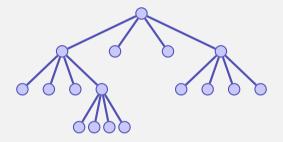
18. Quadtrees

Quadtrees, Collision Detection, Image Segmentation

Quadtree

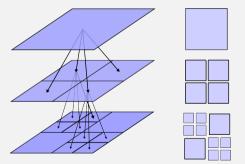
A quad tree is a tree of order 4.



... and as such it is not particularly interesting except when it is used for ...

Quadtree - Interpretation und Nutzen

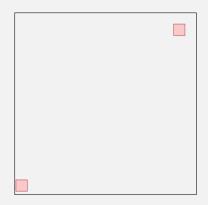
Separation of a two-dimensional range into 4 equally sized parts.



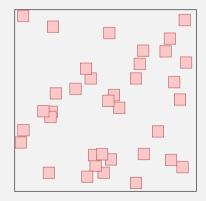
[analogously in three dimensions with an octtree (tree of order 8)]

Example 1: Collision Detection

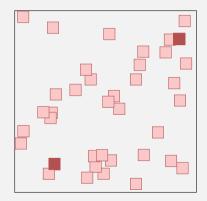
- Objects in the 2D-plane, e.g. particle simulation on the screen.
- Goal: collision detection



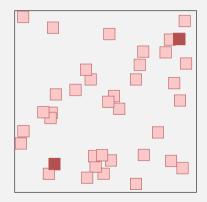
- Many objects: n² detections (naively)
- Improvement?



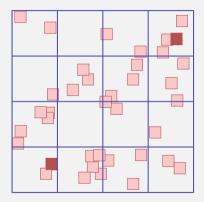
- Many objects: n² detections (naively)
- Improvement?
- Obviously: collision detection not required for objects far away from each other



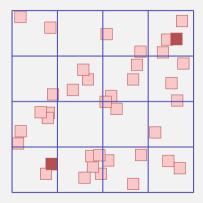
- Many objects: n² detections (naively)
- Improvement?
- Obviously: collision detection not required for objects far away from each other
- What is "far away"?



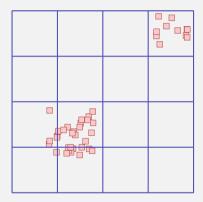
- Many objects: n² detections (naively)
- Improvement?
- Obviously: collision detection not required for objects far away from each other
- What is "far away"?
- Grid $(m \times m)$



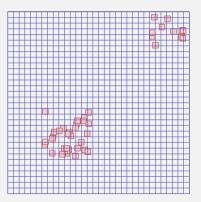
- Many objects: n² detections (naively)
- Improvement?
- Obviously: collision detection not required for objects far away from each other
- What is "far away"?
- Grid ($m \times m$)
- Collision detection per grid cell



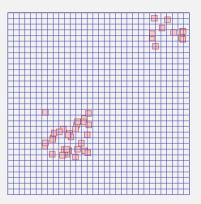
A grid often helps, but not alwaysImprovement?



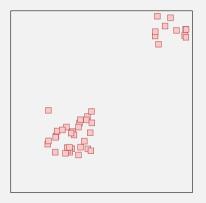
- A grid often helps, but not alwaysImprovement?
- More finegrained grid?



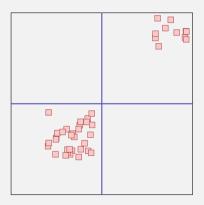
- A grid often helps, but not always
- Improvement?
- More finegrained grid?
- Too many grid cells!



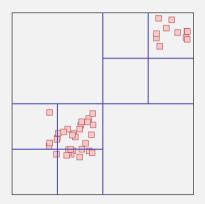
A grid often helps, but not alwaysImprovement?



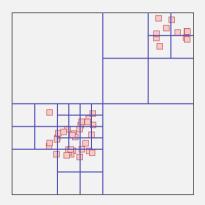
- A grid often helps, but not alwaysImprovement?
- Adaptively refine grid



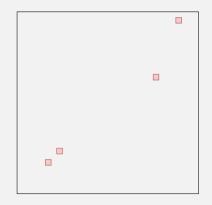
- A grid often helps, but not alwaysImprovement?
- Adaptively refine grid

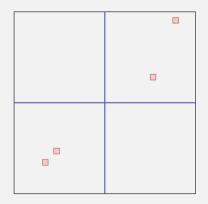


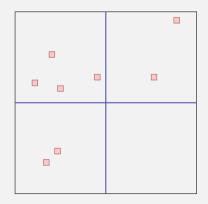
- A grid often helps, but not alwaysImprovement?
- Adaptively refine grid
- Quadtree!

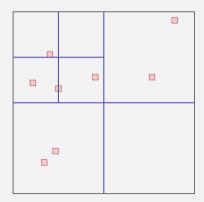


Quadtree starts with a single node

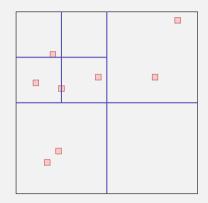






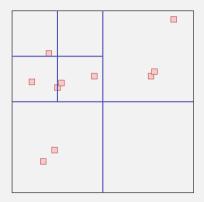


- Quadtree starts with a single node
- Objects are added to the node.
 When a node contains too many objects, the node is split.
- Objects that are on the boundary of the quadtree remain in the higher level node.

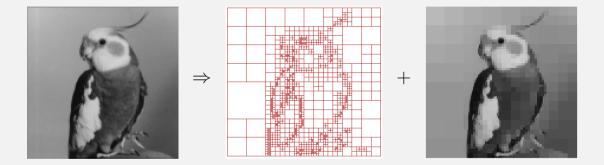


Algorithm: Collision Detection

Run through the quadtree in a recursive way. For each node test collision with all objects contained in the same or (recursively) contained nodes.

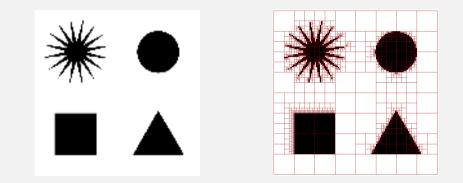


Example 2: Image Segmentation



(Possible applications: compression, denoising, edge detection)

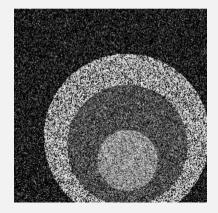
Quadtree on Monochrome Bitmap

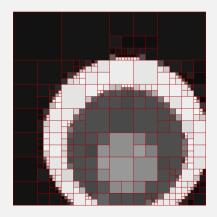


Similar procedure to generate the quadtree: split nodes recursively until each node only contains pixels of the same color.

Quadtree with Approximation

When there are more than two color values, the quadtree can get very large. \Rightarrow Compressed representation: *approximate* the image piecewise constant on the rectangles of a quadtree.





Piecewise Constant Approximation

(Grey-value) Image $z \in \mathbb{R}^S$ on pixel indices S. ³⁶ Rectangle $r \subset S$. Goal: determine

$$\arg\min_{x\in r}\sum_{s\in r}\left(z_s-x\right)^2$$

 $^{^{36}\}mbox{we}$ assume that S is a square with side length 2^k for some $k\geq 0$

Piecewise Constant Approximation

(Grey-value) Image $z \in \mathbb{R}^S$ on pixel indices S. ³⁶ Rectangle $r \subset S$. Goal: determine

$$\arg\min_{x\in r}\sum_{s\in r}\left(z_s-x\right)^2$$

Solution: the arithmetic mean $\mu_r = \frac{1}{|r|} \sum_{s \in r} z_s$

 $^{36} \mathrm{we}$ assume that S is a square with side length 2^k for some $k \geq 0$

Intermediate Result

The (w.r.t. mean squared error) best approximation

$$u_r = \frac{1}{|r|} \sum_{s \in r} z_s$$

and the corresponding error

$$\sum_{s \in r} (z_s - \mu_r)^2 =: ||z_r - \mu_r||_2^2$$

can be computed quickly after a $\mathcal{O}(|S|)$ tabulation: prefix sums!

Conflict

- As close as possible to the data ⇒ small rectangles, large quadtree. Extreme case: one node per pixel. Approximation = original
- Small amount of nodes ⇒ large rectangles, small quadtree Extreme case: a single rectangle. Approximation = a single grey value.

Which Quadtree?

Idea: choose between data fidelity and complexity with a regularisation parameter $\gamma \geq 0$

Choose quadtree T with leaves $^{\rm 37}$ L(T) such that it minimizes the following function

$$H_{\gamma}(T,z) := \gamma \cdot \underbrace{|L(T)|}_{\text{Number of Leaves}} + \underbrace{\sum_{r \in L(T)} ||z_r - \mu_r||_2^2}_{\text{Number of Leaves}}$$

Cummulative approximation error of all leaves

³⁷here: leaf: node with null-children

Let T be a quadtree over a rectangle S_T and let $T_{ll}, T_{lr}, T_{ul}, T_{ur}$ be the four possible sub-trees and

$$\widehat{H}_{\gamma}(T,z) := \min_{T} \gamma \cdot |L(T)| + \sum_{r \in L(T)} \|z_r - \mu_r\|_2^2$$

Extreme cases: $\gamma = 0 \Rightarrow$ original data; $\gamma \to \infty \Rightarrow$ a single rectangle

Observation: Recursion

If the (sub-)quadtree T represents only one pixel, then it cannot be split and it holds that

$$\widehat{H}_{\gamma}(T,z) = \gamma$$

Let, otherwise,

$$M_{1} := \gamma + \|z_{S_{T}} - \mu_{S_{T}}\|_{2}^{2}$$

$$M_{2} := \widehat{H}_{\gamma}(T_{ll}, z) + \widehat{H}_{\gamma}(T_{lr}, z) + \widehat{H}_{\gamma}(T_{ul}, z) + \widehat{H}_{\gamma}(T_{ur}, z)$$

then

$$\widehat{H}_{\gamma}(T,z) = \min\{\underbrace{M_1(T,\gamma,z)}_{\text{no split}},\underbrace{M_2(T,\gamma,z)}_{\text{split}}\}$$

Algorithmus: Minimize(z,r, γ)

Input: Image data $z \in \mathbb{R}^S$, rectangle $r \subset S$, regularization $\gamma > 0$ **Output:** $\min_T \gamma |L(T)| + ||z - \mu_{L(T)}||_2^2$ if |r| = 0 then return 0 $m \leftarrow \gamma + \sum_{s \in r} \left(z_s - \mu_r \right)^2$ if |r| > 1 then Split r into $r_{ll}, r_{lr}, r_{ul}, r_{ur}$ $m_1 \leftarrow \text{Minimize}(z, r_{ll}, \gamma); m_2 \leftarrow \text{Minimize}(z, r_{lr}, \gamma)$ $m_3 \leftarrow \text{Minimize}(z, r_{ul}, \gamma); m_4 \leftarrow \text{Minimize}(z, r_{ur}, \gamma)$ $m' \leftarrow m_1 + m_2 + m_3 + m_4$ else $m' \leftarrow \infty$ if m' < m then $m \leftarrow m'$ return m

The minimization algorithm over dyadic partitions (quadtrees) takes $\mathcal{O}(|S|\log|S|)$ steps.

Application: Denoising (with addditional Wedgelets)

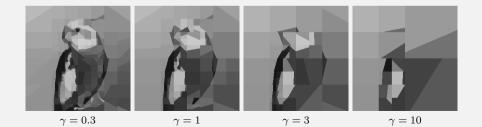
noised

 $\gamma = 0.003$

 $\gamma = 0.01$

 $\gamma = 0.03$

 $\gamma = 0.1$



Extensions: Affine Regression + Wedgelets

no quadtree: hierarchical one-dimensional modell (requires dynamic programming)

