16. Binary Search Trees

[Ottman/Widmayer, Kap. 5.1, Cormen et al, Kap. 12.1 - 12.3]

Dictionary implementation

Hashing: implementation of dictionaries with expected very fast
access times.

Disadvantages of hashing:

Dictionary implementation

Hashing: implementation of dictionaries with expected very fast
access times.

Disadvantages of hashing: linear access time in worst case. Some
operations not supported at all:

B enumerate keys in increasing order

Dictionary implementation

Hashing: implementation of dictionaries with expected very fast
access times.

Disadvantages of hashing: linear access time in worst case. Some
operations not supported at all:

B enumerate keys in increasing order

m next smallest key to given key

Dictionary implementation

Hashing: implementation of dictionaries with expected very fast
access times.

Disadvantages of hashing: linear access time in worst case. Some
operations not supported at all:

B enumerate keys in increasing order

m next smallest key to given key

m Key k in given interval k € [, 7]

Trees

Trees are

m Generalized lists: nodes can have more than one successor

m Special graphs: graphs consist of nodes and edges. A tree is a
fully connected, directed, acyclic graph.

Trees

Use

m Decision trees: hierarchic representation of
decision rules

m syntax trees: parsing and traversing of
expressions, e.g. in a compiler

m Code tress: representation of a code, e.g.
morse alphabet, huffman code

m Search trees: allow efficient searching for an
element by value

Examples

short long

(—E/Start\T—)

/ N\ / N\ / N\ / N\
/0 W WA W W 0 W A WY A W A

HHHHHHHHHHHHHHHHH

AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA

Morsealphabet

Examples

3/5+ 7.0
+
/N
/ 7.0
/\
3 5

Expression tree

Nomenclature

Wurzel

|

w

%E%em\
I N N
(Dag e /1N LN /N /N
AN A TSN

m Order of the tree: maximum number of child nodes, here: 3
m Height of the tree: maximum path length root — leaf (here: 4)

471

Binary Trees

A binary tree is

m either a leaf, i.e. an empty tree,

m or an inner leaf with two trees 1; (left subtree) and T, (right
subtree) as left and right successor.

In each inner node v we store key
left | right

m a key v.key and
m two nodes v.1left and v.right to the roots of the left and right
subtree.

a leaf is represented by the null-pointer

Binary search tree

A binary search tree is a binary tree that fulfils the search tree
property:

m Every node v stores a key

m Keys in left subtree v.1left are smaller than v.key

m Keys in right subtree v.right are greater than v.key

7 / \18
5/ \10 17/ \30
A \

2 99

Searching

Input: Binary search tree with root r, key £
Output: Node v with v.key = £ or null
VT
while v # null do
if £ = v.key then
| return v
else if k£ < v.key then
| v vleft
else
| v <4 v.right

return null

Searching

Input: Binary search tree with root r, key £
Output: Node v with v.key = £ or null
VT
while v # null do
if £ = v.key then
| return v
else if k£ < v.key then
| v vleft
else
| v <4 v.right

return null

4 / 8 \13
10/ \19
/

9
Search (12)

Searching

Input: Binary search tree with root r, key £
Output: Node v with v.key = £ or null
VT
while v # null do
if £ = v.key then
| return v
else if k£ < v.key then
| v vleft
else
| v <4 v.right

return null

4 / | \13
10/ \19
I\

Search (12)

Searching

Input: Binary search tree with root r, key £
Output: Node v with v.key = £ or null
VT
while v # null do
if £ = v.key then
| return v
else if k£ < v.key then
| v vleft
else
| v <4 v.right

return null

4 / | \13
10/ \19
I\

Search (12) — null

Height of a tree

The height h(T") of a binary tree T" with root r is given by

() {o if — null

1 + max{h(rleft), h(r.right)} otherwise.

The worst case run time of the search is thus O(h(T))

Insertion of a key

Insertion of the key &

m Search for k£

m If successful search: output
error

m Of no success: insert the key at
the leaf reached

Insert (5)

Remove node

Three cases possible:

m Node has no children
m Node has one child

m Node has two children

[Leaves do not count here]

e
\5
/

9

,
10/

/

3

\

19

Remove node

Node has no children
Simple case: replace node by leaf.

8
3 / \13
remove(4)
N\, /N =
10 19

5

/]

4 9

Remove node

Node has one child

Also simple: replace node by single child.

8
3/ \13
\, S\
10 19

5

/]

4 9

/

N

10

/ N\

19

Remove node

The following observation helps: the
smallest key in the right subtree v.right
(the symmetric successor of v)

m is smaller than all keys in v.right
m is greater than all keys in v.1left
m and cannot have a left child.

Solution: replace v by its symmetric suc-
Cessor.

By symmetry...

Also possible: replace v by its symmetric
predecessor.

AN
\§ED /10/ N\

4 9

13

19

Algorithm SymmetricSuccessor(v)

Input: Node v of a binary search tree.
Output: Symmetric successor of v
w <— v.right
x 4 w.left
while x # null do
W x
x < x.left

return w

Analysis

Deletion of an element v from a tree T requires O(h(T))
fundamental steps:

m Finding v has costs O(h(T))

m If v has maximal one child unequal to nullthen removal takes
O(1) steps

m Finding the symmetric successor n of v takes O(h(T")) steps.
Removal and insertion of n takes O(1) steps.

Traversal possibilities

m preorder: v, then T (v), then
Tright(”)-

3

\

19

/

9

N
\5 10/
4/

Traversal possibilities

m preorder: v, then T (v), then

Tright(v)-
8,3,5,4,13,10,9, 19

e
\5
/

N
10/

/

9

)

\

19

Traversal possibilities

m preorder: v, then T (v), then

Tright(v)-
8,3,5,4,13,10,9, 19

m postorder: Ti(v), then Tiigne (v), then
V.

e
\5
/

N
10/

/

9

)

\

19

Traversal possibilities

m preorder: v, then T (v), then
Tright(v)-
8,3,5,4,13,10,9, 19

m postorder: Ti(v), then Tiigne (v), then

v.
4,5,3,9,10,19,13, 8

Traversal possibilities

m preorder: v, then T (v), then

Tright(v)- 8
8,3,5,4,13,10,9, 19 N
m postorder: T (v), then Thigy (v), then ° &2
v. \5 10/ \19
4,5,3,9,10,19,13, 8 / /
4 9

m inorder: T (v), then v, then Tiign:(v).

Traversal possibilities

m preorder: v, then T (v), then
Tright(v)-
8,3,5,4,13,10,9, 19

m postorder: Ti(v), then Tiigne (v), then
V.

4,5,3,9,10,19, 13, 8

m inorder: T (v), then v, then Tiign:(v).
3,4,5,8,9,10, 13, 19

e
\5
/

9

N
10/

/

\

3
19

Further supported operations

m Min(7T'): Read-out minimal value in
O(h)

m ExtractMin(7): Read-out and remove
minimal value in O(h)

m List(7"): Output the sorted list of
elements

m Join(71,T5): Merge two trees with
max(77) < min(73) in O(n).

e
\5
/

9

™
10/

/

3

\

19

Degenerated search trees

4
/ &
/ 9\ /\8\
5 13 / 9
"N /g
4 8 10 19 / \
Insert 9,5,13,4,8,10,19 13\
ideally balanced / 19

Insert 4,5,8,9,10,13,19
linear list

19
 \

10/ \

9/ \

B
5/ \
4/ \
Insert 19,13,10,9,8,5,4
linear list

Probabilistically

A search tree constructed from a random sequence of numbers
provides an an expected path length of O(logn).

Attention: this only holds for insertions. If the tree is constructed by
random insertions and deletions, the expected path length is O(y/n).

Balanced trees make sure (e.g. with rotations) during insertion or
deletion that the tree stays balanced and provide a O(log n)
Worst-case guarantee.

17. AVL Trees

Balanced Trees [Ottman/Widmayer, Kap. 5.2-5.2.1, Cormen et al,
Kap. Problem 13-3]

488

Objective

Searching, insertion and removal of a key in a tree generated from n
keys inserted in random order takes expected number of steps
O(logyn).

But worst case O(n) (degenerated tree).

Goal: avoidance of degeneration. Artificial balancing of the tree for
each update-operation of a tree.

Balancing: guarantee that a tree with n nodes always has a height of
O(logn).

Adelson-Venskii and Landis (1962): AVL-Trees

Balance of a node

The height balance of a node v is de-
fined as the height difference of its
sub-trees Tj(v) and 7T,.(v) hy

bal(v) := h(T:(v)) = h(Ti(v))

AVL Condition

AVL Condition: for eacn node v of a
tree bal(v) € {—1,0,1}

(Counter-)Examples

/' \
/' \
\ /N
I\ I\
/\
AVL tree with height
2 AVL tree with height

3

/' \
[\ [
/\

No AVL tree

Number of Leaves

m 1. observation: a binary search tree with n keys provides exactly
n + 1 leaves. Simple induction argument.

m The binary search tree with n = 0 keys has m = 1 leaves
m When a key is added (n — n + 1), then it replaces a leaf and adds two
newleafs(m - m—1+2=m+1).

m 2. observation: a lower bound of the number of leaves in a search
tree with given height implies an upper bound of the height of a
search tree with given number of keys.

Lower bound of the leaves

/ N\

AVL tree with height 1 has
N(1) := 2 leaves.

/N /\
/\ /\
/' \

/\ 7\

AVL tree with height 2 has
at least N(2) := 3 leaves.

Lower bound of the leaves for h > 2

m Height of one subtree > 1 — 1. b9 h_1
m Height of the other subtree > h — 2.
Minimal number of leaves N (h) is

N(h) = N(h—1)+ N(h—2) Ti(v)

Overal we have N (h) = Fj,» with Fibonacci-numbers Fy := 0,
F,=1,F,=F, 1+ F,_forn>1.

495

Fibonacci Numbers, closed Form

It holds that®®

with the roots ¢, gb of the golden ratio equation 2> — z — 1 = 0:
1++/5
2

1 —4/5
2\/_ ~ —0.618

~ 1.618

S
I

-
I

28Derivation using generating functions (power series) in the appendix.

Fibonacci Numbers, Inductive Proof
RLk-4) (0= 55,6 = 155).

Immediate fori = 0,7 = 1.

S

M‘

Let i > 2 and claim [*] true for all £}, j < i.

M 1
NG
i—1 i—2 _i -1 | 7i—2 :L i—2 _LAFQ 2

¢+ 077) \/5(¢ +¢'7) \/gd) (¢+1) \/5¢ (¢+1)

def

FE=F +F ,=——=(¢" - éi_l) + T(Cbi_Q - ng'—2>

— ﬁ(
(o, qu fulfil z + 1 = 22)

497

Tree Height

Because |¢| < 1, overal we have

h
N(h)€© ((1 +2‘/5>) C Q(1.618")

and thus

N(h) > c-1.618"
= h<144logyn+c.

An AVL tree is asymptotically not more than 44% higher than a
perfectly balanced tree.?®

29The perfectly balanced tree has a height of [logy 1 + 1]

Insertion

Balance

m Keep the balance stored in each node
m Re-balance the tree in each update-operation

New node n is inserted:

m Insert the node as for a search tree.
m Check the balance condition increasing from n to the root.

Balance at Insertion Point

/N /N ANEVAN
ANANA ANEERAR A
case 1: bal(p) = +1 case 2: bal(p) = —1

Finished in both cases because the subtree height did not change

Balance at Insertion Point

/N /N /N /N
— /\ —/\
case 3.1: bal(p) = 0 right case 3.2: bal(p) = 0, left

Not finished in both case. Call of upin(p)

upin(p) - invariant

When upin(p) is called it holds that

m the subtree from p is grown and
m bal(p) € {—1,+1}

502

upin(p)

Assumption: p is left son of pp*°
P 1; < P 7 O\ P I; 0\ p 7 <
ANEEREA ANEERA

case 1: bal(pp) = +1, done. case 2: bal(pp) = 0, upin (pp)

In both cases the AVL-Condition holds for the subtree from pp

301f p is a right son: symmetric cases with exchange of +1 and —1

upin(p)
Assumption: p is left son of pp
pp =il
o \

case 3: bal(pp) = —1,

This case is problematic: adding n to the subtree from pp has
violated the AVL-condition. Re-balance!

Two cases bal(p) = —1, bal(p) = +1

Rotations

case 1.1 bal(p) = —1. ¥
e k
pp Y —2
N
7\ —
t rotation
S right
to
tl h—1
h h

31p right son: = bal(pp) = bal(p) = +1, left rotation

Rotations

case 1.1 bal(p) = —1. %

h_+_2
pp z -2
P X +1
/ hY —1/+1
h—1
t
A A= e
h—1
h h—1 h—2
h—2 h—1

pp Y 0
— T 0/-1 Z +1/0
double / \ / \
| rotation
left-right
9 to t3
t1 17}
h—1 h—1 h—2 h—1
h—2 h—1

32p right son = bal(pp) = +1, bal(p) = —1, double rotation right left

Analysis

m Tree height: O(logn).

m Insertion like in binary search tree.

m Balancing via recursion from node to the root. Maximal path
lenght O(log n).

Insertion in an AVL-tree provides run time costs of O(logn).

Deletion

Case 1: Children of node n are both leaves Let p be parent node of
n. = Other subtree has height h’ = 0, 1 or 2.

m 1/ = 1: Adapt bal(p).
m 7/ = 0: Adapt bal(p). Call upout (p).
m i/ = 2: Rebalanciere des Teilbaumes. Call upout (p).

N ZaN
2

h=0,1,2 h=0,1,2

Deletion

Case 2: one child k£ of node n is an inner node

m Replace n by k. upout (k)

N\ N
N /\
/ \

Deletion

Case 3: both children of node n are inner nodes

m Replace n by symmetric successor. upout (k)
m Deletion of the symmetric successor is as in case 1 or 2.

upout (p)

Let pp be the parent node of p.
(a) p left child of pp

bal(pp) = —1 = bal(pp) < 0. upout (pp)
bal(pp) =0 = bal(pp) < +1.
bal(pp) = +1 = next slides.

(b) p right child of pp: Symmetric cases exchanging +1 and —1.

upout (p)

Case (a).3: bal(pp) = +1. Let g be brother of p
(a).3.1: bal(q) = 0.8

s)
1/ \2 () Left F?tatay) / x\o

h—1 h—1 1 9 4
3 4 h—1 h—1 h+1

h+1 h+1

33(b).3.1: bal(pp) = —1, bal(q) = —1, Right rotation 519

upout (p)

Case (a).3: bal(pp) = +1. (a).3.2: bal(q) = +1.3*

o\ N
/N /N . N\

Left Rotate(y) / \

h—1 h—1 h h+1

plus upout (r).

34(b).3.2: bal(pp) = —1, bal(g) = +1, Right rotation+upout

upout (p)
Case (a).3: bal(pp) = +1. (a).3.3: bal(q) = —1.%

P PN
/N N AN /N
\

/ Rotate right / \
- (z) left (y)
h—1 h—1 5 1 9 3 4 5
- - h
3 4 h h—1 h—1
plus upout (r).
35(b).3.3: bal(pp) = —1, bal(q) = —1, left-right rotation + upout

Conclusion

m AVL trees have worst-case asymptotic runtimes of O(logn) for
searching, insertion and deletion of keys.

m Insertion and deletion is relatively involved and an overkill for
really small problems.

17.5 Appendix

Derivation of some mathemmatical formulas

[Fibonacci Numbers: closed form]

Closed form of the Fibonacci numbers: computation via generation
functions:

Power series approach

[Fibonacci Numbers: closed form]

For Fibonacci Numbers it holds that o =0, F; =1,
F,=F,_1+4+ F;,_5Vi> 1. Therefore:

f(x)=:U+Zﬂ-xi:x+ZEf1-xi+ZFz‘,g-xi
=2 1=2 1=2

(0.¢] (0. ¢]
::U+aig E_l-a:’_1+x2§ F_o 272
=2 0=

:x+x§:F¢-xi+x2§:Fi-xi
i=0 i=0

=x+z- f(z)+2° f(x).

[Fibonacci Numbers: closed form]

Thus:
flz)-(1—z—2%) ==z

& fx) & &

:1—x—x2__ac2+x—1

with the roots —¢ and —¢ of 22 + = — 1,

1+5 . 1-+/5
o= +\/_z1.6, P = \/_z—0.6.
2 2
it holds that ¢ - ¢ = —1 and thus
X X
flz) =— =

(@+¢)-(x+d) (1—¢x) (1—da)

[Fibonacci Numbers: closed form]

It holds that:)
(1—¢z)—(1—¢z) =V5- 2.

Damit:

1 (1—dz)—(1-¢x)

0= 75 1= ga) (1= 40)

B 1(11)
VB \1—¢z 1—@:1;

[Fibonacci Numbers: closed form]

Power series of g,(z) = (a € R):

1

l—a-x
1 (0.¢]

1-a-x Z(;

E.g. Taylor series of g,(z) at z = 0 or like this: Let > ., G; -z’ a power
series of g. By the identity g,(z)(1 — a -) = 1 it holds that for all z (within
the radius of convergence)

1:§:Gi-xi—a-§:Gi-x G0+Z i—a-Giq)-
i=0 i=0

For x = 0 it follows Gy = 1 and for = # 0 it follows then that G, = a - G;,_; =
Gi = Cli.

[Fibonacci Numbers: closed form]

@ Fill in the power series:

1 1 1 1 3 it — S bt

f(x)_\/_(l—qu —¢2x>_ﬁ<;¢ iz(;¢ >
~ 1
:Zﬁ(qﬁ—aﬁ)x

I
o

]

Comparison of the coefficients with f(z) = >_°, F; - 2 yields

L g 7
Fi:ﬁ(aﬁ ')

	Binary Search Trees
	Trees
	Search Trees
	Key Insertion
	Remove Key
	Tree Traversal

	AVL Trees
	Balance
	AVL Condition
	Fibonacci Numbers
	AVL Insert
	Appendix

