16. Binary Search Trees

[Ottman/Widmayer, Kap. 5.1, Cormen et al, Kap. 12.1 - 12.3]

465

Trees

Trees are

m Generalized lists: nodes can have more than one successor

m Special graphs: graphs consist of nodes and edges. A tree is a
fully connected, directed, acyclic graph.

467

Dictionary implementation

Hashing: implementation of dictionaries with expected very fast
access times.

Disadvantages of hashing: linear access time in worst case. Some
operations not supported at all:

m enumerate keys in increasing order
m next smallest key to given key
m Key k in given interval k € [I,r]

Trees

Use

m Decision trees: hierarchic representation of
decision rules

m syntax trees: parsing and traversing of
expressions, e.g. in a compiler

m Code tress: representation of a code, e.g.
morse alphabet, huffman code

m Search trees: allow efficient searching for an
element by value

466

Examples

short |ong
start

/ \
N N
/ \ /N /N / N\
/\ /\ /R\ /W\ /D\ /K\ /G\ /O\

H Vv F U L A P B X € Y Z Q O CH

AYASAVAVAVAVAVAVAYATAYAYAVAVL

Morsealphabet

469

Nomenclature
Wurzel
|
e N
Inner noae E — ren
/ I \ / I \ K <—Chi|d/ | \

ASNVANVINVA
MMM A Ny |

leaves—
m Order of the tree: maximum number of child nodes, here: 3
m Height of the tree: maximum path length root — leaf (here: 4)

471

Examples

3/54 7.0
+
/N
/ 7.0
/\
3 5

Expression tree

Binary Trees

A binary tree is

m either a leaf, i.e. an empty tree,

m or an inner leaf with two trees T; (left subtree) and T, (right
subtree) as left and right successor.

In each inner node v we store key
left right

m a key v.key and
m two nodes v.left and v.right to the roots of the left and right
subtree.

a leaf is represented by the null-pointer

472

Binary search tree

A binary search tree is a binary tree that fulfils the search tree
property:
m Every node v stores a key

m Keys in left subtree v.1left are smaller than v.key
m Keys in right subtree v.right are greater than v.key

7/ \18
5/ \10
[]\ \

2

Height of a tree

The height h(7T') of a binary tree 1" with root r is given by

0 if » = null
h(r) = : .
1 + max{h(r.left), h(r.right)} otherwise.

The worst case run time of the search is thus O(h(7"))

Searching

Input: Binary search tree with root 7, key k&

Output: Node v with v.key = k or null
VT
while v # null do
if & = v.key then
| return v
else if k£ < v.key then
I v v.left
else
| v < v.right

return null

Insertion of a key

Insertion of the key k

m Search for k

m If successful search: output
error

m Of no success: insert the key at
the leaf reached

4/8\13

10/ \19
J\

Search (12) — null

4 / | \13
\5 10/

/

9
Insert (5)

\

19

Remove node

Three cases possible:

m Node has no children
m Node has one child

m Node has two children

\

19

/

9

8
/ \
& 13
\ /
5] 10
[Leaves do not count here] 4/

477

Remove node

Node has one child
Also simple: replace node by single child.

3 / 8 \13
\ 10/ \19

5)

/] /

4 9 9

remove(3) >
— /

Remove node

Node has no children
Simple case: replace node by leaf.

8
3 / \13
remove(4)
AN =
10 19

5

/[/

4 ¢ 9

Remove node

Node v has two children

The following observation helps: the
smallest key in the right subtree v.right
(the symmetric successor of v) 3 13

m is smaller than all keys in v.right
m is greater than all keys in v.left
m and cannot have a left child.

Solution: replace v by its symmetric suc-
cessor.

480

By symmetry...
3 13
Also possible: replace v by its symmetric /' \l
predecessor. 10 19
/
4 9
Analysis

Deletion of an element v from a tree 7" requires O(h(T))

fundamental steps:

m Finding v has costs O(h(T))

m If v has maximal one child unequal to nullthen removal takes
O(1) steps

m Finding the symmetric successor n of v takes O(h(T")) steps.
Removal and insertion of n takes O(1) steps.

483

Algorithm SymmetricSuccessor(v)

Input: Node v of a binary search tree.
Output: Symmetric successor of v

w 4— v.right

T <+ w.left

while z # null do

W T

T < x.left

return w

Traversal possibilities

m preorder: v, then Ti.(v), then
CTlright(v)-
8,3,5,4,13,10,9, 19

m postorder: Tie (v), then Thigne(v), then
v.

4,5,3,9,10,19, 13,8

m inorder: Tics(v), then v, then Tign: (v).
3,4,5,8,9,10,13, 19

3

\

19

/

9

3 / 8 \1
\5 10/
4/

484

Further supported operations

m Min(7T"): Read-out minimal value in
O(h)

m ExtractMin(7"): Read-out and remove
minimal value in O(h)

m List(7): Output the sorted list of
elements

m Join(71,T5): Merge two trees with
max(77) < min(73) in O(n).

Probabilistically

A search tree constructed from a random sequence of numbers

3/8
\5
/

provides an an expected path length of O(logn).

Attention: this only holds for insertions. If the tree is constructed by
random insertions and deletions, the expected path length is O(\/n).

Balanced trees make sure (e.g. with rotations) during insertion or

9

N
10/

/

\

deletion that the tree stays balanced and provide a O(logn)

Worst-case guarantee.

19

485

487

Degenerated search trees

/4\5 13/19\
9 / \8 10/ \
N\ /N A\
4/ \8 10/ \19 / \10 8/ \

/) /\
Insert 9,5,13,4,8,10,19 13\ /5
ideally balanced / m 4 \
Insert 4,5,8,9,10,13,19 Insert 19,13,10,9,8,5,4
linear list linear list

486

17. AVL Trees

Balanced Trees [Ottman/Widmayer, Kap. 5.2-5.2.1, Cormen et al,
Kap. Problem 13-3]

488

Objective

Searching, insertion and removal of a key in a tree generated from n
keys inserted in random order takes expected number of steps
O(logy n).

But worst case ©(n) (degenerated tree).

Goal: avoidance of degeneration. Artificial balancing of the tree for
each update-operation of a tree.

Balancing: guarantee that a tree with n nodes always has a height of
O(logn).

Adelson-Venskii and Landis (1962): AVL-Trees

489

AVL Condition
h+2
’U _
h h+1
AVL Condition: for eacn node v of a
tree bal(v) € {—1,0,1}
Ti(v)
T.(v) 1 |

491

Balance of a node

The height balance of a node v is de-
fined as the height difference of its
sub-trees T;(v) and T,.(v) hy

bal(v) := h(T,(v)) — h(Ti(v))

(Counter-)Examples

/' \
/' \
\ /N
/\ 7\
/\
AVL tree with height
) AVL tree with height

3

490

/' \
A,
/\

No AVL tree

492

Number of Leaves

m 1. observation: a binary search tree with n keys provides exactly
n + 1 leaves. Simple induction argument.

m The binary search tree with n = 0 keys has m = 1 leaves
m When a key is added (n — n + 1), then it replaces a leaf and adds two
newleafs (m - m—14+2=m+1).

m 2. observation: a lower bound of the number of leaves in a search
tree with given height implies an upper bound of the height of a
search tree with given number of keys.

493

Lower bound of the leaves for i > 2

m Height of one subtree > h — 1. h_9 ho1
m Height of the other subtree > h — 2.
Minimal number of leaves N (h) is

N(h) =N(h—1)+ N(h—2) Ti(v)

Overal we have N(h) = F},2 with Fibonacci-numbers Fy := 0,
F=1F,=F,_1+F,_oforn > 1.

495

Lower bound of the leaves

/N /\
/\ /\
/' \
[\ 7\

AVL tree with height 2 has
at least N(2) := 3 leaves.

/' N\

AVL tree with height 1 has
N(1) := 2 leaves.

494

Fibonacci Numbers, closed Form

It holds that®®
Fi= (¢~)
RV

with the roots ¢, ¢ of the golden ratio equation 2> — z — 1 = 0:

145
2
1-+/5
2

~ 1.618

¢

~ —0.018

RS
I

28Derivation usin enerating functions (power series) in the appendix.
496

Fibonacci Numbers, Inductive Proof
Liw-d) I (0= 1550 =1555).
Immediate for: = 0,7 = 1.

Let i > 2 and claim [«] true for all F}, j < i.

def M R RN N SPTAT S tar,
Fz - Fz—l +E—2 \/5(¢ ¢)+ \/g<¢ (b)
_ i i—1 i—2 _L 2i—1 1i—2\ _ i i—2 _i%‘—z 2
—\/5(¢> +¢"7) \/5(525 +¢'77) \/5¢ (¢ +1) \/5925 (0 +1)
(¢, ¢ fulfil z + 1 = 22)
=) — G = (6 — §)
VA f V5 '
Insertion
Balance

m Keep the balance stored in each node
m Re-balance the tree in each update-operation

New node n is inserted:

m Insert the node as for a search tree.
m Check the balance condition increasing from n to the root.

499

Tree Height

Because |¢| < 1, overal we have
148"
N(h) € © ((+2)) C Q(1.618")

N(h) > c-1.618"
= h<144logyn +¢.

and thus

An AVL tree is asymptotically not more than 44% higher than a
perfectly balanced tree.?®

29The perfectly balanced tree has a height of [log, n + 1]

Balance at Insertion Point

/N N /\
AT /\

case 1: bal(p) = +1

—/

/)
\ /)
—1

case 2: bal(p) =

Finished in both cases because the subtree height did not change

500

Balance at Insertion Point

. N
=\

case 3.2: bal(p) = 0, left

/NN /\
= N

case 3.1: bal(p) = 0 right

Not finished in both case. Call of upin(p)

501

upin(p)

Assumption: p is left son of pp®°
Pl 41

VANEEVAN VANEIVAN
ANEEERAY /AN A

case 1: bal(pp) = +1, done. case 2: bal(pp) = 0, upin(pp)

In both cases the AVL-Condition holds for the subtree from pp

301f p is a right son: symmetric cases with exchange of +1 and —1
503

upin(p) - invariant

When upin(p) is called it holds that

m the subtree from p is grown and
m bal(p) € {—1,+1}

502

upin(p)

Assumption: p is left son of pp

AN
/\

case 3: bal(pp) = —1,

This case is problematic: adding n to the subtree from pp has
violated the AVL-condition. Re-balance!

Two cases bal(p) = —1, bal(p) = +1

504

Rotations

case 1.1 bal(p) = —1. 3

h+2 h

Y 2 h+1
/ \ T w T 0
pxr -1 / \
/ \ e Py o
s rotation / \
W1 right
lo
h—1 ty o ts
L b T h—1 h—1
h
31p right son: = bal(pp) = bal(p) = +1, left rotation
Analysis

m Tree height: O(logn).

m Insertion like in binary search tree.

m Balancing via recursion from node to the root. Maximal path
lenght O(logn).

Insertion in an AVL-tree provides run time costs of O(logn).

h+1

505

507

Rotations

case 1.1 bal(p) = —1. 32

h+2 h

oz —2 h+t1
/ \ pp Y 0 T
p T +1 / \
\ — x 0/—-1 Z +1/0
5. G double / \ / \
/ \\ ta | rotation
"=l left-right
1 D) t3
o t2 t3 tl t4 |
L h—1 h—1 h— h—1
h—1 h—2 h—2 h—1
h—2 h—1
32 right son = bal(pp) = +1, bal(p) = —1, double rotation right left
506
Deletion

Case 1: Children of node n are both leaves Let p be parent node of

n. = Other subtree has height »’ =0, 1 or 2.

m 7/ = 1: Adapt bal(p).
m A/ = 0: Adapt bal(p). Call upout (p).
m 1/ = 2: Rebalanciere des Teilbaumes. Call upout (p).

N N
SN

h=0,1,2 h=0,1,2

508

Deletion

Case 2: one child k£ of node n is an inner node

m Replace n by k. upout (k)

N N

8 AN
/\

upout (p)

Let pp be the parent node of p.
(a) p left child of pp

b bal(pp) = —1 = bal(pp) < 0. upout (pp)
bal(pp) =0 = bal(pp) < +1.
bal(pp) = +1 = next slides.

(b) p right child of pp: Symmetric cases exchanging +1 and —1.

509

511

Deletion

Case 3: both children of node n are inner nodes

m Replace n by symmetric successor. upout (k)
m Deletion of the symmetric successor is as in case 1 or 2.

upout (p)

Case (a).3: bal(pp) = +1. Let g be brother of p
(a).3.1: bal(q) = 0.3

p Y 41 /// \\
/ \ Yy +1
plx 0 alz o0 //’ \\

/' N/ \ — @0

.) Left Rotate(y) / \

h—1 h—1 1 9 4
3 4 h—1 h—1 h+1

h+1 h+1

33(b).3.1: bal(pp) 1, bal(q) 1, Right rotation 512

upout (p)
Case (a).3: bal(pp) = +1. (a).3.2: bal(q) = +1.34

Y 1 rz o
/7 N\ /7 N\
P T 0 9z +1 Yy o
ANIVAN . N\
1 2 Left Rotate(y) / \
h—-1 h—1 3 ;) 5 4
h 4 h—1 h-1 h h+1
hi1 plus upout (r).
34(b).3.2: bal(pp) = —1, bal(q) = +1, Right rotation+upout
13
Conclusion

m AVL trees have worst-case asymptotic runtimes of O(logn) for
searching, insertion and deletion of keys.

m Insertion and deletion is relatively involved and an overkill for
really small problems.

515

upout (p)
Case (a).3: bal(pp) = +1. (a).3.3: bal(q) = —1.%
p Y +1 yo/ \Z

SN o 2NN
N\

Rotate right
(2) left (y)

/\

h h—1 h—1 h

plus upout (r).

35(b).3.3: bal(pp) = —1, bal(q) = —1, left-right rotation + upout
514

17.5 Appendix

Derivation of some mathemmatical formulas

516

[Fibonacci Numbers: closed form]

Closed form of the Fibonacci numbers: computation via generation
functions:

| Power series approach

[Fibonacci Numbers: closed form]

Thus:

flz)-(1— x/— %) = . /

& flo) = =

T 1l-—z—22 224+z-1

with the roots —¢ and —¢ of 22 + z — 1,

1 ~ 1=
¢ = +\/gm1.6, b= ‘/gz—o.(s.
2 2
it holds that ¢ - ¢ = —1 and thus
X X
flz) =— =

(¢+¢)-(x+9) (1—¢x) (1 oz)

[Fibonacci Numbers: closed form]

For Fibonacci Numbers it holds that F, = 0, I}, = 1,
F,=F,_1+ F,_o V1> 1. Therefore:

o o0 o0
f(a:):x—i_zﬂ'xi:x+ZE*1'$i+ZE*2'xi
=2 =2 =2

o0 o)
—r4q E Efl'xz_l—i_xz E E72‘xl_2
i=2 =2

o0 o0
:$+$ZE-LL’i+LL’QZE-$i
i=0 i=0

=zt f(z)+2° f(a).

[Fibonacci Numbers: closed form]
It holds that: R
(1—¢z)—(1—¢z) =5z
Damit:

1 (1=¢x) = (1—¢n)
V5 (1= ¢z) - (1 - ¢z)

e
5\l—9¢z 1—¢gua

fz) =

Sl

[Fibonacci Numbers: closed form]

Power series of g,(z) = - (a € R):

l1—a

1 - { i
1_a.xzza X

1=0

E.g. Taylor series of g,(x) at = 0 or like this: Let Y ;- G, - =" a power
series of g. By the identity g,(x)(1 — a - z) = 1 it holds that for all z (within
the radius of convergence)

1:§:Gi‘xi—a'§:Gi~x Go+z i—a-Giq)-
i=0 =0

For x = 0 it follows Go = 1 and for = # 0 it follows then that G; = a - G;_; =
Gi = CLi.

521

[Fibonacci Numbers: closed form]

@ Fill in the power series:

1

1 1
7(1—¢x
=1
27

Comparison of the coefficients with f(z) =

1—¢x

(¢' — @)’

)=

S £

oo Fi -« yields

522

