Data Structures and Algorithms

Course at D-MATH (CSE) of ETH Zurich

Felix Friedrich

FS 2019

1. Introduction

Overview, Algorithms and Data Structures, Correctness, First Example

Goals of the course

- Understand the design and analysis of fundamental algorithms and data structures.
- An advanced insight into a modern programming model (with C++).
- Knowledge about chances, problems and limits of the parallel and concurrent computing.

Contents

data structures / algorithms

The notion invariant, cost model, Landau notation algorithms design, induction

searching, selection and sorting amortized analysis

dynamic programming

Minimum Spanning Trees, Fibonacci Heaps shortest paths, Max-Flow

Fundamental algorithms on graphs,

dictionaries: hashing and search trees
nming van-Emde Boas Trees, Splay-Trees

prorgamming with C++

RAII, Move Konstruktion, Smart Pointers,

Templates and generic programming

Exceptions functors and lambdas

promises and futures

threads, mutex and monitors

parallel programming

parallelism vs. concurrency, speedup (Amdahl/-Gustavson), races, memory reordering, atomir registers, RMW (CAS,TAS), deadlock/starvation

Algorithm

1.2 Algorithms

[Cormen et al, Kap. 1;Ottman/Widmayer, Kap. 1.1]

Algorithm: well defined computing procedure to compute *output* data from *input* data

example problem

Input: A sequence of n numbers (a_1, a_2, \ldots, a_n)

Output: Permutation $(a'_1, a'_2, \dots, a'_n)$ of the sequence $(a_i)_{1 \le i \le n}$, such that

 $a_1' \le a_2' \le \dots \le a_n'$

Possible input

 $(1,7,3), (15,13,12,-0.5), (1) \dots$

Every example represents a problem instance

The performance (speed) of an algorithm usually depends on the problem instance. Often there are "good" and "bad" instances.

Examples for algorithmic problems

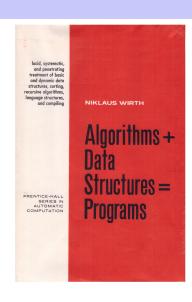
- Tables and statistis: sorting, selection and searching
- routing: shortest path algorithm, heap data structure
- DNA matching: Dynamic Programming
- evaluation order: Topological Sorting
- autocomletion and spell-checking: Dictionaries / Trees
- Fast Lookup : Hash-Tables
- The travelling Salesman: Dynamic Programming, Minimum Spanning Tree, Simulated Annealing

Characteristics

Data Structures

- Extremely large number of potential solutions
- Practical applicability

- A data structure is a particular way of organizing data in a computer so that they can be used efficiently (in the algorithms operating on them).
- Programs = algorithms + data structures.



27

Efficiency

Illusion:

- If computers were infinitely fast and had an infinite amount of memory ...
- ... then we would still need the theory of algorithms (only) for statements about correctness (and termination).

Reality: resources are bounded and not free:

- Computing time → Efficiency
- Storage space → Efficiency

Actually, this course is nearly only about efficiency.

Hard problems.

- NP-complete problems: no known efficient solution (the existence of such a solution is very improbable but it has not yet been proven that there is none!)
- Example: travelling salesman problem

This course is *mostly* about problems that can be solved efficiently (in polynomial time).

Efficiency of Algorithms

2. Efficiency of algorithms

Efficiency of Algorithms, Random Access Machine Model, Function Growth, Asymptotics [Cormen et al, Kap. 2.2,3,4.2-4.4 | Ottman/Widmayer, Kap. 1.1]

Goals

- Quantify the runtime behavior of an algorithm independent of the machine.
- Compare efficiency of algorithms.
- Understand dependece on the input size.

Programs and Algorithms

Technology program algorithm programming language programming language specified for computer Abstraction algorithm specified in programming language pseudo-code based on computation model

Technology Model

Random Access Machine (RAM)

- Execution model: instructions are executed one after the other (on one processor core).
- Memory model: constant access time (big array)
- Fundamental operations: computations (+,-,·,...) comparisons, assignment / copy on machine words (registers), flow control (jumps)
- Unit cost model: fundamental operations provide a cost of 1.
- Data types: fundamental types like size-limited integer or floating point number.

Size of the Input Data

Typical: number of input objects (of fundamental type).

Sometimes: number bits for a *reasonable / cost-effective* representation of the data.

fundamental types fit into word of size : $w \ge \log(\text{sizeof(mem)})$ bits.

Pointer Machine Model

We assume

- Objects bounded in size can be dynamically allocated in constant time
- Fields (with word-size) of the objects can be accessed in constant time 1.

$$top \longrightarrow x_n | \bullet \longrightarrow x_{n-1} | \bullet \longrightarrow x_1 | \bullet \longrightarrow null$$

35

Asymptotic behavior

An exact running time of an algorithm can normally not be predicted even for small input data.

- We consider the asymptotic behavior of the algorithm.
- And ignore all constant factors.

Example

An operation with cost 20 is no worse than one with cost 1 Linear growth with gradient 5 is as good as linear growth with gradient 1.

Algorithms, Programs and Execution Time

Program: concrete implementation of an algorithm.

Execution time of the program: measurable value on a concrete machine. Can be bounded from above and below.

Beispiel

3GHz computer. Maximal number of operations per cycle (e.g. 8). \Rightarrow lower bound. A single operations does never take longer than a day \Rightarrow upper bound.

From the perspective of the *asymptotic behavior* of the program, the bounds are unimportant.

Superficially

2.2 Function growth

 \mathcal{O} , Θ , Ω [Cormen et al, Kap. 3; Ottman/Widmayer, Kap. 1.1]

Use the asymptotic notation to specify the execution time of algorithms.

We write $\Theta(n^2)$ and mean that the algorithm behaves for large n like n^2 : when the problem size is doubled, the execution time multiplies by four.

More precise: asymptotic upper bound

provided: a function $g: \mathbb{N} \to \mathbb{R}$.

Definition:1

$$\mathcal{O}(g) = \{ f : \mathbb{N} \to \mathbb{R} |$$

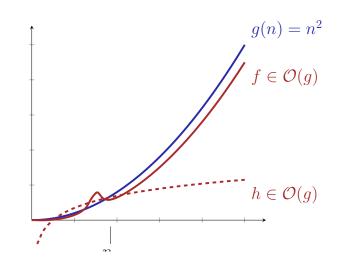
$$\exists c > 0, \exists n_0 \in \mathbb{N} :$$

$$\forall n \ge n_0 : 0 \le f(n) \le c \cdot g(n) \}$$

Notation:

$$\mathcal{O}(g(n)) := \mathcal{O}(g(\cdot)) = \mathcal{O}(g).$$

Graphic



¹Ausgesprochen: Set of all functions $f:\mathbb{N}\to\mathbb{R}$ that satisfy: there is some (real valued) c>0 and some $n_0\in\mathbb{N}$ such that $0\leq f(n)\leq n\cdot g(n)$ for all $n\geq n_0$.

Examples

Property

$$\mathcal{O}(g) = \{ f : \mathbb{N} \to \mathbb{R} | \exists c > 0, \exists n_0 \in \mathbb{N} : \forall n \ge n_0 : 0 \le f(n) \le c \cdot g(n) \}$$

$$\begin{array}{lll} f(n) & f \in \mathcal{O}(?) & \mathsf{Example} \\ \hline 3n+4 & \mathcal{O}(n) & c=4, n_0=4 \\ 2n & \mathcal{O}(n) & c=2, n_0=0 \\ n^2+100n & \mathcal{O}(n^2) & c=2, n_0=100 \\ n+\sqrt{n} & \mathcal{O}(n) & c=2, n_0=1 \end{array}$$

$$f_1 \in \mathcal{O}(g), f_2 \in \mathcal{O}(g) \Rightarrow f_1 + f_2 \in \mathcal{O}(g)$$

Converse: asymptotic lower bound

Given: a function $g: \mathbb{N} \to \mathbb{R}$.

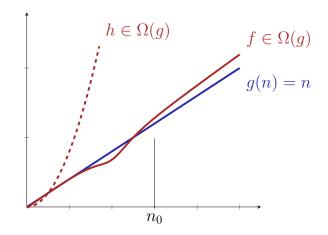
Definition:

$$\Omega(g) = \{ f : \mathbb{N} \to \mathbb{R} |$$

$$\exists c > 0, \exists n_0 \in \mathbb{N} :$$

$$\forall n > n_0 : 0 < c \cdot q(n) < f(n) \}$$

Example



Asymptotic tight bound

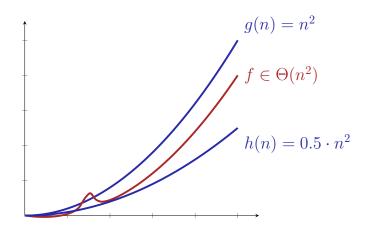
Example

Given: function $g: \mathbb{N} \to \mathbb{R}$.

Definition:

$$\Theta(g) := \Omega(g) \cap \mathcal{O}(g).$$

Simple, closed form: exercise.

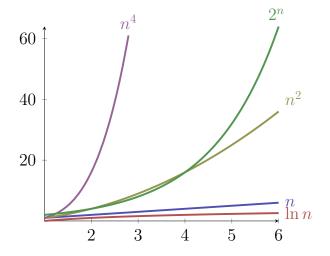


Notions of Growth

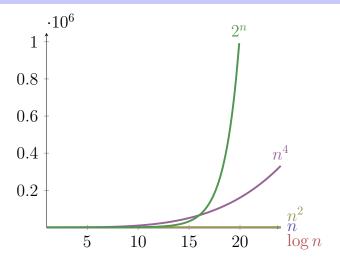
$\mathcal{O}(1)$ bounded array access $\mathcal{O}(\log \log n)$ double logarithmic interpolated binary sorted sort $\mathcal{O}(\log n)$ logarithmic binary sorted search $\mathcal{O}(\sqrt{n})$ like the square root naive prime number test $\mathcal{O}(n)$ unsorted naive search linear superlinear / loglinear $\mathcal{O}(n\log n)$ good sorting algorithms $\mathcal{O}(n^2)$ quadratic simple sort algorithms $\mathcal{O}(n^c)$ polynomial matrix multiply $\mathcal{O}(2^n)$ Travelling Salesman Dynamic Programming exponential $\mathcal{O}(n!)$ factorial Travelling Salesman naively

$\mathbf{Small}\ n$

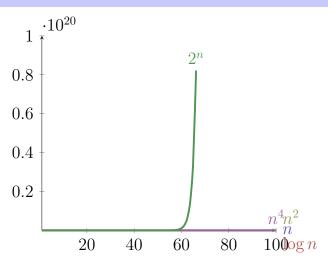
47



$\textbf{Larger}\ n$

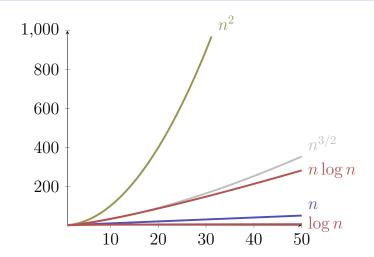


"Large" n



51

Logarithms



Time Consumption

Assumption 1 Operation = $1\mu s$.

problem size	1	100	10000	10^{6}	10^{9}
$\log_2 n$	$1\mu s$	$7\mu s$	$13\mu s$	$20\mu s$	$30\mu s$
n	$1\mu s$	$100 \mu s$	1/100s	1s	17 minutes
$n\log_2 n$	$1\mu s$	$700 \mu s$	$13/100 \mu s$	20s	$8.5~\mathrm{hours}$
n^2	$1\mu s$	1/100s	1.7 minutes	$11.5~\mathrm{days}$	317 centuries
2^n	$1\mu s$	$10^{14} \ \mathrm{centuries}$	$pprox \infty$	$pprox \infty$	$pprox \infty$

Useful Tool

Theorem

Let $f, g: \mathbb{N} \to \mathbb{R}^+$ be two functions, then it holds that

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0 \Rightarrow f \in \mathcal{O}(g), \, \mathcal{O}(f) \subsetneq \mathcal{O}(g).$$

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = C > 0$$
 (C constant) $\Rightarrow f \in \Theta(g)$.

$$\underbrace{f(n)}_{g(n)} \underset{n \to \infty}{\to} \infty \Rightarrow g \in \mathcal{O}(f), \mathcal{O}(g) \subsetneq \mathcal{O}(f).$$

About the Notation

Common casual notation

$$f = \mathcal{O}(g)$$

should be read as $f \in \mathcal{O}(g)$.

Clearly it holds that

$$f_1 = \mathcal{O}(g), f_2 = \mathcal{O}(g) \not\Rightarrow f_1 = f_2!$$

Beispiel

 $n = \mathcal{O}(n^2), n^2 = \mathcal{O}(n^2)$ but naturally $n \neq n^2$.

We avoid this notation where it could lead to ambiguities.

Reminder: Efficiency: Arrays vs. Linked Lists

- Memory: our avec requires roughly n ints (vector size n), our livec roughly 3n ints (a pointer typically requires 8 byte)
- Runtime (with avec = std::vector, llvec = std::list):

```
| Prepending (insert at front) [100,000x]:
| Avec: 675 ms | Livec: 10 ms |
| Appending (insert at back) [100,000x]:
| Avec: 2 ms | Livec: 113 ms |
| Inserting randomly [10,000x]:
| Avec: 3 ms | Livec: 113 ms |
| Inserting randomly [10,000x]:
| Avec: 675 ms | Livec: 117 ms |
| Fully iterate sequentially (5000 elements) [5,000x]:
| Avec: 675 ms | Livec: 4 ms |
| Livec: 4 ms | Livec: 525 ms |
| Livec: 525 ms |
| Livec: 4 ms | Livec: 525 ms |
| Livec: 4 ms | Livec: 525 ms |
| Livec: 4 ms | Livec: 525 ms |
| Livec:
```

Asymptotic Runtimes

With our new language $(\Omega, \mathcal{O}, \Theta)$, we can now state the behavior of the data structures and their algorithms more precisely

Typical asymptotic running times (Anticipation!)

Data structure	Random Access	Insert	Next	Insert After Element	Search
std::vector	$\Theta(1)$	$\Theta(1) A$	$\Theta(1)$	$\Theta(n)$	$\Theta(n)$
std::list	$\Theta(n)$	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$	$\Theta(n)$
std::set	_	$\Theta(\log n)$	$\Theta(\log n)$	_	$\Theta(\log n)$
std::unordered_set	_	$\Theta(1) P$	_	_	$\Theta(1) P$

A = amortized, P = expected, otherwise worst case

Complexity

Complexity of a problem P: minimal (asymptotic) costs over all algorithms A that solve P.

Complexity of the single-digit multiplication of two numbers with n digits is $\Omega(n)$ and $\mathcal{O}(n^{\log_3 2})$ (Karatsuba Ofman).

Example:

Problem	Complexity	$\mathcal{O}(n)$	\ /	$\mathcal{O}(n^2)$
Algorithm	Costs ²	$\uparrow \\ 3n-4$	$ \uparrow $ $ \mathcal{O}(n) $	\uparrow $\Theta(n^2)$
Program	Execution time	,	$\mathcal{O}(n)$	$\Theta(n^2)$