bottom-up Description with the example

Dimension of the table? Semantics of the entries?

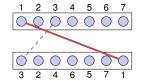
- Table T with size $n \times n$. Entry at i, j provides the maximal number of carrots from (i, j) to (n, n).
- Which entries do not depend on other entries?

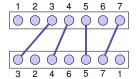
Value $T_{n,n}$ is 0

What is the execution order such that required entries are always available?

- $T_{i,j}$ with $i=n\searrow 1$ and for each i: $j=n\searrow 1$, (or vice-versa: $j=n\searrow 1$ and for each j: $i=n\searrow 1$).
- Wie kann sich Lösung aus der Tabelle konstruieren lassen? $T_{1,1}$ provides the maximal number of carrots.

Longest Ascending Sequence (LAS)





Connect as many as possible fitting ports without lines crossing.

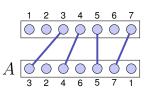
5

5.

576

Formally

- \blacksquare Consider Sequence $A_n = (a_1, \ldots, a_n)$.
- Search for a longest increasing subsequence of A_n .
- **Examples of increasing subsequences:** (3, 4, 5), (2, 4, 5, 7), (3, 4, 5, 7), (3, 7).



Generalization: allow any numbers, even with duplicates (still only strictly increasing subsequences permitted). Example: (2,3,3,3,5,1) with increasing subsequence (2,3,5).

First idea

Let L_i = longest ascending subsequence of A_i $(1 \le i \le n)$

Assumption: LAS \mathcal{L}_k of \mathcal{A}_k known for Now want to compute \mathcal{L}_{k+1} for \mathcal{A}_{k+1} .

If a_{k+1} fits to L_k , then $L_{k+1} = L_k \oplus a_{k+1}$?

Counterexample $A_5 = (1, 2, 5, 3, 4)$. Let $A_3 = (1, 2, 5)$ with $L_3 = A$. Determine L_4 from L_3 ?

It does not work this way, we cannot infer L_{k+1} from L_k .

578

Second idea.

Let L_i = longest ascending subsequence of A_i $(1 \le i \le n)$

Assumption: a LAS L_j is known for each $j \leq k$. Now compute LAS L_{k+1} for k+1.

Look at all fitting $L_{k+1} = L_j \oplus a_{k+1}$ $(j \le k)$ and choose a longest sequence.

Counterexample: $A_5=(1,2,5,3,4)$. Let $A_4=(1,2,5,3)$ with $L_1=(1), L_2=(1,2), L_3=(1,2,5), L_4=(1,2,5)$. Determine L_5 from L_1, \ldots, L_4 ?

That does not work either: cannot infer L_{k+1} from only *an arbitrary* solution L_i . We need to consider all LAS. Too many.

Third approach

Let $M_{n,i}$ = longest ascending subsequence of A_i $(1 \le i \le n)$

Assumption: the LAS M_j for A_k , that end with smallest element are known for each of the lengths $1 \le j \le k$.

Consider all fitting $M_{k,j} \oplus a_{k+1}$ ($j \leq k$) and update the table of the LAS,that end with smallest possible element.

580

Third approach Example

Example: A = (1, 1000, 1001, 4, 5, 2, 6, 7)

\overline{A}	LAT $M_{k,\cdot}$
1	(1)
+ 1000	(1), (1, 1000)
+ 1001	(1), (1, 1000), (1, 1000, 1001)
+4	(1), (1, 4), (1, 1000, 1001)
+5	(1), (1,4), (1,4,5)
+2	(1), (1, 2), (1, 4, 5)
+6	(1), (1, 2), (1, 4, 5), (1, 4, 5, 6)
+ 7	(1), (1, 2), (1, 4, 5), (1, 4, 5, 6), (1, 4, 5, 6, 7)

DP Table

- Idea: save the last element of the increasing sequence $M_{k,j}$ at slot j.
- Example: 3 2 5 1 6 4
- Problem: Table does not contain the subsequence, only the last value.
- Solution: second table with the predecessors.

Index	1	2	3	4	5	(
Wert	3	2	5	1	6	4
Predecessor	$-\infty$	$-\infty$	2	$-\infty$	5	-

Index	0	1	2	3	4	
$(L_j)_j$	-∞	1	4	6	∞	

82

Dynamic Programming Algorithm LAS

Table dimension? Semantics?

Two tables $T[0,\ldots,n]$ and $V[1,\ldots,n]$.

- 1 T[j]: last Element of the increasing subequence $M_{n,j}$
 - V[j]: Value of the predecessor of a_i .
 - Start with $T[0] \leftarrow -\infty$, $T[i] \leftarrow \infty \ \forall i > 1$

Computation of an entry

Entries in T sorted in ascending order. For each new entry a_{k+1} binary search for l, such that $T[l] < a_k < T[l+1]$. Set $T[l+1] \leftarrow a_{k+1}$. Set V[k] = T[l].

Dynamic Programming algorithm LAS

Computation order

Traverse the list anc compute T[k] and V[k] with ascending k

How can the solution be determined from the table?

Search the largest l with $T[l] < \infty$. l is the last index of the LAS. Starting at l search for the index i < l such that $V[l] = a_i$, i is the predecessor of l. Repeat with $l \leftarrow i$ until $T[l] = -\infty$

Analysis

■ Computation of the table:

- Initialization: $\Theta(n)$ Operations
- Computation of the kth entry: binary search on positions $\{1, \ldots, k\}$ plus constant number of assignments.

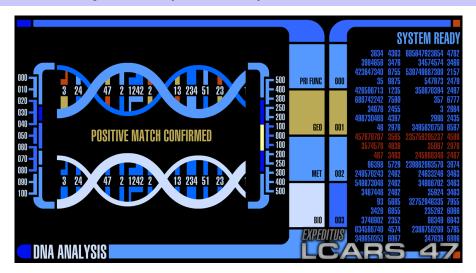
$$\sum_{k=1}^{n} (\log k + \mathcal{O}(1)) = \mathcal{O}(n) + \sum_{k=1}^{n} \log(k) = \Theta(n \log n).$$

Reconstruction: traverse A from right to left: $\mathcal{O}(n)$.

Overal runtime:

$$\Theta(n \log n)$$
.

DNA - Comparison (Star Trek)



DNA - Comparison

- DNA consists of sequences of four different nucleotides Adenine
 Guanine Thymine Cytosine
- DNA sequences (genes) thus can be described with strings of A, G, T and C.
- Possible comparison of two genes: determine the longest common subsequence

The longest common subsequence problem is a special case of the minimal edit distance problem. The following slides are therefore not presented in the lectures.

[Longest common subsequence]

Subsequences of a string:

Subsequences(KUH): (), (K), (U), (H), (KU), (KH), (UH), (KUH)

Problem:

- Input: two strings $A=(a_1,\ldots,a_m)$, $B=(b_1,\ldots,b_n)$ with lengths m>0 and n>0.
- Wanted: Longest common subsequecnes (LCS) of *A* and *B*.

[Longest Common Subsequence]

Examples:

LGT(IGEL,KATZE)=E, LGT(TIGER,ZIEGE)=IGE

Ideas to solve?

[Recursive Procedure]

Assumption: solutions L(i,j) known for $A[1,\ldots,i]$ and $B[1,\ldots,j]$ for all $1 \le i \le m$ and $1 \le j \le n$, but not for i=m and j=n.

Consider characters a_m , b_n . Three possibilities:

- **1** A is enlarged by one whitespace. L(m,n) = L(m,n-1)
- **2** B is enlarged by one whitespace. L(m,n)=L(m-1,n)
- If $L(m,n) = L(m-1,n-1) + \delta_{mn}$ with $\delta_{mn} = 1$ if $a_m = b_n$ and $\delta_{mn} = 0$ otherwise

[Recursion]

 $L(m,n) \leftarrow \max \{L(m-1,n-1) + \delta_{mn}, L(m,n-1), L(m-1,n)\}$ for m,n>0 and base cases $L(\cdot,0)=0, L(0,\cdot)=0.$

	Ø	Z	ı	Ε	G	Ε
Ø	0	0	0	0	0	0
Τ	0	0	0	0	0	0
I	0	0	1	1	1	1
G	0	0	1	1	2	2
Ε	0	0	1	2	2	3
R	0	0	1	2	0 0 1 2 2 2	3

[Dynamic Programming algorithm LCS]

Dimension of the table? Semantics?

Table $L[0,\ldots,m][0,\ldots,n]$. L[i,j]: length of a LCS of the strings (a_1,\ldots,a_i) and (b_1,\ldots,b_j)

Computation of an entry

 $L[0,i] \leftarrow 0 \ \forall 0 \leq i \leq m, \ L[j,0] \leftarrow 0 \ \forall 0 \leq j \leq n. \ \text{Computation of} \ L[i,j] \ \text{otherwise via} \ L[i,j] = \max(L[i-1,j-1] + \delta_{ij}, L[i,j-1], L[i-1,j]).$

[Dynamic Programming algorithm LCS]

Computation order

Rows increasing and within columns increasing (or the other way round).

Reconstruct solution?

Start with $j=m,\,i=n.$ If $a_i=b_j$ then output a_i and continue with $(j,i)\leftarrow(j-1,i-1);$ otherwise, if L[i,j]=L[i,j-1] continue with $j\leftarrow j-1$ otherwise, if L[i,j]=L[i-1,j] continue with $i\leftarrow i-1$. Terminate for i=0 or j=0.

[Analysis LCS]

- Number table entries: $(m+1) \cdot (n+1)$.
- Constant number of assignments and comparisons each. Number steps: $\mathcal{O}(mn)$
- Determination of solition: decrease i or j. Maximally $\mathcal{O}(n+m)$ steps.

Runtime overal:

 $\mathcal{O}(mn)$.

Minimal Editing Distance

Editing distance of two sequences $A_n = (a_1, \ldots, a_m)$, $B_m = (b_1, \ldots, b_m)$.

Editing operations:

- Insertion of a character
- Deletion of a character
- Replacement of a character

Question: how many editing operations at least required in order to transform string A into string B.

TIGER ZIGER ZIEGER ZIEGE

Minimal Editing Distance

Wanted: cheapest character-wise transformation $A_n \to B_m$ with costs

operation	Levenshtein	LCS ⁴⁰	general
Insert c	1	1	ins(c)
Delete c	1	1	del(c)
Replace $c \to c'$	$\mathbb{1}(c \neq c')$	$\infty \cdot \mathbb{1}(c \neq c')$	repl(c,c')

Beispiel

⁴⁰Longest common subsequence – A special case of an editing problem

DP

E(n,m) = mimimum number edit operations (ED cost) $a_{1...n} \rightarrow b_{1...m}$

Subproblems $E(i, j) = \text{ED von } a_{1...i}. \ b_{1...j}.$ $\#SP = n \cdot m$ $Costs\Theta(1)$

Guess

 $a_{1..i} \rightarrow a_{1...i-1}$ (delete)

 $a_{1..i} \rightarrow a_{1...i}b_i$ (insert)

 $a_{1..i} \rightarrow a_{1...i_1}b_i$ (replace)

Rekursion

$$E(i, j) = \min egin{cases} \mathsf{del}(a_i) + E(i-1, j), \\ \mathsf{ins}(b_j) + E(i, j-1), \\ \mathsf{repl}(a_i, b_j) + E(i-1, j-1) \end{cases}$$

DP

598

Dependencies



- ⇒ Computation from left top to bottom right. Row- or column-wise.
- Solution in E(n,m)

Example (Levenshtein Distance)

 $E[i,j] \leftarrow \min \{E[i-1,j]+1, E[i,j-1]+1, E[i-1,j-1]+1 (a_i \neq b_i)\}$

	Ø	Ζ	1	Ε	G 4 4 3 2 3 3	Ε
Ø	0	1	2	3	4	5
Т	1	1	2	3	4	5
- 1	2	2	1	2	3	4
G	3	3	2	2	2	3
Ε	4	4	3	2	3	2
R	5	5	4	3	3	3

Editing steps: from bottom right to top left, following the recursion. Bottom-Up description of the algorithm: exercise

Bottom-Up DP algorithm ED]

Dimension of the table? Semantics?

Table E[0, ..., m][0, ..., n]. E[i, j]: minimal edit distance of the strings $(a_1, ..., a_i)$ and $(b_1, ..., b_i)$

Computation of an entry

 $E[0,i] \leftarrow i \ \forall 0 \leq i \leq m, \ E[j,0] \leftarrow i \ \forall 0 \leq j \leq n.$ Computation of E[i,j]otherwise via E[i, j] = $\min\{\mathsf{del}(a_i) + E(i-1,j), \mathsf{ins}(b_j) + E(i,j-1), \mathsf{repl}(a_i,b_j) + E(i-1,j-1)\}$

Bottom-Up DP algorithm ED

Matrix-Chain-Multiplication

Computation order

Rows increasing and within columns increasing (or the other way round).

Reconstruct solution?

Start with $j=m,\,i=n.$ If $E[i,j]=\operatorname{repl}(a_i,b_j)+E(i-1,j-1)$ then output $a_i\to b_j$ and continue with $(j,i)\leftarrow (j-1,i-1);$ otherwise, if $E[i,j]=\operatorname{del}(a_i)+E(i-1,j)$ output $\operatorname{del}(a_i)$ and continue with $j\leftarrow j-1$ otherwise, if $E[i,j]=\operatorname{ins}(b_j)+E(i,j-1),$ continue with $i\leftarrow i-1$. Terminate for i=0 and j=0.

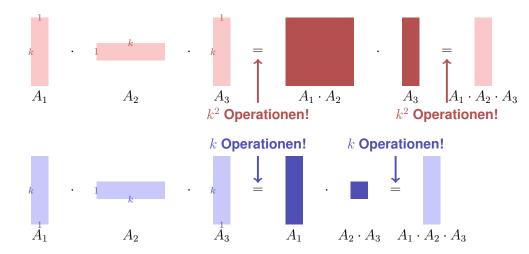
Task: Computation of the product $A_1 \cdot A_2 \cdot ... \cdot A_n$ of matrices A_1, \ldots, A_n .

Matrix multiplication is associative, i.e. the order of evalution can be chosen arbitrarily

Goal: efficient computation of the product.

Assumption: multiplicaiton of an $(r \times s)$ -matrix with an $(s \times u)$ -matrix provides costs $r \cdot s \cdot u$.

Does it matter?



Recursion

- Assume that the best possible computation of $(A_1 \cdot A_2 \cdots A_i)$ and $(A_{i+1} \cdot A_{i+2} \cdots A_n)$ is known for each i.
- \blacksquare Compute best i, done.

 $n \times n$ -table M. entry M[p,q] provides costs of the best possible bracketing $(A_p \cdot A_{p+1} \cdot \cdots \cdot A_q)$.

 $M[p,q] \leftarrow \min_{p \leq i < q} \left(M[p,i] + M[i+1,q] + \text{costs of the last multiplication} \right)$

Computation of the DP-table

- Base cases $M[p,p] \leftarrow 0$ for all $1 \le p \le n$.
- Computation of M[p,q] depends on M[i,j] with $p \le i \le j \le q$, $(i,j) \ne (p,q)$.

In particular M[p,q] depends at most from entries M[i,j] with i-j < q-p.

Consequence: fill the table from the diagonal.

Analysis

DP-table has n^2 entries. Computation of an entry requires considering up to n-1 other entries.

Overal runtime $\mathcal{O}(n^3)$.

Readout the order from M: exercise!

Digression: matrix multiplication

Consider the mulliplication of two $n \times n$ matrices.

Let

$$A = (a_{ij})_{1 \le i,j \le n}, B = (b_{ij})_{1 \le i,j \le n}, C = (c_{ij})_{1 \le i,j \le n},$$

 $C = A \cdot B$

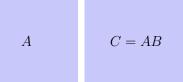
then

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

Naive algorithm requires $\Theta(n^3)$ elementary multiplications.

Divide and Conquer

B



 a
 b

 c
 d

e f ea+fc eb+fd ga+hc gb+hd

Divide and Conquer

- Assumption $n = 2^k$.
- Number of elementary multiplications: M(n) = 8M(n/2), M(1) = 1.
- yields $M(n) = 8^{\log_2 n} = n^{\log_2 8} = n^3$. No advantage

a	b
c	d

e	f	ea + fc	eb + fd
g	h	ga + hc	gb + hd

Strassen's Matrix Multiplication

■ Nontrivial observation by Strassen (1969):

It suffices to compute the seven products $A=(e+h)\cdot(a+d),\,B=(g+h)\cdot a,$ $C=e\cdot(b-d),\,D=h\cdot(c-a),\,E=(e+f)\cdot d,$ $F=(g-e)\cdot(a+b),\,G=(f-h)\cdot(c+d).$ Denn: $ea+fc=A+D-E+G,\,eb+fd=C+E,$

- 1. $\frac{e}{g}$
- This yields M'(n) = 7M(n/2), M'(1) = 1. Thus $M'(n) = 7^{\log_2 n} = n^{\log_2 7} \approx n^{2.807}$.

qa + hc = B + D, qb + hd = A - B + C + F.

■ Fastest currently known algorithm: $\mathcal{O}(n^{2.37})$

a	b
c	d

e	f	ea + fc	eb + fd
g	h	ga + hc	gb + hd