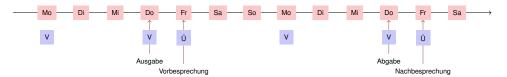
Datenstrukturen und Algorithmen

Vorlesung am D-Math (CSE) der ETH Zürich

Felix Friedrich

FS 2019

Übungsbetrieb



- Übungsblattausgabe zur Vorlesung (online).
- Vorbesprechung in der folgenden Übung.
- Bearbeitung der Übung bis spätestens am Tag vor der nächsten Übungsstunde (23:59h).
- Nachbesprechung der Übung in der nächsten Übungsstunde. Feeback zu den Abgaben innerhalb einer Woche nach Nachbesprechung.

Willkommen!

Vorlesungshomepage:

http://lec.inf.ethz.ch/DA/2019

Das Team:

Assistenten Philippe Schlattner

Jan Stratmann Robin Worreby Robin Vogtland

Back-Office Aritra Dhar

Pesho Ivanov

Dozent Felix Friedrich

Zu den Übungen

Bearbeitung der wöchentlichen Uebungsserien ist freiwillig, wird aber dringend empfohlen!

Es ist so einfach!

Für die Übungen verwenden wir eine Online-Entwicklungsumgebung, benötigt lediglich einen Browser, Internetverbindung und Ihr ETH Login.

Falls Sie keinen Zugang zu einem Computer haben: in der ETH stehen an vielen Orten öffentlich Computer bereit.

Literatur

Algorithmen und Datenstrukturen, *T. Ottmann, P. Widmayer*, Spektrum-Verlag, 5. Auflage, 2011

Algorithmen - Eine Einführung, *T. Cormen, C. Leiserson, R. Rivest, C. Stein*, Oldenbourg, 2010

Introduction to Algorithms, T. Cormen, C. Leiserson, R. Rivest, C. Stein, 3rd ed., MIT Press, 2009

The C++ Programming Language, *B. Stroustrup*, 4th ed., Addison-Wesley, 2013.

The Art of Multiprocessor Programming, M. Herlihy, N. Shavit, Elsevier, 2012.

Relevantes für die Prüfung

Prüfungsstoff für die Endprüfung schliesst ein

- Vorlesungsinhalt (Vorlesung, Handout) und
- Übungsinhalte (Übungsstunden, Übungsblätter).

Prüfung (120 min) ist schriftlich. Hilfsmittel: vier A4-Seiten (bzw. 2 A4-Blätter doppelseitig) entweder handgeschrieben oder mit Fontgrösse minimal 11 Punkt.

Unser Angebot

- Bearbeitung der wöchentlichen Übungsserien \rightarrow Bonus von maximal 0.25 Notenpunkten für die Prüfung.
- **Zulassung** zu speziell markierten Bonusaufgaben kann von der erfolgreichen Absolvierung anderer Übungsaufgaben abhängen.

Unser Angebot (Konkret)

- Insgesamt 4 Bonusaufgaben; 3/4 der Punkte reichen für 0.25 Bonuspunkte für die Prüfung
- Sie können also z.B. 3 Bonusaufgaben zu 100% lösen, oder 4 Bonusaufgaben zu je 75%, oder ...
- Bonusaufgaben müssen durch erfolgreich gelöste Übungsserien freigeschaltet (→ Experience Points) werden
- Es müssen wiederum nicht alle Übungsserien vollständig gelöst werden, um eine Bonusaufgabe freizuschalten
- Details: Übungsstunden, Online-Übungssystem (Code Expert)

Akademische Lauterkeit

Regel: Sie geben nur eigene Lösungen ab, welche Sie selbst verfasst und verstanden haben.

Wir prüfen das (zum Teil automatisiert) nach und behalten uns disziplinarische Massnahmen vor.

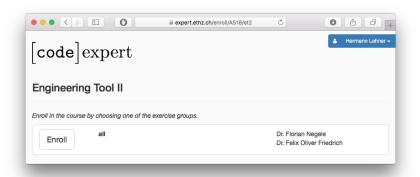
Einschreibung in Übungsgruppen - I

- Besuchen Sie http://expert.ethz.ch/enroll/SS19/da
- Loggen Sie sich mit Ihrem nethz Account ein.

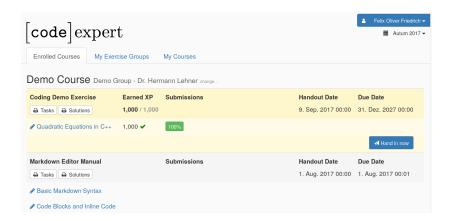


Einschreibung in Übungsgruppen - II

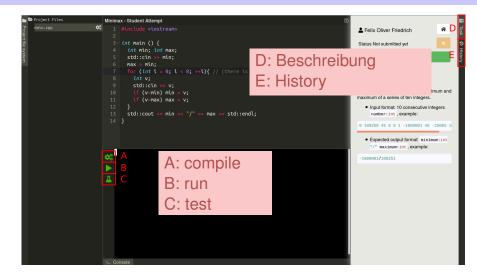
Schreiben Sie sich im folgenden Dialog in eine Übungsgruppe ein.



Übersicht

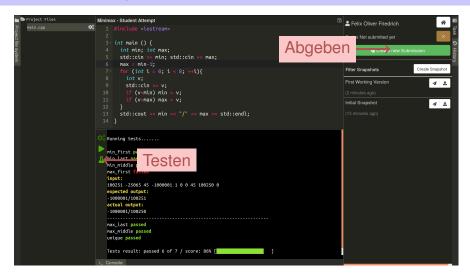


Programmierübung



13

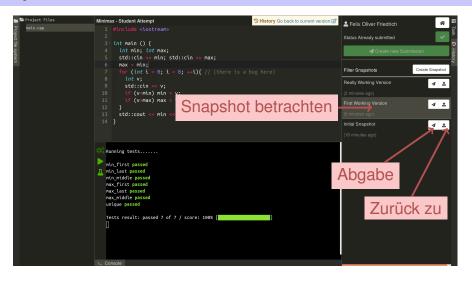
Testen und Abgeben



Wo ist der Save Knopf?

- Das Filesystem ist transaktionsbasiert und es wird laufend gespeichert ("autosave"). Beim Öffnen eines Projektes findet man immer den zuletzt gesehenen Zustand wieder.
- Der derzeitige Stand kann als (benannter) Snapshot festgehalten werden. Zu gespeicherten Snapshots kann jederzeit zurückgekehrt werden.
- Der aktuelle Stand kann als Snapshot abgegeben (submitted) werden. Zudem kann jeder gespeicherts Snapshot abgegeben werden.

Snapshots



1. Einführung

Überblick, Algorithmen und Datenstrukturen, Korrektheit, erstes Beispiel

Wenn es Probleme gibt ...

- mit dem Kursinhalt
 - unbedingt alle Übungen besuchen
 - dort Fragen stellen
 - und/oder Übungsleiter kontaktieren
- alle weiteren Probleme
 - Email an Dozenten (Felix Friedrich)
- Wir helfen gerne!

Ziele des Kurses

- Verständnis des Entwurfs und der Analyse grundlegender Algorithmen und Datenstrukturen.
- Vertiefter Einblick in ein modernes Programmiermodell (mit C++).
- Wissen um Chancen, Probleme und Grenzen des parallelen und nebenläufigen Programmierens.

Inhalte der Vorlesung

Datenstrukturen / Algorithmen

Begriff der Invariante, Kostenmodell, Landau Symbole
Algorithmenentwurf, Induktion

menentwurf, Induktion Kürzeste Wege, Maximaler Fluss
Suchen und Auswahl, Sortieren
Amortisierte Analyse Wörterbücher: Hashing und Suchbäume, AVL

Amortisierte Analyse Wörter

Dynamic Programming

van-Emde-Boas-Bäume, Splay-Bäume

Minimale Spannbäume, Fibonacci Heaps

Programmieren mit C++

RAII, Move Konstruktion, Smart Pointers,

Templates und Generische Programmierung

Exceptions

Funktoren und Lambdas

Promises and Futures

Threads, Mutexs and Monitors

Parallel Programming

Parallelität vs. Concurrency, Speedup (Amdahl/-Gustavson), Races, Memory Reordering, Atomic Registers, RMW (CAS,TAS), Deadlock/Starvation

1.2 Algorithmen

[Cormen et al, Kap. 1;Ottman/Widmayer, Kap. 1.1]

Algorithmus

Algorithmus: wohldefinierte Berechnungsvorschrift, welche aus Eingabedaten (*input*) Ausgabedaten (*output*) berechnet.

Beispielproblem

22

Input: Eine Folge von n Zahlen (a_1, a_2, \dots, a_n)

Output: Eine Permutation $(a'_1, a'_2, \dots, a'_n)$ der Folge $(a_i)_{1 \le i \le n}$, so dass

 $a_1' \le a_2' \le \dots \le a_n'$

Mögliche Eingaben

 $(1,7,3), (15,13,12,-0.5), (1) \dots$

Jedes Beispiel erzeugt eine *Probleminstanz*.

Die Performanz (Geschwindigkeit) des Algorithmus hängt üblicherweise ab von der Probleminstanz. Es gibt oft "gute" und "schlechte" Instanzen.

Beispiele für Probleme in der Algorithmik

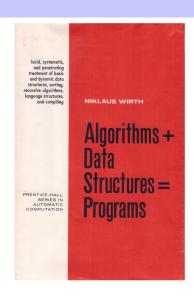
- Tabellen und Statistiken: Suchen, Auswählen und Sortieren
- Routenplanung: Kürzeste Wege Algorithmus, Heap Datenstruktur
- DNA Matching: Dynamic Programming
- Auswertungsreihenfolge: Topologische Sortierung
- Autovervollständigung: Wörterbücher/Bäume
- Schnelles Nachschlagen : Hash-Tabellen
- Der Handlungsreisende: Dynamische Programmierung, Minimal aufspannender Baum, Simulated Annealing,

Charakteristik

- Extrem grosse Anzahl potentieller Lösungen
- Praktische Anwendung

Datenstrukturen

- Eine Datenstruktur organisiert Daten so in einem Computer, dass man sie (in den darauf operierenden Algorithmen) effizient nutzen kann.
- Programme = Algorithmen + Datenstrukturen.



Effizienz

Illusion:

- Wären Rechner unendlich schnell und hätten unendlich viel Speicher ...
- ... dann bräuchten wir die Theorie der Algorithmen (nur) für Aussagen über Korrektheit (incl. Terminierung).

Realität: Ressourcen sind beschränkt und nicht umsonst:

- Rechenzeit → Effizienz
- Speicherplatz → Effizienz

Eigentlich geht es in diesem Kurs nur um Effizienz.

28

Schwierige Probleme

- NP-vollständige Probleme: Keine bekannte effiziente Lösung (Existenz einer effizienten Lösung ist zwar sehr unwahrscheinlich – es ist aber unbewiesen, dass es keine gibt!)
- Beispiel: Travelling Salesman Problem

In diesem Kurs beschäftigen wir uns hauptsächlich mit Problemen, die effizient (in Polynomialzeit) lösbar sind.

2. Effizienz von Algorithmen

Effizienz von Algorithmen, Random Access Machine Modell, Funktionenwachstum, Asymptotik [Cormen et al, Kap. 2.2,3,4.2-4.4 | Ottman/Widmayer, Kap. 1.1]

Effizienz von Algorithmen

Ziele

- Laufzeitverhalten eines Algorithmus maschinenunabhängig quantifizieren.
- Effizienz von Algorithmen vergleichen.
- Abhängigkeit von der Eingabegrösse verstehen.

Programme und Algorithmen

Technologiemodell

Random Access Machine (RAM)

- Ausführungsmodell: Instruktionen werden der Reihe nach (auf einem Prozessorkern) ausgeführt.
- Speichermodell: Konstante Zugriffszeit (grosses Array)
- Elementare Operationen: Rechenoperation (+,-,·,...), Vergleichsoperationen, Zuweisung / Kopieroperation auf Maschinenworten (Registern), Flusskontrolle (Sprünge)
- Einheitskostenmodell: elementare Operation hat Kosten 1.
- Datentypen: Fundamentaltypen wie grössenbeschränkte Ganzzahl oder Fliesskommazahl.

Grösse der Eingabedaten

Typisch: Anzahl Eingabeobjekte (von fundamentalem Typ).

Oftmals: Anzahl Bits für eine *vernünftige / kostengünstige* Repräsentation der Daten.

Annahme: fundamentale Typen passen in Machinenwort (word) mit

Grösse : $w \ge \log(\text{sizeof(mem)})$ Bits.

34

Pointer Machine Modell

Wir nehmen an

- Objekte beschränkter Grösse können dynamisch erzeugt werden in konstanter Zeit 1.
- Auf Felder (mit Wortgrösse) der Objekte kann in konstanter Zeit 1 zugegriffen werden.

 $top \longrightarrow x_n | \bullet \longrightarrow x_{n-1} | \bullet - \cdots \rightarrow x_1 | \bullet \longrightarrow null$

Asymptotisches Verhalten

Genaue Laufzeit eines Algorithmus lässt sich selbst für kleine Eingabedaten kaum voraussagen.

- Betrachten das asymptotische Verhalten eines Algorithmus.
- Ignorieren alle konstanten Faktoren.

Beispiel

Eine Operation mit Kosten 20 ist genauso gut wie eine mit Kosten 1. Lineares Wachstum mit Steigung 5 ist genauso gut wie lineares Wachstum mit Steigung 1.

Algorithmen, Programme und Laufzeit

Programm: Konkrete Implementation eines Algorithmus.

Laufzeit des Programmes: messbarer Wert auf einer konkreten Maschine. Kann sowohl nach oben, wie auch nach unten abgeschätzt werden.

Beispiel

Rechner mit 3 GHz. Maximale Anzahl Operationen pro Taktzyklus (z.B. 8). \Rightarrow untere Schranke.

Einzelne Operation dauert mit Sicherheit nie länger als ein Tag \Rightarrow obere Schranke.

Hinsichtlich des *asymptotischen Verhaltens* des Programmes spielen die Schranken keine Rolle.

2.2 Funktionenwachstum

 \mathcal{O} , Θ , Ω [Cormen et al, Kap. 3; Ottman/Widmayer, Kap. 1.1]

Oberflächlich

Verwende die asymptotische Notation zur Kennzeichnung der Laufzeit von Algorithmen

Wir schreiben $\Theta(n^2)$ und meinen, dass der Algorithmus sich für grosse n wie n^2 verhält: verdoppelt sich die Problemgrösse, so vervierfacht sich die Laufzeit.

Genauer: Asymptotische obere Schranke

Gegeben: Funktion $g: \mathbb{N} \to \mathbb{R}$.

Definition:1

$$\mathcal{O}(g) = \{ f : \mathbb{N} \to \mathbb{R} |$$

$$\exists c > 0, \exists n_0 \in \mathbb{N} :$$

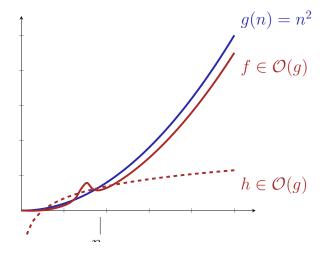
$$\forall n > n_0 : 0 < f(n) < c \cdot g(n) \}$$

Schreibweise:

$$\mathcal{O}(g(n)) := \mathcal{O}(g(\cdot)) = \mathcal{O}(g).$$

¹Ausgesprochen: Menge aller reellwertiger Funktionen $f: \mathbb{N} \to \mathbb{R}$ für die gilt: es gibt ein (reellwertiges) c > 0 und ein $n_0 \in \mathbb{N}$ so dass $0 \le f(n) \le n \cdot g(n)$ für alle $n \ge n_0$.

Anschauung



Beispiele

$$\mathcal{O}(g) = \{ f : \mathbb{N} \to \mathbb{R} | \exists c > 0, \exists n_0 \in \mathbb{N} : \forall n \ge n_0 : 0 \le f(n) \le c \cdot g(n) \}$$

$$\begin{array}{cccc} f(n) & f \in \mathcal{O}(?) & \mathsf{Beispiel} \\ \hline 3n+4 & \mathcal{O}(n) & c=4, n_0=4 \\ 2n & \mathcal{O}(n) & c=2, n_0=0 \\ n^2+100n & \mathcal{O}(n^2) & c=2, n_0=100 \\ n+\sqrt{n} & \mathcal{O}(n) & c=2, n_0=1 \end{array}$$

Eigenschaft

$$f_1 \in \mathcal{O}(g), f_2 \in \mathcal{O}(g) \Rightarrow f_1 + f_2 \in \mathcal{O}(g)$$

Umkehrung: Asymptotische untere Schranke

Gegeben: Funktion $g: \mathbb{N} \to \mathbb{R}$.

Definition:

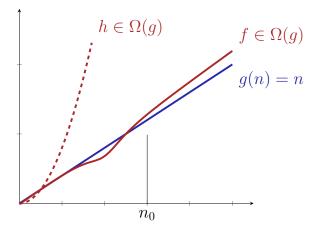
$$\Omega(g) = \{ f : \mathbb{N} \to \mathbb{R} |$$

$$\exists c > 0, \exists n_0 \in \mathbb{N} :$$

$$\forall n \ge n_0 : 0 \le c \cdot g(n) \le f(n) \}$$

4

Beispiel



Asymptotisch scharfe Schranke

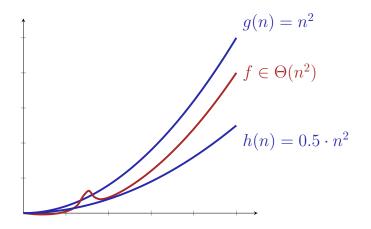
Gegeben Funktion $g:\mathbb{N}\to\mathbb{R}.$

Definition:

$$\Theta(g) := \Omega(g) \cap \mathcal{O}(g).$$

Einfache, geschlossene Form: Übung.

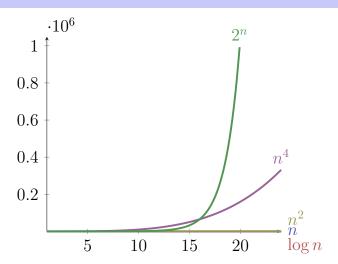
Beispiel



Wachstumsbezeichnungen

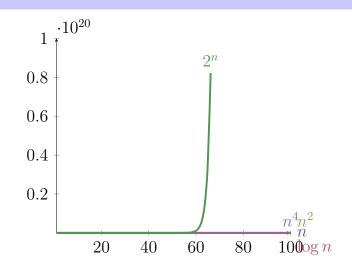
$\mathcal{O}(1)$	beschränkt	Array-Zugriff
$\mathcal{O}(\log \log n)$	doppelt logarithmisch	Binäre sortierte Suche interpoliert
$\mathcal{O}(\log n)$	logarithmisch	Binäre sortierte Suche
$\mathcal{O}(\sqrt{n})$	wie die Wurzelfunktion	Primzahltest (naiv)
$\mathcal{O}(n)$	linear	Unsortierte naive Suche
$\mathcal{O}(n\log n)$	superlinear / loglinear	Gute Sortieralgorithmen
$\mathcal{O}(n^2)$	quadratisch	Einfache Sortieralgorithmen
$\mathcal{O}(n^c)$	polynomial	Matrixmultiplikation
$\mathcal{O}(2^n)$	exponentiell	Travelling Salesman Dynamic Programming
$\mathcal{O}(n!)$	faktoriell	Travelling Salesman naiv

${\it Gr\"{o}ssere}\ n$

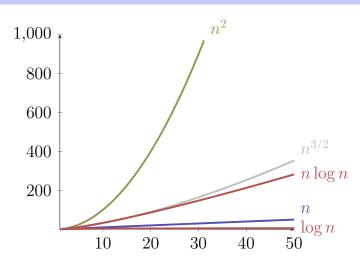


50

"Grosse" n



Logarithmen!



Zeitbedarf

Annahme: 1 Operation = $1\mu s$.

Problemgrösse	1	100	10000	10^{6}	10^{9}
$\log_2 n$	$1\mu s$	$7\mu s$	$13\mu s$	$20\mu s$	$30\mu s$
n	$1\mu s$	$100 \mu s$	1/100s	1s	17 Minuten
$n\log_2 n$	$1\mu s$	$700 \mu s$	$13/100 \mu s$	20s	8.5 Stunden
n^2	$1\mu s$	1/100s	1.7 Minuten	11.5 Tage	317 Jahrhund.
2^n	$1\mu s$	10^{14} Jahrh.	$pprox \infty$	$pprox \infty$	$pprox \infty$

Nützliches

Theorem

Seien $f, g: \mathbb{N} \to \mathbb{R}^+$ zwei Funktionen. Dann gilt:

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0 \Rightarrow f \in \mathcal{O}(g), \, \mathcal{O}(f) \subsetneq \mathcal{O}(g).$$

$$\lim_{n\to\infty} \frac{f(n)}{q(n)} = C > 0$$
 (C konstant) $\Rightarrow f \in \Theta(g)$.

$$\exists \frac{f(n)}{g(n)} \underset{n \to \infty}{\to} \infty \Rightarrow g \in \mathcal{O}(f), \mathcal{O}(g) \subsetneq \mathcal{O}(f).$$

54

--

Zur Notation

Übliche informelle Schreibweise

$$f = \mathcal{O}(g)$$

ist zu verstehen als $f \in \mathcal{O}(g)$.

Es gilt nämlich

$$f_1 = \mathcal{O}(g), f_2 = \mathcal{O}(g) \not\Rightarrow f_1 = f_2!$$

Beispiel

 $n = \mathcal{O}(n^2), n^2 = \mathcal{O}(n^2)$ aber natürlich $n \neq n^2$.

Wir vermeiden diese Schreibweise, wo sie zu Mehrdeutigkeiten führen könnte.

Erinnerung: Effizienz: Arrays vs. Verkettete Listen

- Speicher: Unser avec belegt ungefähr n ints (Vektorgrösse n), unser 11vec ungefähr 3n ints (ein Zeiger belegt i.d.R. 8 Byte)
- Laufzeit (mit avec = std::vector, llvec = std::list):

Asymptotische Laufzeiten

Mit unserer neuen Sprache $(\Omega, \mathcal{O}, \Theta)$ können wir das *Verhalten der Datenstrukturen und ihrer Algorithmen präzisieren.*

Typische Asymptotische Laufzeiten (Vorgriff!)

Datenstruktur	Wahlfreier Zugriff	Einfügen	Nächstes	Einfügen nach Element	Suchen
std::vector	$\Theta(1)$	$\Theta(1) A$	$\Theta(1)$	$\Theta(n)$	$\Theta(n)$
std::list	$\Theta(n)$	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$	$\Theta(n)$
std::set	_	$\Theta(\log n)$	$\Theta(\log n)$	_	$\Theta(\log n)$
std::unordered_set	_	$\Theta(1) P$	_	_	$\Theta(1) P$

A = amortisiert, P = erwartet, sonst schlechtester Fall ("worst case")

3. Beispiele

Korrektheit zeigen, Rekursion und Rekurrenzen [Literaturangaben bei den Beispielen]

Komplexität

Komplexität eines Problems P: minimale (asymptotische) Kosten über alle Algorithmen A, die P lösen.

Komplexität der Elementarmultiplikation zweier Zahlen der Länge n ist $\Omega(n)$ und $\mathcal{O}(n^{\log_3 2})$ (Karatsuba Ofman).

Exemplarisch:

Problem	Komplexität	$\mathcal{O}(n)$	$\mathcal{O}(n)$	$\mathcal{O}(n^2)$
	0		†	
Algorithmus	Kosten ²	3n-4	` /	· /
		,	\updownarrow	Ψ.
Programm	Laufzeit	$\Theta(n)$	$\mathcal{O}(n)$	$\Theta(n^2)$

²Anzahl Elementaroperationen

58

3.1 Altägyptische Multiplikation

Altägyptische Multiplikation – Ein Beispiel, wie man Korrektheit von Algorithmen zeigen kann.

Altägyptische Multiplikation³

Vorteile

Berechnung von $11 \cdot 9$

- Links verdoppeln, rechts ganzzahlig halbieren.
- 2 Gerade Zahl rechts ⇒ Zeile streichen.
- Übrige Zeilen links addieren.

■ Effizient für Computer im Dualsystem: Verdoppeln = Left Shift, Halbieren = Right Shift

Beispiel

62

left shift
$$9 = 01001_2 \rightarrow 10010_2 = 18$$

right shift $9 = 01001_2 \rightarrow 00100_2 = 4$

³ Auch bekannt als Russiche Bauernmulltiplikation

Fragen

- Für welche Eingaben liefert der Algorithums das richtige Resultat (in endlicher Zeit)?
- Wie beweist man seine Korrektheit?
- Was ist ein gutes Mass für seine Effizienz?

Die Essenz

Wenn b > 1, $a \in \mathbb{Z}$, dann:

$$a \cdot b = egin{cases} 2a \cdot rac{b}{2} & \text{falls } b \text{ gerade,} \ a + 2a \cdot rac{b-1}{2} & \text{falls } b \text{ ungerade.} \end{cases}$$

Kurze Beschreibung, einfach zu verstehen.

Terminierung

Rekursiv funktional notiert

$$a \cdot b = \begin{cases} a & \text{falls } b = 1, \\ 2a \cdot \frac{b}{2} & \text{falls } b \text{ gerade,} \\ a + 2a \cdot \frac{b-1}{2} & \text{falls } b \text{ ungerade.} \end{cases}$$

$$f(a,b) = \begin{cases} a & \text{falls } b = 1, \\ f(2a, \frac{b}{2}) & \text{falls } b \text{ gerade,} \\ a + f(2a, \frac{b-1}{2}) & \text{falls } b \text{ ungerade.} \end{cases}$$

Als Funktion programmiert

Korrektheit: Mathematischer Beweis

$$f(a,b) = \begin{cases} a & \text{falls } b = 1, \\ f(2a, \frac{b}{2}) & \text{falls } b \text{ gerade,} \\ a + f(2a \cdot \frac{b-1}{2}) & \text{falls } b \text{ ungerade.} \end{cases}$$

Zu zeigen: $f(a,b) = a \cdot b$ für $a \in \mathbb{Z}$, $b \in \mathbb{N}^+$.

68

66

Korrektheit: Mathematischer Beweis per Induktion

Sei $a \in \mathbb{Z}$, zu zeigen $f(a,b) = a \cdot b \quad \forall b \in \mathbb{N}^+$.

Anfang: $f(a,1) = a = a \cdot 1$

Hypothese: $f(a, b') = a \cdot b' \quad \forall 0 < b' \le b$

Schritt: $f(a,b') = a \cdot b' \quad \forall \, 0 < b' \leq b \stackrel{!}{\Rightarrow} f(a,b+1) = a \cdot (b+1)$

$$f(a,b+1) = \begin{cases} f(2a, \overbrace{b+1}^{0 < \cdot \leq b}) \stackrel{i.H.}{=} a \cdot (b+1) & \text{falls } b > 0 \text{ ungerade,} \\ a + f(2a, \underbrace{\frac{b}{2}}_{0 < \cdot < b}) \stackrel{i.H.}{=} a + a \cdot b & \text{falls } b > 0 \text{ gerade.} \end{cases}$$

[Code-Umformung: Endrekursion]

Die Rekursion lässt sich endrekursiv schreiben

```
// pre: b>0
// pre: b>0
                                        // post: return a*b
// post: return a*b
                                        int f(int a, int b){
int f(int a, int b){
                                          if(b==1)
  if(b==1)
                                            return a;
   return a;
                                          int z=0;
  else if (b\%2 == 0)
                                           if (b\%2!=0){
   return f(2*a, b/2);
                                            --b;
                                            z=a;
   return a + f(2*a, (b-1)/2);
                                          return z + f(2*a, b/2);
```

[Code-Umformung: Endrekursion ⇒ Iteration]

```
int f(int a, int b) {
                                         int res = 0;
// pre: b>0
                                         while (b != 1) {
// post: return a*b
                                          int z = 0;
int f(int a, int b){
                                          if (b \% 2 != 0){
  if(b==1)
                                             --b:
   return a;
                                             z = a:
  int z=0;
  if (b\%2!=0){
                                           res += z;
    --b:
                                          a *= 2; // neues a
   z=a;
                                           b /= 2; // neues b
  return z + f(2*a, b/2);
                                         res += a; // Basisfall b=1
                                         return res:
```

[Code-Umformung: Vereinfachen]

```
int f(int a, int b) {
  int res = 0;
                                            // pre: b>0
  while (b != 1) {
                                            // post: return a*b
   int z = 0;
                                            int f(int a, int b) {
    if (b \% 2 != 0){
                                              int res = 0;
      --b; → Teil der Division
                                              while (b > 0) {
      z = a; \longrightarrow Direkt in res
                                                if (b % 2 != 0)
                                                  res += a;
   res += z;
                                                a *= 2:
   a *= 2;
                                                b /= 2;
    b /= 2;
                                              return res;
  res += a; \longrightarrow in den Loop
  return res:
```

-

Korrektheit: Argumentation mit Invarianten!

```
// pre: b>0
// post: return a*b
int f(int a, int b) {
  int res = 0;
  while (b > 0) {
    if (b % 2 != 0){
      res += a;
      --b;
    }
    a *= 2;
    b /= 2;
  }
  return res;
}
```

```
Sei x := a \cdot b.
Hier gilt x = a \cdot b + res
```

Wenn hier $x = a \cdot b + res \dots$

... dann auch hier $x = a \cdot b + res$ b gerade

Hier gilt $x=a\cdot b+res$ Hier gilt $x=a\cdot b+res$ und b=0Also res=x.

Zusammenfassung

Der Ausdruck $a \cdot b + res$ ist eine *Invariante*.

- Werte von *a*, *b*, *res* ändern sich, aber die Invariante bleibt "im Wesentlichen" unverändert: Invariante vorübergehend durch eine Anweisung zerstört, aber dann darauf wieder hergestellt. Betrachtet man solche Aktionsfolgen als atomar, bleibt der Wert tatsächlich invariant
- Insbesondere erhält die Schleife die Invariante (Schleifeninvariante), sie wirkt dort wie der Induktionsschritt bei der vollständigen Induktion
- Invarianten sind offenbar mächtige Beweishilfsmittel!

[Weiteres Kürzen]

```
// pre: b>0
// post: return a*b
int f(int a, int b) {
  int res = 0;
  while (b > 0) {
    if (b % 2 != 0) {
      res += a;
      --b;
    }
    a *= 2;
    b /= 2;
    }
  return res;
}
```

```
// pre: b>0
// post: return a*b
int f(int a, int b) {
  int res = 0;
  while (b > 0) {
    res += a * (b%2);
    a *= 2;
    b /= 2;
  }
  return res;
}
```

[Analyse]

74

```
// pre: b>0
// post: return a*b
int f(int a, int b) {
  int res = 0;
  while (b > 0) {
    res += a * (b%2);
    a *= 2;
    b /= 2;
  }
  return res;
}
```

Altägyptische Multiplikation entspricht der Schulmethode zur Basis 2.

1	U	U	1	×	1	U	1	1	
					1	0	0	1	(9)
				1	0	0	1		(18)
				1	1	0	1	1	
		1	0	0	1				(72)
		1	1	0	0	0	1	1	(99)

7

Effizienz

Frage: Wie lange dauert eine Multiplikation von a und b?

- Mass für die Effizienz
 - Gesamtzahl der elementaren Operationen: Verdoppeln, Halbieren, Test auf "gerade", Addition
 - Im rekursiven wie im iterativen Code: maximal 6 Operationen pro Aufruf bzw. Durchlauf
- Wesentliches Kriterium:
 - Anzahl rekursiver Aufrufe oder
 - Anzahl Schleifendurchläufe(im iterativen Fall)
- $\frac{b}{2^n} \le 1$ gilt für $n \ge \log_2 b$. Also nicht mehr als $6\lceil \log_2 b \rceil$ elementare Operationen.

3.2 Schnelle Multiplikation von Zahlen

[Ottman/Widmayer, Kap. 1.2.3]

79

Beispiel 2: Multiplikation grosser Zahlen

Primarschule:

 $2 \cdot 2 = 4$ einstellige Multiplikationen. \Rightarrow Multiplikation zweier n-stelliger Zahlen: n^2 einstellige Multiplikationen

Beobachtung

$$ab \cdot cd = (10 \cdot a + b) \cdot (10 \cdot c + d)$$
$$= 100 \cdot a \cdot c + 10 \cdot a \cdot c$$
$$+ 10 \cdot b \cdot d + b \cdot d$$
$$+ 10 \cdot (a - b) \cdot (d - c)$$

Verbesserung?

	a	b		C	d	
	6	2	•	3	7	
				1	4	$d \cdot b$
			1	4		$egin{array}{c} d \cdot b \ d \cdot b \end{array}$
			1	6		$(a-b)\cdot(d-c)$
			1	8		$c \cdot a$
		1	8			$c \cdot a$
=		2	2	9	4	

ightarrow 3 einstellige Multiplikationen.

Grosse Zahlen

$$6237 \cdot 5898 = \underbrace{62}_{a'} \underbrace{37}_{b'} \cdot \underbrace{58}_{c'} \underbrace{98}_{d'}$$

Rekursive / induktive Anwendung: $a' \cdot c'$, $a' \cdot d'$, $b' \cdot c'$ und $c' \cdot d'$ wie oben berechnen.

 $\rightarrow 3 \cdot 3 = 9$ statt 16 einstellige Multiplikationen.

Verallgemeinerung

Annahme: zwei n-stellige Zahlen, $n = 2^k$ für ein k.

$$(10^{n/2}a + b) \cdot (10^{n/2}c + d) = 10^n \cdot a \cdot c + 10^{n/2} \cdot a \cdot c + 10^{n/2} \cdot b \cdot d + b \cdot d + 10^{n/2} \cdot (a - b) \cdot (d - c)$$

Rekursive Anwendung dieser Formel: Algorithmus von Karatsuba und Ofman (1962).

Analyse

M(n): Anzahl einstelliger Multiplikationen.

Rekursive Anwendung des obigen Algorithmus ⇒ Rekursionsgleichung:

$$M(2^k) = \begin{cases} 1 & \text{falls } k = 0, \\ 3 \cdot M(2^{k-1}) & \text{falls } k > 0. \end{cases}$$

...

83

Teleskopieren

Iteratives Einsetzen der Rekursionsformel zum Lösen der Rekursionsgleichung.

$$M(2^k) = 3 \cdot M(2^{k-1}) = 3 \cdot 3 \cdot M(2^{k-2}) = 3^2 \cdot M(2^{k-2})$$

= ...
 $\stackrel{!}{=} 3^k \cdot M(2^0) = 3^k$.

Beweis: Vollständige Induktion

Hypothese H:

$$M(2^k) = 3^k.$$

Induktionsanfang (k = 0):

$$M(2^0) = 3^0 = 1.$$
 \checkmark

Induktionsschritt ($k \rightarrow k+1$):

$$M(2^{k+1}) \stackrel{\mathsf{def}}{=} 3 \cdot M(2^k) \stackrel{\mathsf{H}}{=} 3 \cdot 3^k = 3^{k+1}.$$

Vergleich

Primarschulmethode: n^2 einstellige Multiplikationen.

Karatsuba/Ofman:

$$M(n) = 3^{\log_2 n} = (2^{\log_2 3})^{\log_2 n} = 2^{\log_2 3 \log_2 n} = n^{\log_2 3} \approx n^{1.58}.$$

Beispiel: 1000-stellige Zahl: $1000^2/1000^{1.58} \approx 18$.

Bestmöglicher Algorithums?

Wir kennen nun eine obere Schranke $n^{\log_2 3}$.

Es gibt praktisch (für grosses n) relevante, schnellere Algorithmen. Beispiel: Schönhage-Strassen-Algorithmus (1971) basierend auf schneller Fouriertransformation mit Laufzeit $\mathcal{O}(n\log n \cdot \log\log n)$. Die beste obere Schranke ist nicht bekannt.

Untere Schranke: n. Jede Ziffer muss zumindest einmal angeschaut werden.

Anhang: Asymptotik mit Additionen und Shifts

Bei jeder Multiplikation zweier n-stelliger Zahlen kommt auch noch eine konstante Anzahl Additionen, Subtraktionen und Shifts dazu Additionen, Subtraktionen und Shifts von n stelligen Zahlen kosten $\mathcal{O}(n)$

Daher ist die asymptotische Laufzeit eigentlich (mit geeignetem c>1) bestimmt durch die folgende Rekurrenz

$$T(n) = \begin{cases} 3 \cdot T\left(\frac{1}{2}n\right) + c \cdot n & \text{falls } n > 1\\ 1 & \text{sonst} \end{cases}$$

3.3 Maximum Subarray Problem

Algorithmenentwurf – Maximum Subarray Problem [Ottman/Widmayer, Kap. 1.3] Divide and Conguer [Ottman/Widmayer, Kap. 1.2.2. S.9; Cormen et al, Kap. 4-4.1]

Anhang: Asymptotik mit Additionen und Shifts

Annahme: $n = 2^k$, k > 0

$$\begin{split} T(2^k) &= 3 \cdot T \left(2^{k-1} \right) + c \cdot 2^k \\ &= 3 \cdot \left(3 \cdot T(2^{k-2}) + c \cdot 2^{k-1} \right) + c \cdot 2^k \\ &= 3 \cdot \left(3 \cdot \left(3 \cdot T(2^{k-3}) + c \cdot 2^{k-2} \right) + c \cdot 2^{k-1} \right) + c \cdot 2^k \\ &= 3 \cdot \left(3 \cdot \left(\dots \left(3 \cdot T(2^{k-k}) + c \cdot 2^1 \right) \dots \right) + c \cdot 2^{k-1} \right) + c \cdot 2^k \\ &= 3^k \cdot T(1) + c \cdot 3^{k-1}2^1 + c \cdot 3^{k-2}2^2 + \dots + c \cdot 3^02^k \\ &\leq c \cdot 3^k \cdot \left(1 + 2/3 + \left(2/3 \right)^2 + \dots + \left(2/3 \right)^k \right) \end{split}$$

Die geometrische Reihe $\sum_{i=0}^k \varrho^i$ mit $\varrho=2/3$ konvergiert für $k\to\infty$ gegen $\frac{1}{1-\varrho}=3$.

Somit
$$T(2^k) \le c \cdot 3^k \cdot 3 \in \Theta(3^k) = \Theta(3^{\log_2 n}) = \Theta(n^{\log_2 3}).$$

Algorithmenentwurf

Induktive Entwicklung eines Algorithmus: Zerlegung in Teilprobleme, Verwendung der Lösungen der Teilproblem zum Finden der endgültigen Lösung.

Ziel: Entwicklung des asymptotisch effizientesten (korrekten) Algorithmus.

Effizienz hinsichtlich der Laufzeitkosten (# Elementaroperationen) oder / und Speicherbedarf.

Maximum Subarray Problem

Gegeben: ein Array von n reellen Zahlen (a_1, \ldots, a_n) .

Gesucht: Teilstück [i,j], $1 \le i \le j \le n$ mit maximaler positiver Summe $\sum_{k=i}^j a_k$.

Beispiel:
$$a=(7,-11,15,110,-23,-3,127,-12,1)$$

Naiver Maximum Subarray Algorithmus

Input: Eine Folge von n Zahlen (a_1, a_2, \ldots, a_n)

Output: $I, J \text{ mit } \sum_{k=1}^{J} a_k \text{ maximal.}$

return I, J

95

Analyse

Theorem

Der naive Algorithmus für das Maximum Subarray Problem führt $\Theta(n^3)$ Additionen durch.

Beweis:

$$\begin{split} \sum_{i=1}^{n} \sum_{j=i}^{n} (j-i+1) &= \sum_{i=1}^{n} \sum_{j=0}^{n-i} (j+1) = \sum_{i=1}^{n} \sum_{j=1}^{n-i+1} j = \sum_{i=1}^{n} \frac{(n-i+1)(n-i+2)}{2} \\ &= \sum_{i=0}^{n} \frac{i \cdot (i+1)}{2} = \frac{1}{2} \left(\sum_{i=1}^{n} i^2 + \sum_{i=1}^{n} i \right) \\ &= \frac{1}{2} \left(\frac{n(2n+1)(n+1)}{6} + \frac{n(n+1)}{2} \right) = \frac{n^3 + 3n^2 + 2n}{6} = \Theta(n^3). \end{split}$$

Beobachtung

$$\sum_{k=i}^{j} a_k = \underbrace{\left(\sum_{k=1}^{j} a_k\right)}_{S_i} - \underbrace{\left(\sum_{k=1}^{i-1} a_k\right)}_{S_{i-1}}$$

Präfixsummen

$$S_i := \sum_{k=1}^i a_k.$$

Maximum Subarray Algorithmus mit Präfixsummen

Input: Eine Folge von n Zahlen (a_1, a_2, \dots, a_n)

Output: $I, J \text{ mit } \sum_{k=1}^{J} a_k \text{ maximal.}$

Analyse

Theorem

Der Präfixsummen Algorithmus für das Maximum Subarray Problem führt $\Theta(n^2)$ Additionen und Subtraktionen durch.

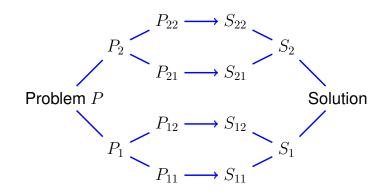
Beweis:

$$\sum_{i=1}^{n} 1 + \sum_{i=1}^{n} \sum_{j=i}^{n} 1 = n + \sum_{i=1}^{n} (n-i+1) = n + \sum_{i=1}^{n} i = \Theta(n^{2})$$

divide et impera

Teile und (be)herrsche (engl. divide and conquer)

Zerlege das Problem in Teilprobleme, deren Lösung zur vereinfachten Lösung des Gesamtproblems beitragen.



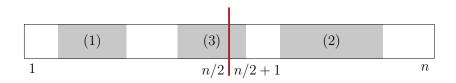
Maximum Subarray – Divide

- Divide: Teile das Problem in zwei (annähernd) gleiche Hälften auf: $(a_1, \ldots, a_n) = (a_1, \ldots, a_{\lfloor n/2 \rfloor}, a_{\lfloor n/2 \rfloor+1}, \ldots, a_1)$
- Vereinfachende Annahme: $n = 2^k$ für ein $k \in \mathbb{N}$.

Maximum Subarray – Conquer

Sind i, j die Indizes einer Lösung \Rightarrow Fallunterscheidung:

- Lösung in linker Hälfte $1 \le i \le j \le n/2 \Rightarrow$ Rekursion (linke Hälfte)
- **2** Lösung in rechter Hälfte $n/2 < i \le j \le n \Rightarrow$ Rekursion (rechte Hälfte)
- **3** Lösung in der Mitte $1 \le i \le n/2 < j \le n \Rightarrow$ Nachfolgende Beobachtung



Maximum Subarray – Beobachtung

Annahme: Lösung in der Mitte $1 \le i \le n/2 < j \le n$

$$\begin{split} S_{\text{max}} &= \max_{\substack{1 \leq i \leq n/2 \\ n/2 < j \leq n}} \sum_{k=i}^{j} a_k = \max_{\substack{1 \leq i \leq n/2 \\ n/2 < j \leq n}} \left(\sum_{k=i}^{n/2} a_k + \sum_{k=n/2+1}^{j} a_k \right) \\ &= \max_{\substack{1 \leq i \leq n/2 \\ 1 \leq i \leq n/2}} \sum_{k=i}^{n/2} a_k + \max_{\substack{n/2 < j \leq n \\ 1 \leq i \leq n/2}} \sum_{k=n/2+1}^{j} a_k \\ &= \max_{\substack{1 \leq i \leq n/2 \\ 1 \leq i \leq n/2}} \underbrace{S_{n/2} - S_{i-1}}_{\text{Suffixsumme}} + \max_{\substack{n/2 < j \leq n \\ n/2 < j \leq n}} \underbrace{S_{j} - S_{n/2}}_{\text{Präfixsumme}} \end{split}$$

03

Maximum Subarray Divide and Conquer Algorithmus

Input: Eine Folge von n Zahlen (a_1, a_2, \ldots, a_n)

Output: Maximales $\sum_{k=i'}^{j'} a_k$.

if n=1 then

return $\max\{a_1,0\}$

else

Unterteile $a=(a_1,\ldots,a_n)$ in $A_1=(a_1,\ldots,a_{n/2})$ und

 $A_2 = (a_{n/2+1}, \dots, a_n)$

Berechne rekursiv beste Lösung W_1 in A_1

Berechne rekursiv beste Lösung W_2 in A_2

Berechne grösste Suffixsumme S in A_1

Berechne grösste Präfixsumme P in A_2

Setze $W_3 \leftarrow S + P$

return $\max\{W_1, W_2, W_3\}$

Analyse

Theorem

Der Divide and Conquer Algorithmus für das Maximum Subarray Sum Problem führt $\Theta(n \log n)$ viele Additionen und Vergleiche durch.

Analyse

Input: Eine Folge von n Zahlen (a_1, a_2, \ldots, a_n)

Output: Maximales $\sum_{k=i'}^{j'} a_k$.

if n=1 then

 $\Theta(1)$ return $\max\{a_1,0\}$

else

 $\Theta(1)$ Unterteile $a=(a_1,\ldots,a_n)$ in $A_1=(a_1,\ldots,a_{n/2})$ und $A_2=(a_{n/2+1},\ldots,a_n)$

T(n/2) Berechne rekursiv beste Lösung W_1 in A_1

T(n/2) Berechne rekursiv beste Lösung W_2 in A_2

 $\Theta(n)$ Berechne grösste Suffixsumme S in A_1

 $\Theta(n)$ Berechne grösste Präfixsumme P in A_2

 $\Theta(1)$ Setze $W_3 \leftarrow S + P$

 $\Theta(1)$ return $\max\{W_1, W_2, W_3\}$

Analyse

Rekursionsgleichung

$$T(n) = \begin{cases} c & \text{falls } n = 1 \\ 2T(\frac{n}{2}) + a \cdot n & \text{falls } n > 1 \end{cases}$$

Analyse

Mit $n=2^k$:

$$\overline{T}(k) = \begin{cases} c & \text{falls } k = 0 \\ 2\overline{T}(k-1) + a \cdot 2^k & \text{falls } k > 0 \end{cases}$$

Lösung:

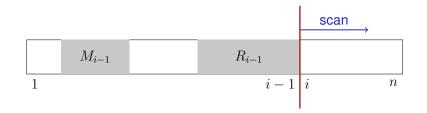
$$\overline{T}(k) = 2^k \cdot c + \sum_{i=0}^{k-1} 2^i \cdot a \cdot 2^{k-i} = c \cdot 2^k + a \cdot k \cdot 2^k = \Theta(k \cdot 2^k)$$

also

$$T(n) = \Theta(n \log n)$$

Maximum Subarray Sum Problem – Induktiv

Annahme: Maximaler Wert M_{i-1} der Subarraysumme für (a_1, \ldots, a_{i-1}) $(1 < i \le n)$ bekannt.



 a_i : erzeugt höchstens Intervall am Rand (Präfixsumme).

$$R_{i-1} \Rightarrow R_i = \max\{R_{i-1} + a_i, 0\}$$

Induktiver Maximum Subarray Algorithmus

Analyse

Theorem

Der induktive Algorithmus für das Maximum Subarray Sum Problem führt $\Theta(n)$ viele Additionen und Vergleiche durch.

Komplexität des Problems?

Geht es besser als $\Theta(n)$?

Jeder korrekte Algorithmus für das Maximum Subarray Sum Problem muss jedes Element im Algorithmus betrachten.

Annahme: der Algorithmus betrachtet nicht a_i .

- Lösung des Algorithmus enthält a_i . Wiederholen den Algorithmus mit genügend kleinem a_i , so dass die Lösung den Punkt nicht enthalten hätte dürfen.
- Lösung des Algorithmus enthält a_i nicht. Wiederholen den Algorithmus mit genügend grossem a_i , so dass die Lösung a_i hätten enthalten müssen.

Komplexität des Maximum Subarray Sum Problems

Theorem

Das Maximum Subarray Sum Problem hat Komplexität $\Theta(n)$.

Beweis: Induktiver Algorithmus mit asymptotischer Laufzeit $\mathcal{O}(n)$. Jeder Algorithmus hat Laufzeit $\Omega(n)$. Somit ist die Komplexität $\Omega(n) \cap \mathcal{O}(n) = \Theta(n)$.

113

3.4 Anhang

Herleitung einiger mathematischen Formeln

Geometrische Reihe

$$\sum_{i=0}^{n} \rho^i \stackrel{!}{=} \frac{1 - \rho^{n+1}}{1 - \rho}$$

$$\sum_{i=0}^{n} \rho^{i} \cdot (1 - \varrho) = \sum_{i=0}^{n} \rho^{i} - \sum_{i=0}^{n} \rho^{i+1} = \sum_{i=0}^{n} \rho^{i} - \sum_{i=1}^{n+1} \rho^{i}$$
$$= \rho^{0} - \rho^{n+1} = 1 - \rho^{n+1}.$$

Für $0 \le \rho < 1$:

$$\sum_{i=0}^{\infty} \rho^i = \frac{1}{1-\rho}$$

Summen

$$\sum_{i=0}^{n} i^2 = \frac{n \cdot (n+1) \cdot (2n+1)}{6}$$

Trick:

$$\sum_{i=1}^{n} i^{3} - (i-1)^{3} = \sum_{i=0}^{n} i^{3} - \sum_{i=0}^{n-1} i^{3} = n^{3}$$

$$\sum_{i=1}^{n} i^{3} - (i-1)^{3} = \sum_{i=1}^{n} i^{3} - i^{3} + 3i^{2} - 3i + 1 = n - \frac{3}{2}n \cdot (n+1) + 3\sum_{i=0}^{n} i^{2}$$

$$\Rightarrow \sum_{i=0}^{n} i^{2} = \frac{1}{6}(2n^{3} + 3n^{2} + n) \in \Theta(n^{3})$$

Kann einfach verallgemeinert werden: $\sum_{i=1}^{n} i^k \in \Theta(n^{k+1})$.

4. Suchen

Lineare Suche, Binäre Suche, (Interpolationssuche,) Untere Schranken [Ottman/Widmayer, Kap. 3.2, Cormen et al, Kap. 2: Problems 2.1-3,2.2-3,2.3-5]

Das Suchproblem

Gegeben

■ Menge von Datensätzen.

Beispiele

Telefonverzeichnis, Wörterbuch, Symboltabelle

- Jeder Datensatz hat einen Schlüssel k.
- Schlüssel sind vergleichbar: eindeutige Antwort auf Frage $k_1 \le k_2$ für Schlüssel k_1, k_2 .

Aufgabe: finde Datensatz nach Schlüssel k.

Suche in Array

Gegeben

- Array A mit n Elementen $(A[1], \ldots, A[n])$.
- Schlüssel b

Gesucht: Index k, $1 \le k \le n$ mit A[k] = b oder "nicht gefunden".

22	20	32	10	35	24	42	38	28	41
1	2	3	4	5	6	7	8	9	10

119

Lineare Suche

Durchlaufen des Arrays von A[1] bis A[n].

- *Bestenfalls* 1 Vergleich.
- Schlimmstenfalls n Vergleiche.
- Annahme: Jede Anordnung der n Schlüssel ist gleichwahrscheinlich. Erwartete Anzahl Vergleiche für die erfolgreiche Suche:

$$\frac{1}{n}\sum_{i=1}^{n} i = \frac{n+1}{2}.$$

Suche im sortierten Array

Gegeben

- Sortiertes Array A mit n Elementen $(A[1], \ldots, A[n])$ mit $A[1] \leq A[2] \leq \cdots \leq A[n]$.
- Schlüssel b

Gesucht: Index k, $1 \le k \le n$ mit A[k] = b oder "nicht gefunden".

10	20	22	24	28	32	35	38	41	42	
1	2	3	4	5	6	7	8	9	10	

Divide and Conquer!

Suche b = 23.

b < 28	42	41	38	35	32	28	24	22	20	10
	10	9	8	7	6	5	4	3	2	1
b > 20	42	41	38	35	32	28	24	22	20	10
	10	9	8	7	6	5	4	3	2	1
b > 22	42	41	38	35	32	28	24	22	20	10
	10	9	8	7	6	5	4	3	2	1
b < 24	42	41	38	35	32	28	24	22	20	10
	10	9	8	7	6	5	4	3	2	1
erfolglos	42	41	38	35	32	28	24	22	20	10
_	10	9	8	7	6	5	4	3	2	1

Binärer Suchalgorithmus BSearch(A[l..r], b)

Input: Sortiertes Array A von n Schlüsseln. Schlüssel b. Bereichsgrenzen $1 \le l \le r \le n$ oder l > r beliebig.

Output: Index des gefundenen Elements. 0, wenn erfolglos.

$$m \leftarrow \lfloor (l+r)/2 \rfloor$$

if l > r then // erfolglose Suche

return NotFound

else if b = A[m] then// gefunden

return m

else if b < A[m] then// Element liegt links

return BSearch(A[l..m-1],b)

else // b > A[m]: Element liegt rechts

return BSearch(A[m+1..r],b)

Analyse (schlechtester Fall)

Rekurrenz ($n = 2^k$)

$$T(n) = \begin{cases} d & \text{falls } n = 1, \\ T(n/2) + c & \text{falls } n > 1. \end{cases}$$

Teleskopieren:

$$\begin{split} T(n) &= T\left(\frac{n}{2}\right) + c = T\left(\frac{n}{4}\right) + 2c = \dots \\ &= T\left(\frac{n}{2^i}\right) + i \cdot c \\ &= T\left(\frac{n}{n}\right) + \log_2 n \cdot c = d + c \cdot \log_2 n \in \Theta(\log n) \end{split}$$

Analyse (schlechtester Fall)

$$T(n) = \begin{cases} d & \text{falls } n = 1, \\ T(n/2) + c & \text{falls } n > 1. \end{cases}$$

Vermutung: $T(n) = d + c \cdot \log_2 n$

Beweis durch Induktion:

- Induktionsanfang: T(1) = d.
- Hypothese: $T(n/2) = d + c \cdot \log_2 n/2$
- \blacksquare Schritt $(n/2 \rightarrow n)$

$$T(n) = T(n/2) + c = d + c \cdot (\log_2 n - 1) + c = d + c \log_2 n.$$

12

125

Resultat

Theorem

Der Algorithmus zur binären sortierten Suche benötigt $\Theta(\log n)$ Elementarschritte.

Iterativer binärer Suchalgorithmus

return NotFound:

127

Korrektheit

Algorithmus bricht nur ab, falls A[l..r] leer oder b gefunden.

Invariante: Falls b in A, dann im Bereich A[l..r]

Beweis durch Induktion

- Induktionsanfang: $b \in A[1..n]$ (oder nicht)
- Hypothese: Invariante gilt nach *i* Schritten
- Schritt:

$$b < A[m] \Rightarrow b \in A[l..m-1]$$

 $b > A[m] \Rightarrow b \in A[m+1..r]$

[Geht es noch besser?]

Annahme: Gleichverteilung der Werte im Array.

Beispiel

Name "Becker" würde man im Telefonbuch vorne suchen.

"Wawrinka" wohl ziemlich weit hinten.

Binäre Suche vergleicht immer zuerst mit der Mitte.

Binäre Suche setzt immer $m = \lfloor l + \frac{r-l}{2} \rfloor$.

[Interpolations suche]

Erwartete relative Position von b im Suchintervall [l,r]

$$\rho = \frac{b - A[l]}{A[r] - A[l]} \in [0, 1].$$

Neue "Mitte": $l + \rho \cdot (r - l)$

Anzahl Vergleiche im Mittel $\mathcal{O}(\log \log n)$ (ohne Beweis).

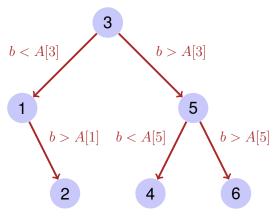
- Ist Interpolationssuche also immer zu bevorzugen?
- $oldsymbol{\mathbb{O}}$ Nein: Anzahl Vergleiche im schlimmsten Fall $\Omega(n)$.

Untere Schranke

Binäre Suche (im schlechtesten Fall): $\Theta(\log n)$ viele Vergleiche. Gilt für *jeden* Suchalgorithms in sortiertem Array (im schlechtesten Fall): Anzahl Vergleiche = $\Omega(\log n)$?

131

Entscheidungsbaum



- Für jede Eingabe b = A[i] muss Algorithmus erfolgreich sein \Rightarrow Baum enthält mindestens n Knoten.
- Anzahl Vergleiche im schlechtesten Fall = Höhe des Baumes = maximale Anzahl Knoten von Wurzel zu Blatt.

Entscheidungsbaum

Binärer Baum der Höhe h hat höchstens $2^0 + 2^1 + \cdots + 2^{h-1} = 2^h - 1 < 2^h$ Knoten.

$$2^h > n \Rightarrow h > \log_2 n$$

Entscheidungsbaum mit n Knoten hat mindestens Höhe $\log_2 n$. Anzahl Entscheidungen = $\Omega(\log n)$.

Theorem

Jeder Algorithmus zur vergleichsbasierten Suche in sortierten Daten der Länge n benötigt im schlechtesten Fall $\Omega(\log n)$ Vergleichsschritte.

Untere Schranke für Suchen in unsortiertem Array

Versuch

Theorem

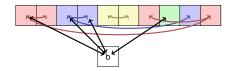
Jeder vergleichsbasierte Algorithmus zur Suche in unsortierten Daten der Länge n benötigt im schlechtesten Fall $\Omega(n)$ Vergleichsschritte.

"Beweis": Um b in A zu finden, muss b mit jedem Element A[i] $(1 \le i \le n)$ verglichen werden.

① Falsch! Vergleiche zwischen Elementen von A möglich!

135

Besseres Argument



- Unterteilung der Vergleiche: Anzahl Vergleiche mit *b* : *e* Anzahl Vergleiche untereinander ohne *b*: *i*
- Vergleiche erzeugen g Gruppen. Initial: g = n.
- Vereinigen zweier Gruppen benötigt mindestens einen (internen Vergleich: $n-g \le i$.
- Mindestens ein Element pro Gruppe muss mit b verglichen werden: $e \ge g$.
- Anzahl Vergleiche $i + e \ge n g + g = n$.

5. Auswählen

Das Auswahlproblem, Randomisierte Berechnung des Medians, Lineare Worst-Case Auswahl [Ottman/Widmayer, Kap. 3.1, Cormen et al, Kap. 9]

Das Auswahlproblem

Eingabe

■ Unsortiertes Array $A = (A_1, \dots, A_n)$ paarweise verschiedener Werte

 \blacksquare Zahl $1 \le k \le n$.

Ausgabe: A[i] mit $|\{j : A[j] < A[i]\}| = k - 1$

Spezialfälle

k=1: Minimum: Algorithmus mit n Vergleichsoperationen trivial.

k=n: Maximum: Algorithmus mit n Vergleichsoperationen trivial.

 $k = \lfloor n/2 \rfloor$: Median.

Naiver Algorithmus

Wiederholt das Minimum entfernen / auslesen: $\Theta(k \cdot n)$. \to Median in $\Theta(n^2)$

139

Min und Max

 $oldsymbol{O}$ Separates Finden von Minimum und Maximum in $(A[1],\ldots,A[n])$ benötigt insgesamt 2n Vergleiche. (Wie) geht es mit weniger als 2n Vergleichen für beide gemeinsam?

① Es geht mit $\frac{3}{2}n$ Vergleichen: Vergleiche jeweils 2 Elemente und deren kleineres mit Min und grösseres mit Max.⁴ Possible with $\frac{3}{2}n$ comparisons: compare 2 elements each and then the smaller one with min and the greater one with max.⁵

Bessere Ansätze

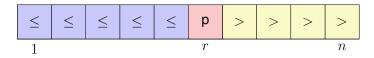
- Sortieren (kommt bald): $\Theta(n \log n)$
- Pivotieren: $\Theta(n)$!

⁴Das liefert einen Hinweis darauf, dass der naive Algorithmus verbessert werden kann

⁵An indication that the naive algorithm can be improved.

Pivotieren

- **11** Wähle ein (beliebiges) Element p als Pivotelement
- Teile A in zwei Teile auf, bestimme dabei den Rang von p, indem die Anzahl der Indizes i mit $A[i] \le p$ gezählt werden.
- Rekursion auf dem relevanten Teil. Falls k = r, dann gefunden.



Algorithmus Partition(A[l..r], p)

Input: Array A, welches den Pivot p im Intervall [l,r] mindestens einmal enthält.

Output: Array A partitioniert in [l..r] um p. Rückgabe der Position von p.

 $\begin{array}{c|c} \textbf{while} \ l \leq r \ \textbf{do} \\ & \textbf{while} \ A[l] p \ \textbf{do} \\ & \bot \ r \leftarrow r-1 \\ & \textbf{swap} \big(A[l], \ A[r]\big) \\ & \textbf{if} \ A[l] = A[r] \ \textbf{then} \end{array}$

 $l \leftarrow l+1$

return |-1

33

Korrektheit: Invariante

Invariante $I: A_i \leq p \ \forall i \in [0, l), A_i \geq p \ \forall i \in (r, n], \ \exists k \in [l, r]: A_k = p.$

```
\begin{array}{c|c} \textbf{while } l \leq r \textbf{ do} \\ \hline \textbf{while } A[l]  p \textbf{ do} \\ \hline & L + 1 \\ \hline \hline \textbf{while } A[r] > p \textbf{ do} \\ \hline & L + 1 \\ \hline \hline \textbf{swap}(A[l], A[r]) \\ \hline \textbf{if } A[l] = A[r] \textbf{ then} \\ \hline & L + 1 \\ \hline & L + 1 \\ \hline \end{array}
```

return |-1

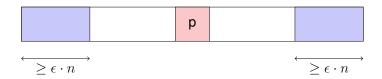
Korrektheit: Fortschritt

return |-1

Wahl des Pivots

Das Minimum ist ein schlechter Pivot: worst Case $\Theta(n^2)$

Ein guter Pivot hat linear viele Elemente auf beiden Seiten.



Analyse

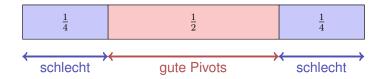
Unterteilung mit Faktor q (0 < q < 1): zwei Gruppen mit $q \cdot n$ und $(1-q) \cdot n$ Elementen (ohne Einschränkung q > 1-q).

$$\begin{split} T(n) &\leq T(q \cdot n) + c \cdot n \\ &= c \cdot n + q \cdot c \cdot n + T(q^2 \cdot n) = \ldots = c \cdot n \sum_{i=0}^{\log_q(n)-1} q^i + T(1) \\ &\leq c \cdot n \sum_{i=0}^{\infty} q^i \quad + d = c \cdot n \cdot \frac{1}{1-q} + d = \mathcal{O}(n) \end{split}$$

147

Wie bekommen wir das hin?

Der Zufall hilft uns (Tony Hoare, 1961). Wähle in jedem Schritt einen zufälligen Pivot.



Wahrscheinlichkeit für guten Pivot nach einem Versuch: $\frac{1}{2} =: \rho$. Wahrscheinlichkeit für guten Pivot nach k Versuchen: $(1 - \rho)^{k-1} \cdot \rho$. Erwartete Anzahl Versuche: $1/\rho = 2$ (Erwartungswert der geometrischen Verteilung:)

Algorithmus Quickselect (A[l..r], k)

Input: Array A der Länge n. Indizes $1 \le l \le k \le r \le n$, so dass für alle $x \in A[l..r] : |\{j|A[j] \le x\}| \ge l \text{ und } |\{j|A[j] \le x\}| \le r.$ **Output:** Wert $x \in A[l..r]$ mit $|\{j|A[j] \le x\}| \ge k$ und $|\{j|x \le A[j]\}| \ge n - k + 1$ if |=r then return A[l]; $x \leftarrow \mathsf{RandomPivot}(A[l..r])$ $m \leftarrow \mathsf{Partition}(A[l..r], x)$ if k < m then return QuickSelect(A[l..m-1], k) else if k > m then

return QuickSelect(A[m+1..r], k) else

return A[k]

Algorithmus RandomPivot (A[l..r])

Dieser Algorithmus ist nur von theoretischem Interesse und liefert im Erwartungswert nach 2 Durchläufen einen guten Pivot. Praktisch kann man im Algorithmus Quickselect direkt einen zufälligen Pivot uniformverteilt ziehen oder einen deterministischen Pivot wählen, z.B. den Median von drei Elementen.

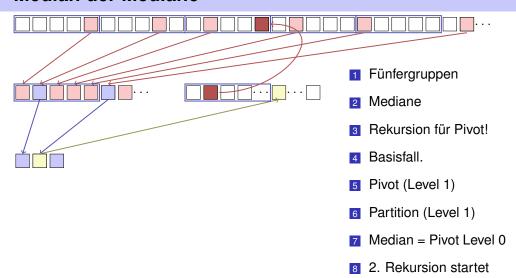
Median der Mediane

Ziel: Finde einen Algorithmus, welcher im schlechtesten Fall nur linear viele Schritte benötigt.

Algorithmus Select (k-smallest)

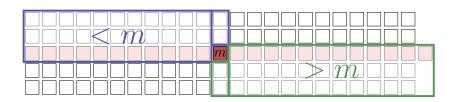
- Fünfergruppen bilden.
- Median jeder Gruppe bilden (naiv).
- Select rekursiv auf den Gruppenmedianen.
- Partitioniere das Array um den gefundenen Median der Mediane. Resultat: i
- Wenn i = k, Resultat. Sonst: Select rekursiv auf der richtigen Seite.

Median der Mediane



Was bringt das?

151



Anzahl Punkte links / rechts vom Median der Mediane (ohne Mediangruppe und ohne Restgruppe) $\geq 3 \cdot (\lceil \frac{1}{2} \lceil \frac{n}{5} \rceil \rceil - 2) \geq \frac{3n}{10} - 6$

Zweiter Aufruf mit maximal $\lceil \frac{7n}{10} + 6 \rceil$ Elementen.

Analyse

Rekursionsungleichung:

$$T(n) \le T\left(\left\lceil \frac{n}{5}\right\rceil\right) + T\left(\left\lceil \frac{7n}{10} + 6\right\rceil\right) + d \cdot n.$$

mit einer Konstanten d.

Behauptung:

$$T(n) = \mathcal{O}(n).$$

Beweis

Induktionsanfang: Wähle c so gross, dass

$$T(n) \leq c \cdot n$$
 für alle $n \leq n_0$.

Induktionsannahme:

$$T(i) \leq c \cdot i$$
 für alle $i < n$.

Induktionsschritt:

$$T(n) \le T\left(\left\lceil \frac{n}{5}\right\rceil\right) + T\left(\left\lceil \frac{7n}{10} + 6\right\rceil\right) + d \cdot n$$
$$= c \cdot \left\lceil \frac{n}{5}\right\rceil + c \cdot \left\lceil \frac{7n}{10} + 6\right\rceil + d \cdot n.$$

155

Beweis

Induktionsschritt:

$$T(n) \le c \cdot \left\lceil \frac{n}{5} \right\rceil + c \cdot \left\lceil \frac{7n}{10} + 6 \right\rceil + d \cdot n$$

$$\le c \cdot \frac{n}{5} + c + c \cdot \frac{7n}{10} + 6c + c + d \cdot n = \frac{9}{10} \cdot c \cdot n + 8c + d \cdot n.$$

Wähle $c \geq 80 \cdot d$ und $n_0 = 91$.

$$T(n) \le \frac{72}{80} \cdot c \cdot n + 8c + \frac{1}{80} \cdot c \cdot n = c \cdot \underbrace{\left(\frac{73}{80}n + 8\right)}_{\le n \text{ für } n > n_0} \le c \cdot n.$$

Resultat

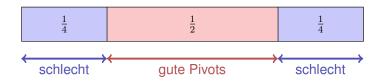
Theorem

Das i-te Element einer Folge von n Elementen kann im schlechtesten Fall in $\Theta(n)$ Schritten gefunden werden.

Überblick

1.	Wiederholt Minimum finden	$\mathcal{O}(n^2)$
2.	Sortieren und $A[i]$ ausgeben	$\mathcal{O}(n\log n)$
3	Quicksoloct mit zufälligem Pivot	$\mathcal{O}(n)$ im Mittal

- Quickselect mit zufälligem Pivot $\mathcal{O}(n)$ im Mittel
- $\mathcal{O}(n)$ im schlimmsten Fall Median of Medians (Blum)



5.1 Anhang

Herleitung einiger mathematischen Formeln

[Erwartungswert der geometrischen Verteilung]

Zufallsvariable $X \in \mathbb{N}^+$ mit $\mathbb{P}(X = k) = (1 - p)^{k-1} \cdot p$.

Erwartungswert

$$\mathbb{E}(X) = \sum_{k=1}^{\infty} k \cdot (1-p)^{k-1} \cdot p = \sum_{k=1}^{\infty} k \cdot q^{k-1} \cdot (1-q)$$

$$= \sum_{k=1}^{\infty} k \cdot q^{k-1} - k \cdot q^k = \sum_{k=0}^{\infty} (k+1) \cdot q^k - k \cdot q^k$$

$$= \sum_{k=0}^{\infty} q^k = \frac{1}{1-q} = \frac{1}{p}.$$

6. C++ vertieft (I)

Kurzwiederholung: Vektoren, Zeiger und Iteratoren Bereichsbasiertes for, Schlüsselwort auto, eine Klasse für Vektoren, Indexoperator, Move-Konstruktion, Iterator.

Was lernen wir heute?

- Schlüsselwort auto
- Bereichsbasiertes for
- Kurzwiederholung der Dreierregel
- Indexoperator
- Move Semantik, X-Werte und Fünferregel
- Eigene Iteratoren

Wir erinnern uns...

163

Nützliche Tools (1): auto (C++11)

Das Schlüsselwort auto:

Der Typ einer Variablen wird inferiert vom Initialisierer.

```
Beispiele

int x = 10;
auto y = x; // int
auto z = 3; // int
std::vector<double> v(5);
auto i = v[3]; // double
```

Schon etwas besser...

```
#include <iostream>
#include <vector>
int main(){
  std::vector<int> v(10); // Vector of length 10

for (int i = 0; i < v.size(); ++i)
  std::cin >> v[i];

for (auto it = v.begin(); it != v.end(); ++it){
  std::cout << *it << " ";
}
}</pre>
```

Nützliche Tools (2): Bereichsbasiertes for (C++11)

```
for (range-declaration : range-expression)
    statement;

range-declaration: benannte Variable vom Elementtyp der durch
    range-expression spezifizierten Folge.
    range-expression: Ausdruck, der eine Folge von Elementen repräsentiert via
    lterator-Paar begin(), end() oder in Form einer Initialisierungsliste.
```

Beispiele

```
std::vector<double> v(5);
for (double x: v) std::cout << x; // 00000
for (int x: {1,2,5}) std::cout << x; // 125
for (double& x: v) x=5;</pre>
```

Ok, das ist cool!

```
#include <iostream>
#include <vector>

int main(){
   std::vector<int> v(10); // Vector of length 10

for (auto& x: v)
   std::cin >> x;

for (const auto x: v)
   std::cout << x << " ";
}</pre>
```

Für unser genaues Verständis

Wir bauen selbst eine Vektorklasse, die so etwas kann!

Auf dem Weg lernen wir etwas über

- RAII (Resource Acquisition is Initialization) und Move-Konstruktion
- Index-Operatoren und andere Nützlichkeiten
- Templates
- Exception Handling
- Funktoren und Lambda-Ausdrücke

Eine Klasse für (double) Vektoren

```
class Vector{
public:
    // constructors
    Vector(): sz{0}, elem{nullptr} {};
    Vector(std::size_t s): sz{s}, elem{new double[s]} {}
    // destructor
    ~Vector(){
        delete[] elem;
    }
    // (something is missing here)
private:
    std::size_t sz;
    double* elem;
}
```

Elementzugriffe

```
class Vector{
    ...
    // getter. pre: 0 <= i < sz;
    double get(std::size_t i) const{
        return elem[i];
    }
    // setter. pre: 0 <= i < sz;
    void set(std::size_t i, double d){
        elem[i] = d;
    }
    // size property
    std::size_t size() const {
        return sz;
    }
}</pre>
```

```
class Vector{
public:
    Vector();
    Vector(std::size_t s);
    ~Vector();
    double get(std::size_t i) const;
    void set(std::size_t i, double d);
    std::size_t size() const;
}
```

(Vector Schnittstelle)

Was läuft schief?

```
int main(){
                                                   class Vector{
  Vector v(32):
                                                   public:
 for (std::size_t i = 0; i!=v.size(); ++i)
                                                    Vector():
                                                    Vector(std::size t s);
    v.set(i, i);
                                                    ~Vector();
  Vector w = v;
                                                    double get(std::size t i) const;
                                                    void set(std::size t i, double d);
  for (std::size t i = 0; i!=w.size(); ++i)
                                                    std::size t size() const;
    w.set(i, i*i);
  return 0:
                                                        (Vector Schnittstelle)
}
*** Error in 'vector1': double free or corruption
(!prev): 0x000000000d23c20 ***
====== Backtrace: ======
/lib/x86_64-linux-gnu/libc.so.6(+0x777e5)[0x7fe5a5ac97e5]
```

Rule of Three!

```
class Vector{
...
  public:
  // copy constructor
  Vector(const Vector &v)
    : sz{v.sz}, elem{new double[v.sz]} {
    std::copy(v.elem, v.elem + v.sz, elem);
  }
}
```

```
class Vector{
public:
    Vector();
    Vector(std::size_t s);
    ~Vector();

    Vector(const Vector &v);
    double get(std::size_t i) const;
    void set(std::size_t i, double d);
    std::size_t size() const;
}

(Vector Schnittstelle)
```

Rule of Three!

```
class Vector{
                                                            class Vector{
                                                            public:
  // assignment operator
                                                             Vector();
                                                             Vector(std :: size_t s);
  Vector& operator=(const Vector& v){
                                                             ~Vector():
    if (v.elem == elem) return *this;
                                                             Vector(const Vector &v);
                                                             Vector& operator=(const Vector&v);
    if (elem != nullptr) delete[] elem;
                                                             double get(std::size t i) const;
    sz = v.sz;
                                                             void set(std::size_t i, double d);
                                                             std::size t size() const;
    elem = new double[sz];
    std::copy(v.elem, v.elem+v.sz, elem);
    return *this;
                                                                  (Vector Schnittstelle)
}
```

Jetzt ist es zumindest korrekt. Aber umständlich.

Eleganter geht so (Teil 1):

```
public:
// copy constructor
// (with constructor delegation)
Vector(const Vector &v): Vector(v.sz)
{
   std::copy(v.elem, v.elem + v.sz, elem);
}
```

Eleganter geht so (Teil 2):

```
class Vector{
         // Assignment operator
         Vector& operator= (const Vector&v){
           Vector cpy(v);
           swap(cpy);
                                           copy-and-swap idiom: alle Felder von
           return *this;
                                           *this tauschen mit den Daten von cpy.
         }
                                           Beim Verlassen von operator= wird
                                           cpy aufgeräumt (dekonstruiert), während
      private:
                                           die Kopie der Daten von v in *this
         // helper function
                                           verbleiben.
         void swap(Vector& v){
           std::swap(sz, v.sz);
           std::swap(elem, v.elem);
175
```

1

Arbeit an der Fassade.

Getter und Setter unschön. Wir wollen einen Indexoperator.

Überladen! So?

```
class Vector{
...
  double operator[] (std::size_t pos) const{
    return elem[pos];
}

void operator[] (std::size_t pos, double value){
    elem[pos] = value;
}
```

Referenztypen!

Nein!

```
class Vector{
...
  // for non-const objects
  double& operator[] (std::size_t pos){
    return elem[pos]; // return by reference!
  }
  // for const objects
  const double& operator[] (std::size_t pos) const{
    return elem[pos];
  }
}
```

Soweit, so gut.

```
int main(){
                                                 class Vector{
  Vector v(32); // constructor
                                                 public:
  for (int i = 0; i<v.size(); ++i)</pre>
                                                  Vector():
                                                  Vector(std::size t s);
    v[i] = i; // subscript operator
                                                  ~Vector();
                                                  Vector(const Vector &v);
                                                  Vector& operator=(const Vector&v);
  Vector w = v; // copy constructor
                                                  const double& operator[] (std::size_t pos) const;
  for (int i = 0; i<w.size(); ++i)</pre>
                                                  double& operator[] (std::size t pos);
                                                  std::size t size() const;
    w[i] = i*i:
  const auto u = w;
  for (int i = 0; i<u.size(); ++i)</pre>
    std::cout << v[i] << ":" << u[i] << " "; // 0:0 1:1 2:4 ...
  return 0:
```

Anzahl Kopien

Wie oft wird v kopiert?

v wird (mindestens) zwei Mal kopiert.

Move-Konstruktor und Move-Zuweisung

```
class Vector{
...
    // move constructor
    Vector (Vector&& v): Vector() {
        swap(v);
    };
    // move assignment
    Vector& operator=(Vector&& v){
        swap(v);
        return *this;
    };
}
```

```
class Vector{
public:
    Vector();
    Vector(std::size_t s);
    ~Vector();
    Vector(const Vector &v);
    Vector& operator=(const Vector&v);
    Vector& operator=(Vector&& v);
    Vector& operator=(Vector&& v);
    const double& operator[] (std::size_t pos) const;
    double& operator[] (std::size_t pos);
    std::size_t size() const;
}
```

Erklärung

Wenn das Quellobjekt einer Zuweisung direkt nach der Zuweisung nicht weiter existiert, dann kann der Compiler den Move-Zuweisungsoperator anstelle des Zuweisungsoperators einsetzen.⁶ Damit wird eine potentiell teure Kopie vermieden.

Anzahl der Kopien im vorigen Beispiel reduziert sich zu 1.

⁶Analoges gilt für den Kopier-Konstruktor und den Move-Konstruktor.

Illustration zur Move-Semantik

```
// nonsense implementation of a "vector" for demonstration purposes
class Vec{
public:
    Vec () {
        std::cout << "default constructor\n";}
    Vec (const Vec&) {
        std::cout << "copy constructor\n";}
    Vec& operator = (const Vec&) {
        std::cout << "copy assignment\n"; return *this;}
    ~Vec() {}
};</pre>
```

Wie viele Kopien?

```
Vec operator + (const Vec& a, const Vec& b){
    Vec tmp = a;
    // add b to tmp
    return tmp;
}

int main (){
    Vec f;
    f = f + f + f + f;
}
Ausgabe

default constructor
copy constructor
copy constructor
copy constructor
copy assignment

4 Kopien des Vektors
```

33

Illustration der Move-Semantik

```
// nonsense implementation of a "vector" for demonstration purposes
class Vec{
public:
    Vec () { std::cout << "default constructor\n";}
    Vec (const Vec&) { std::cout << "copy constructor\n";}
    Vec& operator = (const Vec&) {
        std::cout << "copy assignment\n"; return *this;}
    ~Vec() {}
    // new: move constructor and assignment
    Vec (Vec&&) {
        std::cout << "move constructor\n";}
    Vec& operator = (Vec&&) {
        std::cout << "move assignment\n"; return *this;}
};</pre>
```

Wie viele Kopien?

```
Vec operator + (const Vec& a, const Vec& b){
                                                 Ausgabe
    Vec tmp = a;
                                                 default constructor
   // add b to tmp
                                                 copy constructor
   return tmp;
                                                 copy constructor
}
                                                 copy constructor
                                                 move assignment
int main (){
    Vec f;
                                                 3 Kopien des Vektors
   f = f + f + f + f;
}
```

Wie viele Kopien?

```
Vec operator + (Vec a, const Vec& b){
    // add b to a
    return a;
}

copy constructor
    move assignment
}

1 Kopie des Vektors
```

Erklärung: Move-Semantik kommt zum Einsatz, wenn ein x-wert (expired) zugewiesen wird. R-Wert-Rückgaben von Funktionen sind x-Werte.

http://en.cppreference.com/w/cpp/language/value_category

Wie viele Kopien

```
void swap(Vec& a, Vec& b){
    Vec tmp = a;
    a=b;
    b=tmp;
}
int main (){
    Vec f;
    Vec g;
    swap(f,g);
}
```

187

Ausgabe
default constructor
default constructor
copy constructor
copy assignment
copy assignment

3 Kopien des Vektors

X-Werte erzwingen

```
void swap(Vec& a, Vec& b){
    Vec tmp = std::move(a);
    a=std::move(b);
    b=std::move(tmp);
}
int main (){
    Vec f;
    Vec g;
    swap(f,g);
}
```

Ausgabe
default constructor
default constructor
move constructor
move assignment
move assignment

0 Kopien des Vektors

Erklärung: Mit std::move kann man einen L-Wert Ausdruck zu einem X-Wert machen. Dann kommt wieder Move-Semantik zum Einsatz.
http://en.cppreference.com/w/cpp/utility/move

std::swap & std::move

std::swap ist (mit Templates) genau wie oben gesehen
implementiert

std::move kann verwendet werden, um die Elemente eines Containers in einen anderen zu verschieben

std::move(va.begin(),va.end(),vb.begin())

Bereichsbasiertes for

Wir wollten doch das:

```
Vector v = ...;
for (auto x: v)
  std::cout << x << " ";</pre>
```

Dafür müssen wir einen Iterator über begin und end bereitstellen.

Iterator für den Vektor

```
class Vector{
...
    // Iterator
    double* begin(){
        return elem;
    }
    double* end(){
        return elem+sz;
    }
}
```

```
class Vector{
public:
    Vector(std::size_t s);
    ~Vector(std::size_t s);
    ~Vector(const Vector &v);
    Vector& operator=(const Vector&v);
    Vector (vector& v);
    Vector * operator=(Vector& v);
    vector * operator=(Vector& v);
    const double * operator[] (std::size_t pos) const;
    double * operator[] (std::size_t pos);
    std::size_t size() const;
    double * begin();
    double * end();
}
```

(Zeiger unterstützen Iteration)

(Zoigor antorotatzon itoration

191

Const Iterator für den Vektor

```
class Vector{
public:
 Vector();
 Vector(std :: size_t s);
 ~Vector():
 Vector(const Vector &v);
 Vector& operator=(const Vector&v);
 Vector (Vector&& v);
 Vector& operator=(Vector&& v);
 const double& operator[] (std :: size_t pos) const;
 double& operator[] (std :: size_t pos);
 std::size t size() const:
 double* begin();
 double* end();
 const double* begin() const:
 const double* end() const;
```

Zwischenstand

192

Heutige Zusammenfassung

- Benutze auto um Typen vom Initialisierer zu inferieren.
- X-Werte sind solche, bei denen der Compiler weiss, dass Sie ihre Gültigkeit verlieren.
- Benutze Move-Konstruktion, um X-Werte zu verschieben statt zu kopieren.
- Wenn man genau weiss, was man tut, kann man X-Werte auch erzwingen.
- Indexoperatoren können überladen werden. Zum Schreiben benutzt man Referenzen.
- Hinter bereichsbasiertem for wirkt ein Iterator.
- Iteration wird unterstützt, indem man einen Iterator nach Konvention der Standardbibliothek implementiert.

7. Sortieren I

Einfache Sortierverfahren

Problemstellung

7.1 Einfaches Sortieren

Sortieren durch Auswahl, Sortieren durch Einfügen, Bubblesort [Ottman/Widmayer, Kap. 2.1, Cormen et al, Kap. 2.1, 2.2, Exercise 2.2-2, Problem 2-2

Eingabe: Ein Array A = (A[1], ..., A[n]) der Länge n.

Ausgabe: Eine Permutation A' von A, die sortiert ist: $A'[i] \leq A'[j]$

für alle $1 \le i \le j \le n$.

197

Algorithmus: IsSorted(A)

Beobachtung

IsSorted(A): "nicht sortiert", wenn A[i] > A[i+1] für ein i.

 \Rightarrow Idee:

$$\begin{array}{c|c} \textbf{for} \ j \leftarrow 1 \ \textbf{to} \ n-1 \ \textbf{do} \\ & | \ \mathbf{if} \ A[j] > A[j+1] \ \textbf{then} \\ & | \ \mathbf{swap}\big(A[j], A[j+1]\big); \end{array}$$

99

Ausprobieren

- $5 \mapsto 6$ 2 8 4 1 (j=1)
- 5 6 \leftarrow 2 8 4 1 (j=2)
- [5] [2] $[6] \longleftrightarrow [8]$ [4] [1] (j=3)
- [5] [2] [6] [8] \longleftrightarrow [4] (j=4)
- 5 2 6 4 8 (j = 5)
- 5 2 6 4 1 8

- Nicht sortiert! ②.
- Aber das grösste Element wandert ganz nach rechts.
 - ⇒ Neue Idee! ©

Ausprobieren

5	6	2	8	4	1	(j = 1, i = 1) (j = 2)
5	2	6	8	4	1	(j = 3)
5	2	6	8	4	1	(j = 4)
5	2	6	4	8	1	(j = 5)
5 5 5	2	6	4	1	8	(j = 1, i = 2)
2	5	6	4	1	8	(j = 2)
2	5	6	4	1	8	(j = 3)
2	5	4	6	1	8	(j=4)
2	5	4	1	6	8	(j = 1, i = 3)
2	5	4	1	6	8	(j = 2)
2	4	5	1	6	8	(j=3)
2 2	4	1	5	6	8	(j = 1, i = 4)
2	4	1	5	6	8	(j = 2)
2	1	4	5	6	8	(i = 1, j = 5)
1	2	4	5	6	8	

- Wende das Verfahren iterativ an.
- $\begin{tabular}{l} \blacksquare & \begin{tabular}{l} \begin$

Algorithmus: Bubblesort

Analyse

$$\begin{array}{ll} \textbf{Input:} & \mathsf{Array}\ A = (A[1], \dots, A[n]),\ n \geq 0. \\ \textbf{Output:} & \mathsf{Sortiertes}\ \mathsf{Array}\ A \\ \textbf{for}\ i \leftarrow 1\ \textbf{to}\ n - 1\ \textbf{do} \\ & \quad | \ \textbf{for}\ j \leftarrow 1\ \textbf{to}\ n - i\ \textbf{do} \\ & \quad | \ \textbf{if}\ A[j] > A[j+1]\ \textbf{then} \\ & \quad | \ \mathsf{swap}(A[j], A[j+1]); \end{array}$$

Anzahl Schlüsselvergleiche $\sum_{i=1}^{n-1} (n-i) = \frac{n(n-1)}{2} = \Theta(n^2)$. Anzahl Vertauschungen im schlechtesten Fall: $\Theta(n^2)$

- Was ist der schlechteste Fall?
- Wenn A absteigend sortiert ist.

203

Sortieren durch Auswahl

$$[5]$$
 $[6]$ $[2]$ $[8]$ $[4]$ $[1]$ $(i=1)$

1 2 6 8 4 5
$$(i=3)$$

1 2 4 8 6 5
$$(i=4)$$

1 2 4 5 6 8
$$(i=5)$$

1 2 4 5 6 8
$$(i=6)$$

- Auswahl des kleinsten Elementes durch Suche im unsortierten Teil A[i..n] des Arrays.
- Tausche kleinstes Element an das erste Element des unsortierten Teiles.
- Unsortierter Teil wird ein Element kleiner $(i \rightarrow i + 1)$. Wiederhole bis alles sortiert. (i = n)

Algorithmus: Sortieren durch Auswahl

```
Array A = (A[1], ..., A[n]), n \ge 0.
Input:
                Sortiertes Array A
Output:
for i \leftarrow 1 to n-1 do
    p \leftarrow i
    for j \leftarrow i + 1 to n do
         if A[j] < A[p] then
    swap(A[i], A[p])
```

Analyse

Sortieren durch Einfügen

Anzahl Vergleiche im schlechtesten Fall: $\Theta(n^2)$. Anzahl Vertauschungen im schlechtesten Fall: $n-1=\Theta(n)$

- \uparrow 5 | 6 | 2 | 8 | 4 | 1 | (i = 1)
 5 \uparrow 6 | 2 | 8 | 4 | 1 | (i = 2) \uparrow 5 | 6 | 2 | 8 | 4 | 1 | (i = 3)
 2 | 5 | 6 \uparrow 8 | 4 | 1 | (i = 4)
 2 \uparrow 5 | 6 | 8 | 4 | 1 | (i = 5) \uparrow 2 | 4 | 5 | 6 | 8 | 1 | (i = 6)
 1 | 2 | 4 | 5 | 6 | 8
- Iteratives Vorgehen: i = 1...n
- Einfügeposition für Element *i* bestimmen.
- Element i einfügen, ggfs. Verschiebung nötig.

207

208

Sortieren durch Einfügen

- Welchen Nachteil hat der Algorithmus im Vergleich zum Sortieren durch Auswahl?
- ① Im schlechtesten Fall viele Elementverschiebungen.
- Welchen Vorteil hat der Algorithmus im Vergleich zum Sortieren durch Auswahl?
- ① Der Suchbereich (Einfügebereich) ist bereits sortiert. Konsequenz: binäre Suche möglich.

Algorithmus: Sortieren durch Einfügen

Analyse

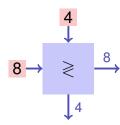
Anderer Blickwinkel

Anzahl Vergleiche im schlechtesten Fall:

$$\sum_{k=1}^{n-1} a \cdot \log k = a \log((n-1)!) \in \mathcal{O}(n \log n).$$

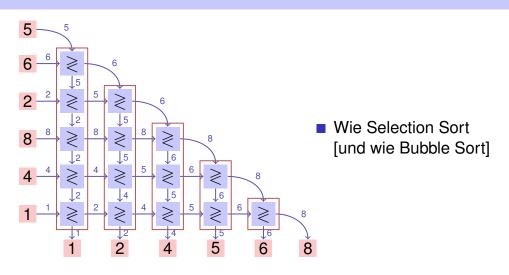
Anzahl Vertauschungen im schlechtesten Fall: $\sum_{k=2}^n (k-1) \in \Theta(n^2)$

Sortierknoten:

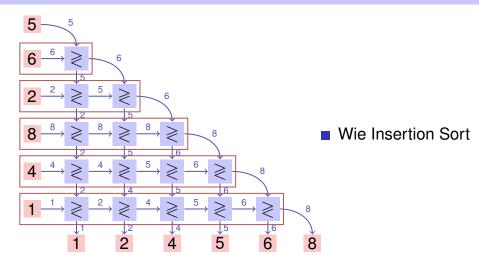


211

Anderer Blickwinkel



Anderer Blickwinkel



Schlussfolgerung

Selection Sort, Bubble Sort und Insertion Sort sind in gewissem Sinne dieselben Sortieralgorithmen. Wird später präzisiert. ⁷

Shellsort (Donald Shell 1959)

Insertion Sort auf Teilfolgen der Form $(A_{k \cdot i})$ $(i \in \mathbb{N})$ mit absteigenden Abständen k. Letzte Länge ist zwingend k = 1.

Worst-case Performance hängt kritisch von den gewählten Teilfolgen ab. Beispiele:

- Ursprünglich mit Folge $1, 2, 4, 8, ..., 2^k$ konzipiert. Laufzeit: $\mathcal{O}(n^2)$
- Folge $1, 3, 7, 15, ..., 2^{k-1}$ (Hibbard 1963). $\mathcal{O}(n^{3/2})$
- Folge $1, 2, 3, 4, 6, 8, ..., 2^p 3^q$ (Pratt 1971). $\mathcal{O}(n \log^2 n)$

Shellsort

9	8	7	6	5	4	3	2	1	0	
1	8	7	6	5	4	3	2	9	0	insertion sort, $k=4$
1	0	7	6	5	4	3	2	9	8	
1	0	3	6	5	4	7	2	9	8	
1	0	3	2	5	4	7	6	9	8	
1	0	3	2	5	4	7	6	9	8	insertion sort, $k=2$
1	0	3	2	5	4	7	6	9	8	
0	1	2	3	4	5	6	7	8	9	insertion sort, $k=1$

8. Sortieren II

Heapsort, Quicksort, Mergesort

21

 $^{^7}$ Im Teil über parallele Sortiernetzwerke. Für sequentiellen Code gelten natürlich weiterhin die zuvor gemachten Feststellungen.

Heapsort

8.1 Heapsort

[Ottman/Widmayer, Kap. 2.3, Cormen et al, Kap. 6]

Inspiration von Selectsort: Schnelles Einfügen Inspiration von Insertionsort: Schnelles Finden der Position

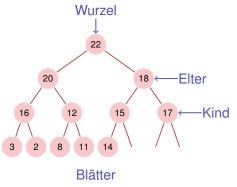
- C Können wir das beste der beiden Welten haben?
- ① Ja, aber nicht ganz so einfach...

219

[Max-]Heap⁸

Binärer Baum mit folgenden Eigenschaften

- vollständig, bis auf die letzte Ebene
- Lücken des Baumes in der letzten Ebene höchstens rechts.
- 3 Heap-Bedingung: Max-(Min-)Heap: Schlüssel eines Kindes kleiner (grösser) als der des Elternknotens

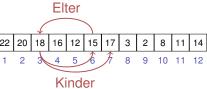


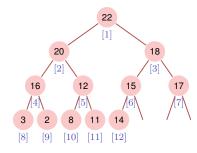
Abhängig von Startindex!9

Heap als Array

Baum \rightarrow Array:

- **Kinder** $(i) = \{2i, 2i + 1\}$
- Elter(i) = |i/2|



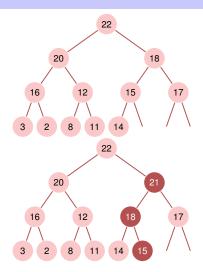


⁹Für Arrays, die bei 0 beginnen: $\{2i, 2i+1\} \rightarrow \{2i+1, 2i+2\}, |i/2| \rightarrow |(i-1)/2|$

⁸Heap (Datenstruktur), nicht: wie in "Heap und Stack" (Speicherallokation)

Einfügen

- Füge neues Element an erste freie Stelle ein. Verletzt Heap Eigenschaft potentiell.
- Stelle Heap Eigenschaft wieder her: Sukzessives Aufsteigen.
- Anzahl Operationen im schlechtesten Fall: $\mathcal{O}(\log n)$



Algorithmus Aufsteigen(A, m)

Input: Array A mit mindestens m+1 Elementen und

Max-Heap-Struktur auf $A[0, \ldots, m-1]$

Output: Array A mit Max-Heap-Struktur auf A[0, ..., m].

 $v \leftarrow A[m] \ // \ \text{Wert}$

 $c \leftarrow m \ // \ \text{derzeitiger Knoten}$

 $p \leftarrow \lfloor (c-1)/2 \rfloor \; // \; \mathsf{Elternknoten}$

while c>0 and v>A[p] do

 $A[c] \leftarrow A[p]$ // Wert Elternknoten \rightarrow derzeitiger Knoten

 $c \leftarrow p \mathrel{//} \mathsf{Elternknoten} \to \mathsf{derzeitiger} \; \mathsf{Knoten}$

 $p \leftarrow \lfloor (c-1)/2 \rfloor$

223

 $A[c] \leftarrow v \; / / \; \mathsf{Wert} \to \mathsf{derzeitiger} \; \mathsf{Knoten}$

Höhe eines Heaps

Vollständiger binärer Baum der Höhe¹⁰ h hat

$$1 + 2 + 4 + 8 + \dots + 2^{h-1} = \sum_{i=0}^{h-1} 2^i = 2^h - 1$$

Knoten. Somit gilt für einen Heap der Höhe *h*:

$$2^{h-1} - 1 < n \le 2^h - 1$$

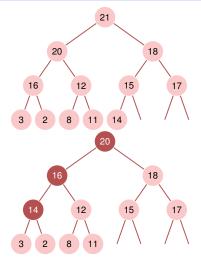
 $\Leftrightarrow 2^{h-1} < n + 1 \le 2^h$

Also insbesondere $h(n) = \lceil \log_2(n+1) \rceil$ und $h(n) \in \Theta(\log n)$.

¹⁰Hier: Anzahl Kanten von der Wurzel zu einem Blatt

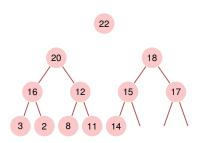
Maximum entfernen

- Ersetze das Maximum durch das unterste rechte Element.
- Stelle Heap Eigenschaft wieder her: Sukzessives Absinken (in Richtung des grösseren Kindes).
- Anzahl Operationen im schlechtesten Fall: $O(\log n)$



Warum das korrekt ist: Rekursive Heap-Struktur

Ein Heap besteht aus zwei Teilheaps:



Algorithmus Versickern(A, i, m)

Input: Array A mit Heapstruktur für die Kinder von i. Letztes Element

m.

Output: Array A mit Heapstruktur für i mit letztem Element m.

while $2i \leq m$ do

227

Heap Sortieren

 $A[1,...,n] \ {\rm ist} \ {\rm Heap}.$ Solange n>1

- \blacksquare swap(A[1], A[n])
- Versickere(A, 1, n 1);
- $n \leftarrow n-1$

Tauschen \Rightarrow 2 6 4 5 1 2

Versickern \Rightarrow 6 5 4 2 1 7

Tauschen \Rightarrow 1 5 4 2 6 7

Versickern \Rightarrow 5 4 2 1 6 7

Tauschen \Rightarrow 1 4 2 5 6 7

Versickern \Rightarrow 4 1 2 5 6 7

Tauschen \Rightarrow 2 1 4 5 6 7

Versickern \Rightarrow 2 1 4 5 6 7

Tauschen \Rightarrow 1 2 4 5 6 7

Heap erstellen

Beobachtung: Jedes Blatt eines Heaps ist für sich schon ein korrekter Heap.

Folgerung: Induktion von unten!

Algorithmus HeapSort(A, n)

Input: Array A der Länge n.

Output: A sortiert.

// Heap Bauen.

for $i \leftarrow n/2$ downto 1 do

L Versickere(A, i, n);

// Nun ist A ein Heap.

for $i \leftarrow n$ downto 2 do

L swap(A[1], A[i])Versickere(A, 1, i - 1)// Nun ist A sortiert.

Analyse: Sortieren eines Heaps

Versickere durchläuft maximal $\log n$ Knoten. An jedem Knoten 2 Schlüsselvergleiche. \Rightarrow Heap Sortieren kostet im schlechtesten Fall $2n\log n$ Vergleiche.

Anzahl der Bewegungen vom Heap Sortieren auch $\mathcal{O}(n \log n)$.

231

Analyse: Heap bauen

Aufrufe an Versickern: n/2. Also Anzahl Vergleiche und Bewegungen $v(n) \in \mathcal{O}(n \log n)$.

Versickerpfade sind aber im Mittel viel kürzer:

$$\begin{split} v(n) &= \sum_{l=0}^{\lfloor \log n \rfloor} \underbrace{2^l}_{\text{Anzahl Heaps auf Level I}} \cdot \underbrace{\left(\lfloor \log n \rfloor - l \right)}_{\text{H\"{o}he Heaps auf Level I}} = \sum_{k=0}^{\lfloor \log n \rfloor} 2^{\lfloor \log n \rfloor - k} \cdot k \\ &\leq \sum_{k=0}^{\lfloor \log n \rfloor} \frac{n}{2^k} \cdot k = n \cdot \sum_{k=0}^{\lfloor \log n \rfloor} \frac{k}{2^k} \in \mathcal{O}(\mathbf{n}) \end{split}$$

mit
$$s(x) := \sum_{k=0}^\infty k x^k = \frac{x}{(1-x)^2} \quad (0 < x < 1)$$
 ¹¹ und $s(\frac{1}{2}) = 2$

Zwischenstand

Heapsort: $O(n \log n)$ Vergleiche und Bewegungen.

- ? Nachteile von Heapsort?
- Wenig Lokalität: per Definition springt Heapsort im sortierten Array umher (Negativer Cache Effekt).
- U Zwei Vergleiche vor jeder benötigten Bewegung.

2

 $^{^{11}}f(x) = \frac{1}{1-x} = 1 + x + x^2 \dots \Rightarrow f'(x) = \frac{1}{(1-x)^2} = 1 + 2x + \dots$

8.2 Mergesort

[Ottman/Widmayer, Kap. 2.4, Cormen et al, Kap. 2.3],

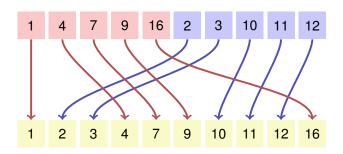
Mergesort (Sortieren durch Verschmelzen)

Divide and Conquer!

- Annahme: Zwei Hälften eines Arrays A bereits sortiert.
- Folgerung: Minimum von A kann mit 2 Vergleichen ermittelt werden.
- Iterativ: Füge die beiden vorsortierten Hälften von A zusammen in $\mathcal{O}(n)$.

235

Merge



Algorithmus Merge(A, l, m, r)

```
Input: Array A der Länge n, Indizes 1 \leq l \leq m \leq r \leq n. A[l,\ldots,m],\ A[m+1,\ldots,r] sortiert

Output: A[l,\ldots,r] sortiert

B \leftarrow \text{new Array}(r-l+1)
i \leftarrow l;\ j \leftarrow m+1;\ k \leftarrow 1

while i \leq m and j \leq r do

if A[i] \leq A[j] then B[k] \leftarrow A[i];\ i \leftarrow i+1
else B[k] \leftarrow A[j];\ j \leftarrow j+1
k \leftarrow k+1;

while i \leq m do B[k] \leftarrow A[j];\ j \leftarrow j+1;\ k \leftarrow k+1
while j \leq r do B[k] \leftarrow A[j];\ j \leftarrow j+1;\ k \leftarrow k+1
for k \leftarrow l to r do A[k] \leftarrow B[k-l+1]
```

Korrektheit

Hypothese: Nach k Durchläufen der Schleife von Zeile 3 ist $B[1,\ldots,k]$ sortiert und $B[k] \leq A[i]$, falls $i \leq m$ und $B[k] \leq A[j]$ falls $j \leq r$.

Beweis per Induktion:

Induktionsanfang: Das leere Array $B[1, \ldots, 0]$ ist trivialerweise sortiert. *Induktionsschluss* $(k \to k + 1)$:

- $\bullet \ \, \mathrm{oBdA} \,\, A[i] \leq A[j], \, i \leq m, j \leq r.$
- B[1,...,k] ist nach Hypothese sortiert und $B[k] \le A[i]$.
- Nach $B[k+1] \leftarrow A[i]$ ist B[1, ..., k+1] sortiert.
- $lacksquare B[k+1] = A[i] \le A[i+1]$ (falls $i+1 \le m$) und $B[k+1] \le A[j]$ falls $j \le r$.
- $k \leftarrow k+1, i \leftarrow i+1$: Aussage gilt erneut.

Analyse (Merge)

Lemma

239

Wenn: Array A der Länge n, Indizes $1 \le l < r \le n$. $m = \lfloor (l+r)/2 \rfloor$ und $A[l, \ldots, m]$, $A[m+1, \ldots, r]$ sortiert.

Dann: im Aufruf Merge(A, l, m, r) werden $\Theta(r - l)$ viele Schlüsselbewegungen und Vergleiche durchgeführt.

Beweis: (Inspektion des Algorithmus und Zählen der Operationen).

Mergesort

5 2 6 1 8 4 3 9 5 2 6 1 8 4 3 9 5 2 6 1 8 4 3 9 5 2 6 1 8 4 3 9 2 5 1 6 4 8 3 9 1 2 5 6 3 4 8 9 1 2 3 4 5 6 8 9

Split

Split

Split

Merge

Merge

Merge

Algorithmus (Rekursives 2-Wege) Mergesort(A, l, r)

```
\begin{array}{lll} \textbf{Input:} & \text{Array } A \text{ der L\"{a}nge } n. \ 1 \leq l \leq r \leq n \\ \textbf{Output:} & \text{Array } A[l,\ldots,r] \text{ sortiert.} \\ & \textbf{if } l < r \text{ then} \\ & m \leftarrow \lfloor (l+r)/2 \rfloor & \text{// Mittlere Position} \\ & \text{Mergesort}(A,l,m) & \text{// Sortiere vordere H\"{a}lfte} \\ & \text{Mergesort}(A,m+1,r) & \text{// Sortiere hintere H\"{a}lfte} \\ & \text{Merge}(A,l,m,r) & \text{// Verschmelzen der Teilfolgen} \\ \end{array}
```

24

Analyse

Rekursionsgleichung für die Anzahl Vergleiche und Schlüsselbewegungen:

$$T(n) = T(\left\lceil \frac{n}{2} \right\rceil) + T(\left\lfloor \frac{n}{2} \right\rfloor) + \Theta(n) \in \Theta(n \log n)$$

Algorithmus StraightMergesort(A)

Rekursion vermeiden: Verschmelze Folgen der Länge 1, 2, 4... direkt

```
Input: Array A der Länge n

Output: Array A sortiert

length \leftarrow 1

while length < n do  // Iteriere über die Längen n

r \leftarrow 0

while r + length < n do  // Iteriere über die Teilfolgen

l \leftarrow r + 1

m \leftarrow l + length - 1

r \leftarrow \min(m + length, n)

Merge(A, l, m, r)

length \leftarrow length + 2
```

243

Analyse

Wie rekursives Mergesort führt reines 2-Wege-Mergesort immer $\Theta(n\log n)$ viele Schlüsselvergleiche und -bewegungen aus.

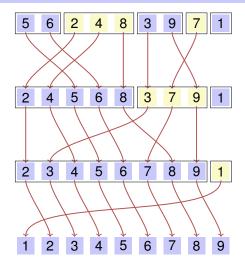
Natürliches 2-Wege Mergesort

Beobachtung: Obige Varianten nutzen nicht aus, wenn vorsortiert ist und führen immer $\Theta(n \log n)$ viele Bewegungen aus.

Wie kann man teilweise vorsortierte Folgen besser sortieren?

① Rekursives Verschmelzen von bereits vorsortierten Teilen (*Runs*) von *A*.

Natürliches 2-Wege Mergesort



Algorithmus NaturalMergesort(*A*)

247

Analyse

1 Ist es auch im Mittel asymptotisch besser als StraightMergesort?

footnotemarkNein. Unter Annahme der Gleichverteilung der paarweise unterschiedlichen Schlüssel haben wir im Mittel n/2 Stellen i mit $k_i > k_{i+1}$, also n/2 Runs und sparen uns lediglich einen Durchlauf, also n Vergleiche.

Natürliches Mergesort führt im schlechtesten und durchschnittlichen Fall $\Theta(n\log n)$ viele Vergleiche und Bewegungen aus.

8.3 Quicksort

[Ottman/Widmayer, Kap. 2.2, Cormen et al, Kap. 7]

Quicksort

- Was ist der Nachteil von Mergesort?
- $oldsymbol{\mathbb{O}}$ Benötigt zusätzlich $\Theta(n)$ Speicherplatz für das Verschmelzen.
- Wie könnte man das Verschmelzen einsparen?
- O Sorge dafür, dass jedes Element im linken Teil kleiner ist als im rechten Teil.
- ? Wie?
- ① Pivotieren und Aufteilen!

Pivotieren

- **W**ähle ein (beliebiges) Element *p* als Pivotelement
- **2** Teile A in zwei Teile auf: einen Teil L der Elemente mit $A[i] \leq p$ und einen Teil R der Elemente mit A[i] > p.
- Quicksort: Rekursion auf Teilen L und R

251

Algorithmus Partition(A[l..r], p)

Input: Array A, welches den Pivot p im Intervall [l,r] mindestens einmal enthält.

 $\textbf{Output:} \ \, \mathsf{Array} \,\, A \,\, \mathsf{partitioniert} \,\, \mathsf{in} \,\, [l..r] \,\, \mathsf{um} \,\, p. \,\, \mathsf{R\"{u}ckgabe} \,\, \mathsf{der} \,\, \mathsf{Position} \,\, \mathsf{von} \,\, p.$

while $l \leq r$ do

$$\begin{aligned} & \textbf{while} \ A[l] p \ \textbf{do} \\ & \ \ \, \bigsqcup \ r \leftarrow r-1 \\ & \text{swap}(A[l], \ A[r]) \\ & \textbf{if} \ A[l] = A[r] \ \textbf{then} \\ & \ \ \, \bigsqcup \ l \leftarrow l+1 \end{aligned}$$

return |-1

Algorithmus Quicksort($A[l,\ldots,r]$

Input: Array A der Länge n. $1 \le l \le r \le n$. **Output**: Array A, sortiert zwischen l und r.

if l < r then

Wähle Pivot $p \in A[l, ..., r]$ $k \leftarrow \mathsf{Partition}(A[l, ..., r], p)$ Quicksort(A[l, ..., k-1])Quicksort(A[k+1, ..., r]) 25

Quicksort (willkürlicher Pivot)

2 4 5 6 8 3 7 9 1 2 1 3 6 8 5 7 9 4 1 2 3 4 5 8 7 9 6 1 2 3 4 5 6 7 9 8 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

Analyse: Anzahl Vergleiche

Schlechtester Fall. Pivotelement = Minimum oder Maximum; Anzahl Vergleiche:

$$T(n) = T(n-1) + c \cdot n, \ T(1) = 0 \quad \Rightarrow \quad T(n) \in \Theta(n^2)$$

Analyse: Anzahl Vertauschungen

Resultat eines Aufrufes an Partition (Pivot 3):

2 1 3 6 8 5 7 9 4

- Wie viele Vertauschungen haben hier maximal stattgefunden?
- ① 2. Die maximale Anzahl an Vertauschungen ist gegeben durch die Anzahl Schlüssel im kleineren Bereich.

Analyse: Anzahl Vertauschungen

Gedankenspiel

- Jeder Schlüssel aus dem kleineren Bereich zahlt bei einer Vertauschung eine Münze.
- Wenn ein Schlüssel eine Münze gezahlt hat, ist der Bereich, in dem er sich befindet maximal halb so gross wie zuvor.
- Jeder Schlüssel muss also maximal $\log n$ Münzen zahlen. Es gibt aber nur n Schlüssel.

Folgerung: Es ergeben sich $O(n \log n)$ viele Schlüsselvertauschungen im schlechtesten Fall!

257

Randomisiertes Quicksort

Quicksort wird trotz $\Theta(n^2)$ Laufzeit im schlechtesten Fall oft eingesetzt.

Grund: Quadratische Laufzeit unwahrscheinlich, sofern die Wahl des Pivots und die Vorsortierung nicht eine ungünstige Konstellation aufweisen.

Vermeidung: Zufälliges Ziehen eines Pivots. Mit gleicher Wahrscheinlichkeit aus [l,r].

Analyse (Randomisiertes Quicksort)

Erwartete Anzahl verglichener Schlüssel bei Eingabe der Länge n:

$$T(n) = (n-1) + \frac{1}{n} \sum_{k=1}^{n} \left(T(k-1) + T(n-k) \right), \ T(0) = T(1) = 0$$

Behauptung $T(n) \leq 4n \log n$.

Beweis per Induktion:

Induktionsanfang: klar für n = 0 (mit $0 \log 0 := 0$) und für n = 1.

Hypothese: $T(n) \leq 4n \log n$ für ein n.

Induktionsschritt: $(n-1 \rightarrow n)$

259

26

Analyse (Randomisiertes Quicksort)

$$T(n) = n - 1 + \frac{2}{n} \sum_{k=0}^{n-1} T(k) \stackrel{\mathsf{H}}{\leq} n - 1 + \frac{2}{n} \sum_{k=0}^{n-1} 4k \log k$$

$$= n - 1 + \sum_{k=1}^{n/2} 4k \underbrace{\log k}_{\leq \log n - 1} + \sum_{k=n/2+1}^{n-1} 4k \underbrace{\log k}_{\leq \log n}$$

$$\leq n - 1 + \frac{8}{n} \left((\log n - 1) \sum_{k=1}^{n/2} k + \log n \sum_{k=n/2+1}^{n-1} k \right)$$

$$= n - 1 + \frac{8}{n} \left((\log n) \cdot \frac{n(n-1)}{2} - \frac{n}{4} \left(\frac{n}{2} + 1 \right) \right)$$

$$= 4n \log n - 4 \log n - 3 \leq 4n \log n$$

Analyse (Randomisiertes Quicksort)

Theorem

Im Mittel benötigt randomisiertes Quicksort $\mathcal{O}(n \cdot \log n)$ Vergleiche.

261

Praktische Anmerkungen

Rekursionstiefe im schlechtesten Fall: $n-1^{12}$. Dann auch Speicherplatzbedarf $\mathcal{O}(n)$.

Kann vermieden werden: Rekursion nur auf dem kleineren Teil. Dann garantiert $\mathcal{O}(\log n)$ Rekursionstiefe und Speicherplatzbedarf.

263

Praktische Anmerkungen

- Für den Pivot wird in der Praxis oft der Median von drei Elementen genommen. Beispiel: Median3(A[l], A[r], A[|l+r/2|]).
- Es existiert eine Variante von Quicksort mit konstanten Speicherplatzbedarf. Idee: Zwischenspeichern des alten Pivots am Ort des neuen Pivots.
- Komplizierte Divide-And-Conquer-Algorithmen verwenden oft als Basisfall einen trivialen $(\Theta(n^2))$ Algorithmus für kleine Problemgrössen.

Quicksort mit logarithmischem Speicherplatz

```
\begin{array}{lll} \textbf{Input:} & \text{Array } A \text{ der L\"ange } n. \ 1 \leq l \leq r \leq n. \\ \textbf{Output:} & \text{Array } A \text{, sortiert zwischen } l \text{ und } r. \\ \textbf{while } l < r \text{ do} \\ & \text{W\"ahle Pivot } p \in A[l, \ldots, r] \\ & k \leftarrow \text{Partition}(A[l, \ldots, r], p) \\ & \textbf{if } k - l < r - k \textbf{ then} \\ & \text{Quicksort}(A[l, \ldots, k-1]) \\ & l \leftarrow k + 1 \\ & \textbf{else} \\ & \text{Quicksort}(A[k+1, \ldots, r]) \\ & r \leftarrow k - 1 \end{array}
```

Der im ursprünglichen Algorithmus verbleibende Aufruf an Quicksort $(A[l,\ldots,r])$ geschieht iterativ (Tail Recursion ausgenutzt!): die If-Anweisung wurde zur While Anweisung.

8.4 Anhang

Herleitung einiger mathematischen Formeln

¹²Stack-Overflow möglich!

$\log n! \in \Theta(n \log n)$

$$\log n! = \sum_{i=1}^{n} \log i \le \sum_{i=1}^{n} \log n = n \log n$$

$$\sum_{i=1}^{n} \log i = \sum_{i=1}^{\lfloor n/2 \rfloor} \log i + \sum_{\lfloor n/2 \rfloor + 1}^{n} \log i$$

$$\ge \sum_{i=2}^{\lfloor n/2 \rfloor} \log 2 + \sum_{\lfloor n/2 \rfloor + 1}^{n} \log \frac{n}{2}$$

$$= (\lfloor n/2 \rfloor - 2 + 1) + (\underbrace{n - \lfloor n/2 \rfloor}_{\ge n/2})(\log n - 1)$$

$$> \frac{n}{2} \log n - 2.$$

$[n! \in o(n^n)]$

$$\begin{split} n\log n &\geq \sum_{i=1}^{\lfloor n/2\rfloor} \log 2i + \sum_{i=\lfloor n/2\rfloor+1}^n \log i \\ &= \sum_{i=1}^n \log i + \left\lfloor \frac{n}{2} \right\rfloor \log 2 \\ &> \sum_{i=1}^n \log i + n/2 - 1 = \log n! + n/2 - 1 \\ &n^n = 2^{n\log_2 n} \geq 2^{\log_2 n!} \cdot 2^{n/2} \cdot 2^{-1} = n! \cdot 2^{n/2-1} \\ &\Rightarrow \frac{n!}{n^n} \leq 2^{-n/2+1} \stackrel{n \to \infty}{\longrightarrow} 0 \Rightarrow n! \in o(n^n) = \mathcal{O}(n^n) \backslash \Omega(n^n) \end{split}$$

[Sogar $n! \in o((n/c)^n) \, \forall \, 0 < c < e$]

Konvergenz oder Divergenz von $f_n = \frac{n!}{(n/c)^n}$.

Quotientenkriterium

$$\frac{f_{n+1}}{f_n} = \frac{(n+1)!}{\left(\frac{n+1}{c}\right)^{n+1}} \cdot \frac{\left(\frac{n}{c}\right)^n}{n!} = c \cdot \left(\frac{n}{n+1}\right)^n \longrightarrow c \cdot \frac{1}{e} \lessgtr 1 \text{ wenn } c \lessgtr e$$

denn $\left(1+\frac{1}{n}\right)^n \to e$. Sogar die Reihe $\sum_{i=1}^n f_n$ konvergiert / divergiert für $c \leqslant e$.

 f_n divergiert für c=e, denn (Stirling): $n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$.

[Quotientenkriterium]

Quotientenkriterium für eine Folge $(f_n)_{n\in\mathbb{N}}$: Wenn $\frac{f_{n+1}}{f_n} \xrightarrow[n\to\infty]{} \lambda$, dann sind die Folge f_n und auch die Reihe $\sum_{i=1}^n f_i$

- lacksquare konvergent, falls $\lambda < 1$ und
- divergent, falls $\lambda > 1$.

20

269

267

[Quotientenkriterium Herleitung]

Quotientenkriterium ergibt sich aus: Geometrische Reihe

$$S_n(r) := \sum_{i=0}^n r^i = \frac{1 - r^{n+1}}{1 - r}.$$

konvergiert für $n \to \infty$ genau dann wenn -1 < r < 1.

Sei nämlich $0 \le \lambda < 1$:

$$\forall \varepsilon > 0 \,\exists n_0 : f_{n+1}/f_n < \lambda + \varepsilon \,\forall n \ge n_0$$

$$\Rightarrow \exists \varepsilon > 0, \exists n_0 : f_{n+1}/f_n \le \mu < 1 \,\forall n \ge n_0$$

Somit

$$\sum_{n=n_0}^{\infty} f_n \leq f_{n_0} \cdot \sum_{n=n_0}^{\infty} \cdot \mu^{n-n_0} \quad \text{konvergiert}.$$

(Analog für Divergenz)

9. C++ vertieft (II): Templates

271

Was lernen wir heute?

- Templates von Klassen
- Funktionentemplates
- Spezialisierung
- Templates mit Werten

Motivation

Ziel: generische Vektor-Klasse und Funktionalität.

```
Beispiele

Vector<double> vd(10);
Vector<int> vi(10);
Vector<char> vi(20);

auto nd = vd * vd; // norm (vector of double)
auto ni = vi * vi; // norm (vector of int)
```

Typen als Template Parameter

- I Ersetze in der konkreten Implementation einer Klasse den Typ, der generisch werden soll (beim Vektor: double) durch einen Stellvertreter, z.B. T.
- 2 Stelle der Klasse das Konstrukt template<typename T>13 voran (ersetze T ggfs. durch den Stellvertreter)..

Das Konstrukt template<typename T> kann gelesen werden als "für alle Typen T".

Typen als Template Parameter

```
template <typename ElementType>
class Vector{
   std::size t size;
   ElementType* elem;
public:
   Vector(std::size t s):
       size{s},
       elem{new ElementType[s]}{}
   ElementType& operator[](std::size_t pos){
       return elem[pos];
   }
}
```

Template Instanzierung

Vector<typeName> erzeugt Typinstanz von Vector mit ElementType=typeName.

Bezeichnung: Instanzierung.

```
Beispiele
```

```
Vector<double> x;
                       // vector of double
Vector<int> y;
                       // vector of int
Vector<Vector<double>> x; // vector of vector of double
```

Type-checking

275

Templates sind weitgehend Ersetzungsregeln zur Instanzierungszeit und während der Kompilation. Es wird immer so wenig geprüft wie nötig und so viel wie möglich.

¹³gleichbedeutend:template<class T>

Beispiel

```
template <typename T>
class Pair{
    T left; T right;
public:
    Pair(T 1, T r):left{1}, right{r}{}
    T min(){
        return left < right ? left : right;
    }
};

Pair<int> a(10,20); // ok
    auto m = a.min(); // ok
    Pair<Pair<int>> b(a,Pair<int>(20,30)); // ok
    auto n = b.min(); no match for operator< !</pre>
```

Generische Programmierung

Generische Komponenten sollten eher als Generalisierung eines oder mehrerer Beispiele entwickelt werden als durch Ableitung von Grundprinzipien.

```
template <typename T>
class Vector{
public:
 Vector();
 Vector(std::size t);
  ~Vector();
 Vector(const Vector&);
 Vector& operator=(const Vector&):
 Vector (Vector&&);
 Vector& operator=(Vector&&);
 const T& operator[] (std::size_t) const;
 T& operator[] (std::size_t);
 std::size t size() const;
 T* begin();
 T* end();
 const T* begin() const;
 const T* end() const;
```

279

281

Funktionentemplates

- Ersetze in der konkreten Implementation einer Funktion den Typ, der generisch werden soll durch einen Namen, z.B. T,
- 2 Stelle der Funktion das Konstrukt template<typename T>14 voran (ersetze T ggfs. durch den gewählten Namen).

Funktionentemplates

```
template <typename T>
void swap(T& x, T&y){
   T temp = x;
   x = y;
   y = temp;
}
```

Typen der Aufrufparameter determinieren die Version der Funktion, welche (kompiliert und) verwendet wird:

```
int x=5;
int y=6;
swap(x,y); // calls swap with T=int
```

14gleichbedeutend:template<class T>

_-

Grenzen der Magie

```
template <typename T>
void swap(T& x, T&y){
   T temp = x;
   x = y;
   y = temp;
}
```

Eine unverträgliche Version der Funktion wird nicht erzeugt:

```
int x=5;
double y=6;
swap(x,y); // error: no matching function for ...
```

Praktisch!

```
// Output of an arbitrary container
template <typename T>
void output(const T& t){
   for (auto x: t)
      std::cout << x << " ";
   std::cout << "\n";
}
int main(){
   std::vector<int> v={1,2,3};
   output(v); // 1 2 3
}
```

.. auch mit Operatoren

```
template <typename T>
                             Pair<int> a(10,20); // ok
class Pair{
                              std::cout << a; // ok
   T left; T right;
public:
   Pair(T 1, T r):left{1}, right{r}{}
   T min(){ return left < right? left: right; }</pre>
   std::ostream& print (std::ostream& os) const{
       return os << "("<< left << "," << right<< ")";</pre>
   }
};
template <typename T>
std::ostream& operator<< (std::ostream& os, const Pair<T>& pair){
   return pair.print(os);
}
```

Explizite Typangabe

283

```
// input of an arbitrary pair
template <typename T>
Pair<T> read(){
        T left;
        T right;
        std::cin << left << right;
        return Pair<T>(left,right);
}
...
auto p = read<double>();
```

Wenn der Typ bei der Instanzierung nicht inferiert werden kann, muss er explizit angegeben werden.

Mächtig!

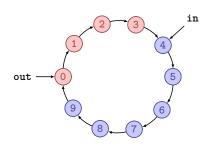
```
template <typename T> // square number
T sq(T x){
    return x*x;
}
template <typename Container, typename F>
void apply(Container& c, F f){ // x <- f(x) forall x in c
    for(auto& x: c)
        x = f(x);
}
int main(){
    std::vector<int> v={1,2,3};
    apply(v,sq<int>);
    output(v); // 1 4 9
}
```

Spezialisierung

```
template <>
class Pair<bool>{
    short both;
public:
    Pair(bool 1, bool r):both{(1?1:0) + (r?2:0)} {};
    std::ostream& print (std::ostream& os) const{
        return os << "("<< both % 2 << "," << both /2 << ")";
    }
};
    Pair<int> i(10,20); // ok -- generic template
    std::cout << i << std::endl; // (10,20);
    Pair<bool> b(true, false); // ok -- special bool version
    std::cout << b << std::endl; // (1,0)</pre>
```

Templateparametrisierung mit Werten

```
template <typename T, int size>
class CircularBuffer{
  T buf[size];
  int in; int out;
public:
  CircularBuffer():in{0},out{0}{};
  bool empty(){
    return in == out;
  }
  bool full(){
    return (in + 1) % size == out;
  }
  void put(T x); // declaration
  T get(); // declaration
};
```



Templateparametrisierung mit Werten

Speichermanagement

Richtlinie "Dynamischer Speicher"

Zu jedem new gibt es ein passendes delete!

Vermeide:

- Speicherlecks: "alte" Objekte, die den Speicher blockieren
- Zeiger auf freigegebene Objekte: hängende Zeiger (dangling pointers)
- Mehrfache Freigabe eines Objektes mit delete.

Wie?

Smart Pointers

- Können sicherstellen, dass ein Objekt gelöscht wird genau dann, wenn es nicht mehr genutzt wird
- Basieren auf dem RAII (Resource Acquisition is Initialization) Paradigma.
- Können an die Stelle jedes gewöhnlichen Pointers treten: sind als Klassentemplates implementiert.
- Es gibt std::unique_ptr<>, std::shared_ptr<> (und std::weak_ptr<>)

```
std::unique_ptr<Node> nodeU(new Node()); // unique pointer
std::shared_ptr<Node> nodeS(new Node()); // shared pointer
```

291

Unique Pointer

- Der Dekonstruktor von std::unique_ptr<T> löscht den enthaltenen Zeiger.
- std::unique_ptr<T> hat exklusiv Zugriff auf den enthaltenen Zeiger auf T.
- Kopierkonstruktor und Assignment Operator sind gelöscht. Ein Unique Pointer kann nicht als Wert kopiert werden. Movekonstruktor ist vorhanden: der Zeiger kann verschoben werden.
- Kein Zusatzaufwand zur Laufzeit im Vergleich zu einem normalen Zeiger.

```
std::unique_ptr<Node> nodeU(new Node()); // unique pointer
std::unique_ptr<Node> node2 = std::move(nodeU); // ok
std::unique_ptr<Node> node3 = nodeU; // error
```

Shared Pointer

- std::shared_ptr<T> zählt die Anzahl von Besitzern eines Zeigers (Referenzzähler). Wenn der Referenzzähler auf 0 fällt, wird der Zeiger gelöscht.
- Shared Pointers können kopiert werden.
- Shared Pointers haben zusätzlichen Speicher- und Laufzeitbedarf: sie verwalten den Referenzzähler zur Laufzeit und enthalten jeweils einen Zeiger auf den Referenzzähler.

 Std::shared_ptr<Node>

```
std::shared_ptr<Node>

RefCount (2)

std::shared_ptr<Node>
```

```
std::shared_ptr<Node> nodeS(new Node()); // shared pointer, rc = 1
std::shared_ptr<Node> node2 = std::move(nodeS); // ok, rc unchanged
std::shared_ptr<Node> node3 = node2; // ok, rc = 2
```

Smart Pointers

Einige Regeln

- Niemals delete auf einen Zeiger im Smart Pointer aufrufen.
- new vermeiden, stattdessen:

```
std::unique_ptr<Node> nodeU = std::make_unique<Node>()
std::shared_ptr<Node> nodeS = std::make_shared<Node>()
```

- Wo möglich, std::unique_ptr verwenden.
- Bei der Verwendung von std::shared_ptr sicherstellen, dass es keine Zyklen im Zeigergraphen gibt.

10.1 Untere Grenzen für Vergleichbasiertes Sortieren

[Ottman/Widmayer, Kap. 2.8, Cormen et al, Kap. 8.1]

10. Sortieren III

Untere Schranken für das vergleichsbasierte Sortieren, Radix- und Bucketsort

295

Untere Schranke für das Sortieren

Bis hierher: Sortieren im schlechtesten Fall benötigt $\Omega(n \log n)$ Schritte.

Geht es besser? Nein:

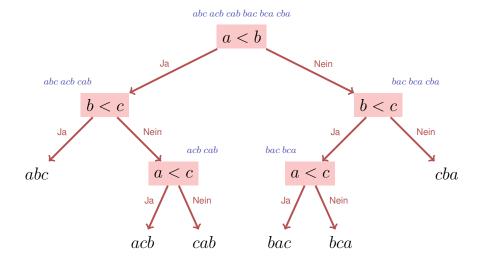
Theorem

Vergleichsbasierte Sortierverfahren benötigen im schlechtesten Fall und im Mittel mindestens $\Omega(n \log n)$ Schlüsselvergleiche.

Vergleichsbasiertes Sortieren

- Algorithmus muss unter n! vielen Anordnungsmöglichkeiten einer Folge $(A_i)_{i=1,\dots,n}$ die richtige identifizieren.
- Zu Beginn weiss der Algorithmus nichts.
- Betrachten den "Wissensgewinn" des Algorithmus als Entscheidungsbaum:
 - Knoten enthalten verbleibende Möglichkeiten
 - Kanten enthalten Entscheidungen

Entscheidungsbaum



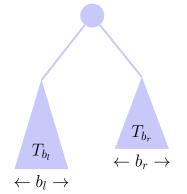
299

Entscheidungsbaum

Ein binärer Baum mit L Blättern hat K=L-1 innere Knoten. Die Höhe eines binären Baumes mit L Blättern ist mindestens $\log_2 L. \Rightarrow$ Höhe des Entscheidungsbaumes $h \geq \log n! \in \Omega(n \log n)$. Somit auch die Länge des längsten Pfades im Entscheidungsbaum $\in \Omega(n \log n)$.

Bleibt zu zeigen: mittlere Länge M(n) eines Pfades $M(n) \in \Omega(n \log n)$.

Untere Schranke im Mittel



- Entscheidungsbaum T_n mit n Blättern, mittlere Tiefe eines Blatts $m(T_n)$
- Annahme: $m(T_n) \ge \log n$ nicht für alle n.
- Wähle kleinstes b mit $m(T_b) < \log b \Rightarrow b \ge 2$
- $b_l + b_r = b$ with $b_l > 0$ und $b_r > 0 \Rightarrow$ $b_l < b, b_r < b \Rightarrow m(T_{b_l}) \ge \log b_l$ und $m(T_{b_r}) \ge \log b_r$

 $^{^{15}}$ Beweis: starte mit leerem Baumm, $K=0,\,L=1.$ Jeder hinzugefügte Knoten ersetzt ein Blatt durch 2 Blätter. Also.

Untere Schranke im Mittel

Mittlere Tiefe eines Blatts:

$$m(T_b) = \frac{b_l}{b}(m(T_{b_l}) + 1) + \frac{b_r}{b}(m(T_{b_r}) + 1)$$

$$\geq \frac{1}{b}(b_l(\log b_l + 1) + b_r(\log b_r + 1)) = \frac{1}{b}(b_l \log 2b_l + b_r \log 2b_r)$$

$$\geq \frac{1}{b}(b \log b) = \log b.$$

Widerspruch.

Die letzte Ungleichung gilt, da $f(x) = x \log x$ konvex ist (f''(x) = 1/x > 0) und für eine konvexe Funktion gilt $f((x+y)/2) \le 1/2f(x) + 1/2f(y)$ $(x=2b_l, y=2b_r)$ einsetzen). ¹⁶ Einsetzen von $x=2b_l, y=2b_r$, und $b_l+b_r=b$.

303

10.2 Radixsort und Bucketsort

Radixsort, Bucketsort [Ottman/Widmayer, Kap. 2.5, Cormen et al, Kap. 8.3]

Radix Sort

Vergleichsbasierte Sortierverfahren: Schlüssel vergleichbar (< oder >, =). Ansonsten keine Voraussetzung.

Andere Idee: nutze mehr Information über die Zusammensetzung der Schlüssel.

Annahmen

Annahme: Schlüssel darstellbar als Wörter aus einem Alphabet mit m Elementen.

Beispiele

m=10 Dezimalzahlen $183=183_{10}$ m=2 Dualzahlen 101_2

m=16 Hexadezimalzahlen $A0_{16}$

m=26 Wörter "INFORMATIK"

m heisst die Wurzel (lateinisch Radix) der Darstellung.

¹⁶allgemein $f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$ für $0 \le \lambda \le 1$.

Annahmen

Radix-Exchange-Sort

- Schlüssel =*m*-adische Zahlen mit gleicher Länge.
- Verfahren z zur Extraktion der k-ten Ziffer eines Schlüssels in $\mathcal{O}(1)$ Schritten.

Beispiel

$$z_{10}(0,85) = 5$$

$$z_{10}(1,85) = 8$$

$$z_{10}(2,85)=0$$

Schlüssel mit Radix 2.

Beobachtung: Wenn für ein $k \ge 0$:

$$z_2(i,x) = z_2(i,y)$$
 für alle $i > k$

und

$$z_2(k,x) < z_2(k,y),$$

dann ist x < y.

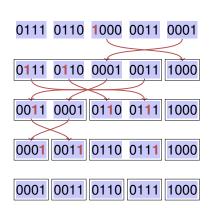
307

Radix-Exchange-Sort

Radix-Exchange-Sort

Idee:

- \blacksquare Starte mit maximalem k.
- Binäres Aufteilen der Datensätze mit $z_2(k,\cdot)=0$ vs. $z_2(k,\cdot)=1$ wie bei Quicksort.
- $k \leftarrow k 1$.



Algorithmus RadixExchangeSort(A, l, r, b)

```
 \mbox{ Input:} \qquad \mbox{Array $A$ der L\"{a}nge $n$, linke und rechte Grenze $1 \leq l \leq r \leq n$,}
```

Bitposition b

Output: Array A, im Bereich [l, r] nach Bits $[0, \ldots, b]$ sortiert.

```
if l < r and b \ge 0 then
```

```
\begin{split} i &\leftarrow l-1 \\ j &\leftarrow r+1 \\ \textbf{repeat} \\ & | \quad \textbf{repeat} \ i \leftarrow i+1 \ \textbf{until} \ z_2(b,A[i]) = 1 \ \textbf{or} \ i \geq j \\ & | \quad \textbf{repeat} \ j \leftarrow j-1 \ \textbf{until} \ z_2(b,A[j]) = 0 \ \textbf{or} \ i \geq j \\ & | \quad \textbf{if} \ i < j \ \textbf{then} \ \text{swap}(A[i],A[j]) \\ & \quad \textbf{until} \ i \geq j \\ & \quad \text{RadixExchangeSort}(A,l,i-1,b-1) \\ & \quad \text{RadixExchangeSort}(A,i,r,b-1) \end{split}
```

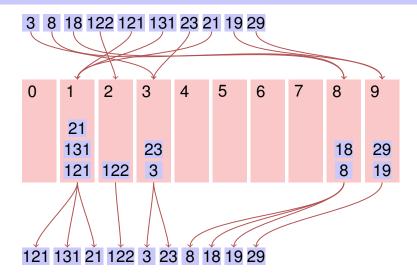
Analyse

RadixExchangeSort ist rekursiv mit maximaler Rekursionstiefe = maximaler Anzahl Ziffern p.

Laufzeit im schlechtesten Fall $\mathcal{O}(p \cdot n)$.

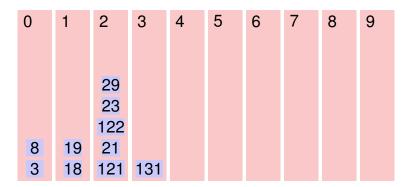
311

Bucket Sort (Sortieren durch Fachverteilen)



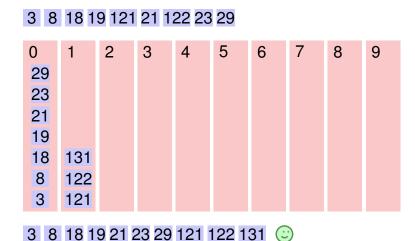
Bucket Sort (Sortieren durch Fachverteilen)

121 131 21 122 3 23 8 18 19 29



3 8 18 19 121 21 122 23 29

Bucket Sort (Sortieren durch Fachverteilen)



11. Elementare Datenstrukturen

Abstrakte Datentypen Stapel, Warteschlange, Implementationsvarianten der verketteten Liste [Ottman/Widmayer, Kap. 1.5.1-1.5.2, Cormen et al, Kap. 10.1.-10.2]

Implementations details

Bucketgrösse sehr unterschiedlich. Möglichkeiten

- Verkettete Liste oder dynamisches Array für jede Ziffer.
- Ein Array der Länge *n*, Offsets für jede Ziffer in erstem Durchlauf bestimmen.

Annahmen: Eingabelänge n , Anzahl Bits / Ganzzahl: k , Anzahl Buckets: 2^b

Asymptotische Laufzeit $\mathcal{O}(\frac{k}{h} \cdot (n+2^b))$.

Zum Beispiel: k = 32, $2^b = 256$: $\frac{k}{b} \cdot (n+2^b) = 4n + 1024$.

315

Abstrakte Datentypen

Wir erinnern uns¹⁷ (Vorlesung Informatik I)

Ein Stack ist ein abstrakter Datentyp (ADT) mit Operationen

- **push**(x, S): Legt Element x auf den Stapel S.
- ightharpoonup pop(S): Entfernt und liefert oberstes Element von S, oder null.
- ullet top(S): Liefert oberstes Element von S, oder null.
- isEmpty(S): Liefert true wenn Stack leer, sonst false.
- emptyStack(): Liefert einen leeren Stack.

¹⁷hoffentlich

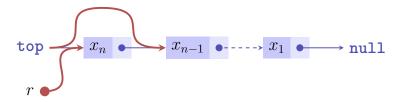
Implementation Push

$x_n \quad \bullet \quad \longrightarrow \quad x_{n-1} \quad \bullet \quad \longrightarrow \quad x_1 \quad \bullet \quad \longrightarrow \quad \text{null}$

push(x,S):

- **1** Erzeuge neues Listenelement mit x und Zeiger auf den Wert von top.
- o Setze top auf den Knotem mit x.

Implementation Pop



pop(S):

- Ist top=null, dann gib null zur

 ück
- 2 Andernfalls merke Zeiger p von top in r.
- **3** Setze top auf p.next und gib r zurück

319

3

Analyse

Jede der Operationen push, pop, top und is
Empty auf dem Stack ist in $\mathcal{O}(1)$ Schritten ausführbar.

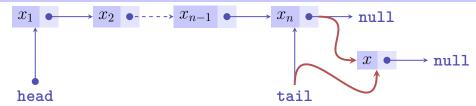
Queue (Schlange / Warteschlange / Fifo)

Queue ist ein ADT mit folgenden Operationen:

- \blacksquare enqueue(x,Q): fügt x am Ende der Schlange an.
- dequeue(Q): entfernt x vom Beginn der Schlange und gibt x zurück (null sonst.)
- head(Q): liefert das Objekt am Beginn der Schlage zurück (null sonst.)
- isEmpty(Q): liefert true wenn Queue leer, sonst false.
- emptyQueue(): liefert leere Queue zurück.

321

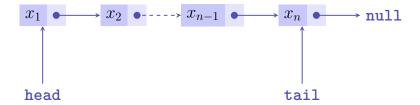
Implementation Queue



enqueue(x, S):

- **I** Erzeuge neues Listenelement mit *x* und Zeiger auf null.
- Wenn tail \neq null, setze tail.next auf den Knoten mit x.
- Setze tail auf den Knoten mit x.
- Ist head = null, dann setze head auf tail.

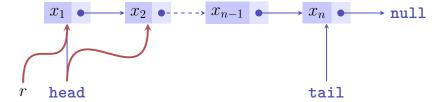
Invarianten!



Mit dieser Implementation gilt

- \blacksquare entweder head = tail = null,
- \blacksquare oder head = tail \neq null und head.next = null
- oder head \neq null und tail \neq null und head \neq tail und head.next \neq null.

Implementation Queue



dequeue(S):

- **1** Merke Zeiger von head in r. Wenn r = null, gib r zurück.
- 2 Setze den Zeiger von head auf head.next.
- Ist nun head = null, dann setze tail auf null.
- Gib den Wert von r zurück.

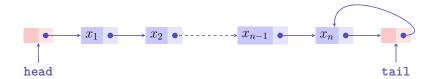
Analyse

323

Jede der Operationen enqueue, dequeue, head und is Empty auf der Queue ist in $\mathcal{O}(1)$ Schritten ausführbar.

Implementationsvarianten verketteter Listen

Liste mit Dummy-Elementen (Sentinels).



Vorteil: Weniger Spezialfälle!

Variante davon: genauso, dabei Zeiger auf ein Element immer einfach indirekt gespeichert. (Bsp: Zeiger auf x_3 zeigt auf x_2 .)

Implementationsvarianten verketteter Listen

Doppelt verkettete Liste

327

Übersicht

	enqueue	delete	search	concat
(A)	$\Theta(1)$	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$
(B)	$\Theta(1)$	$\Theta(n)$	$\Theta(n)$	$\Theta(1)$
(C)	$\Theta(1)$	$\Theta(1)$	$\Theta(n)$	$\Theta(1)$
(D)	$\Theta(1)$	$\Theta(1)$	$\Theta(n)$	$\Theta(1)$

(A) = Einfach verkettet

(B) = Einfach verkettet, mit Dummyelement am Anfang und Ende

(C) = Einfach verkettet, mit einfach indirekter Elementaddressierung

(D) = Doppelt verkettet

Prioritätswarteschlange (Priority Queue)

Priority Queue = Warteschlange mit Prioritäten.

Operationen

- insert(x,p,Q): Füge Objekt x mit Priorität p ein.
- extractMax(Q): Entferne Objekt x mit h\u00f6chster Priorit\u00e4t und liefere es.

Implementation Prioritätswarteschlage

Mit einem Max-Heap!

Also

- insert in Zeit $\mathcal{O}(\log n)$ und
- **extractMax** in Zeit $\mathcal{O}(\log n)$.

12. Amortisierte Analyse

Amortisierte Analyse: Aggregat Analyse, Konto-Methode, Potentialmethode [Ottman/Widmayer, Kap. 3.3, Cormen et al, Kap. 17]

Multistack

Multistack unterstützt neben push und pop noch $\mathtt{multipop(s,S)}$: Entferne die $\min(\mathsf{size}(S),k)$ zuletzt eingefügten Objekte und liefere diese zurück.

Implementation wie beim Stack. Laufzeit von multipop ist O(k).

Akademische Frage

331

Führen wir auf einem Stack mit n Elementen n mal $\mathtt{multipop(k,S)}$ aus, kostet das dann $\mathcal{O}(n^2)$?

Sicher richtig, denn jeder multipop kann Zeit $\mathcal{O}(n)$ haben.

Wie bekommen wir eine schärfere Abschätzung?

Amortisierte Analyse

■ Obere Schranke: Abschätzung der *durchschnittlichen* Laufzeit jeder betrachteten Operation im *schlechtesten Fall*.

$$\frac{1}{n} \sum_{i=1}^{n} \mathsf{Kosten}(\mathsf{op}_i)$$

- Nutzt aus, dass wenige teure Operationen vielen billigen Operationen gegenüberstehen.
- In der amortisierten Analyse sucht man nach einer Kostenfunktion / einem Potential, um zu zeigen, wie die billigen Operationen für die teuren Operationen "aufkommen" können.

Aggregierte Analyse

Direkte Argumentation: berechne eine Schranke für die Gesamtzahl der Elementaroperationen und teile durch die Anzahl der Operationen

335

Aggregierte Analyse: (Stack)

- Bei *n* Operationen können insgesamt maximal *n* Elemente auf den Stack gelegt werden. Also können auch insgesamt nur maximal *n* Elemente vom Stack entfernt werden.
- Für die Gesamtkosten ergibt sich

$$\sum_{i=1}^n \mathsf{Kosten}(\mathsf{op}_i) \le 2n$$

und somit

amortisierte Kosten(op_i) $\leq 2 \in \mathcal{O}(1)$

Kontomethode

Modell

- Der Computer basiert auf Münzen: jede Elementaroperation der Maschine kostet eine Münze.
- Für jede Operation op_k einer Datenstruktur wird eine bestimme Anzahl Münzen a_k auf eine Konto A eingezahlt: $A_k = A_{k-1} + a_k$
- Die Münzen vom Konto A werden verwendet, um die anfallenden echten Kosten t_k zu bezahlen.
- Das Konto A muss zu jeder Zeit genügend Münzen aufweisen, um die laufende Operation op_k zu bezahlen: $A_k t_k > 0 \,\forall k$.
- $\Rightarrow a_k$ sind die amortisierten Kosten der Operation op_k .

3

Kontomethode (Stack)

- Aufruf von push: kostet 1 CHF und zusätzlich kommt 1 CHF auf das Bankkonto ($a_k = 2$)
- Aufruf von pop: kostet 1 CHF, wird durch Rückzahlung vom Bankkonto beglichen. ($a_k = 0$)

Kontostand wird niemals negativ.

 $a_k \leq 2 \,\forall \, k$, also: konstante amortisierte Kosten.

Potentialmethode

Leicht anderes Modell

- Definiere ein *Potential* Φ_i , welches *zum Zustand der betrachteten Datenstruktur* zum Zeitpunkt i gehört.
- Das Potential soll zum Ausgleichen teurer Operationen verwendet werden und muss daher so gewählt sein, dass es bei (häufigen) günstigen Operationen erhöht wird, während es die (seltenen) teuren Operationen durch einen fallenden Wert bezahlt.

Potentialmethode (formal)

Bezeichne t_i die realen Kosten der Operation op_i .

Potentialfunktion $\Phi_i \geq 0$ zur Datenstruktur nach i Operationen. Voraussetzung: $\Phi_i \geq \Phi_0 \ \forall i$.

Amortisierte Kosten der *i*-ten Operation:

$$a_i := t_i + \Phi_i - \Phi_{i-1}$$
.

Es gilt nämlich

$$\sum_{i=1}^{n} a_i = \sum_{i=1}^{n} (t_i + \Phi_i - \Phi_{i-1}) = \left(\sum_{i=1}^{n} t_i\right) + \Phi_n - \Phi_0 \ge \sum_{i=1}^{n} t_i.$$

Beispiel Stack

Potentialfunktion Φ_i = Anzahl Elemente auf dem Stack.

- $\operatorname{push}(x, S)$: Reale Kosten $t_i = 1$. $\Phi_i \Phi_{i-1} = 1$. Amortisierte Kosten $a_i = 2$.
- pop(S): Reale Kosten $t_i = 1$. $\Phi_i \Phi_{i-1} = -1$. Amortisierte Kosten $a_i = 0$.
- multipop(k, S): Reale Kosten $t_i = k$. $\Phi_i \Phi_{i-1} = -k$. Amortisierte Kosten $a_i = 0$.

Alle Operationen haben *konstante amortisierte Kosten*! Im Durchschnitt hat also Multipop konstanten Zeitbedarf. ¹⁸

¹⁸Achtung: es geht nicht um den probabilistischen Mittelwert sondern den (worst-case) Durchschnitt der Kosten.

Beispiel Binärer Zähler

Binärer Zähler mit k bits. Im schlimmsten Fall für jede Zähloperation maximal k Bitflips. Also $\mathcal{O}(n \cdot k)$ Bitflips für Zählen von 1 bis n. Geht das besser?

Reale Kosten t_i = Anzahl Bitwechsel von 0 nach 1 plus Anzahl Bitwechsel von 1 nach 0.

$$...0\underbrace{1111111}_{l \text{ Einsen}} + 1 = ...1\underbrace{0000000}_{l \text{ Nullen}}.$$

$$\Rightarrow t_i = l+1$$

Binärer Zähler: Aggregatmethode

Zähle die Anzahl Bitwechsel beim Zählen von 0 bis n-1. Beobachtung

- Bit 0 wechselt für jedes $k-1 \rightarrow k$
- Bit 1 wechselt für jedes $2k 1 \rightarrow 2k$
- Bit 2 wechselt für jedes $4k-1 \rightarrow 4k$

Gesamte Anzahl Bitwechsel $\sum_{i=0}^{n-1} \frac{n}{2^i} \le n \cdot \sum_{i=0}^{\infty} \frac{1}{2^i} = 2n$ Amortisierte Kosten für jede Erhöhung: $\mathcal{O}(1)$ Bitwechsel.

343

Binärer Zähler: Kontomethode

Beobachtung: bei jedem Inkrementieren wird genau ein Bit auf 1 gesetzt, während viele Bits auf 0 gesetzt werden könnten. Nur ein vorgängig auf 1 gesetztes Bit kann wieder auf 0 zurückgesetzt werden.

 $a_i=2$: 1 CHF reale Kosten für das Setzen $0\to 1$ plus 1 CHF für das Konto. Jedes Zurücksetzen $1\to 0$ kann vom Konto beglichen werden.

Binärer Zähler: Potentialmethode

$$...0\underbrace{1111111}_{l \text{ Finsen}} + 1 = ...1\underbrace{0000000}_{l \text{ Nullen}}$$

Potentialfunktion Φ_i : Anzahl der 1-Bits von x_i .

$$\Rightarrow \Phi_0 = 0 \le \Phi_i \,\forall i$$

$$\Rightarrow \Phi_i - \Phi_{i-1} = 1 - l,$$

$$\Rightarrow a_i = t_i + \Phi_i - \Phi_{i-1} = l + 1 + (1 - l) = 2.$$

Amortisiert konstante Kosten für eine Zähloperation.

Wörterbuch (Dictionary)

13. Wörterbücher

Wörterbuch, Selbstandornung, Implementation Wörterbuch mit Array / Liste / Skipliste. [Ottman/Widmayer, Kap. 3.3,1.7, Cormen et al, Kap. Problem 17-5]

ADT zur Verwaltung von Schlüsseln aus $\mathcal K$ mit Operationen

- insert(k, D): Hinzufügen von $k \in \mathcal{K}$ in Wörterbuch D. Bereits vorhanden \Rightarrow Fehlermeldung.
- delete(k, D): Löschen von k aus dem Wörterbuch D. Nicht vorhanden \Rightarrow Fehlermeldung.
- **search**(k, D): Liefert true wenn $k \in D$, sonst false.

347

Idee

Implementiere Wörterbuch als sortiertes Array.

Anzahl Elementaroperationen im schlechtesten Fall

Suchen $\mathcal{O}(\log n)$ \bigcirc Einfügen $\mathcal{O}(n)$ \bigcirc Löschen $\mathcal{O}(n)$ \bigcirc

Andere Idee

Implementiere Wörterbuch als verkettete Liste Anzahl Elementaroperationen im schlechtesten Fall

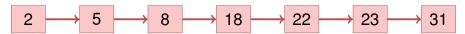
Suchen $\mathcal{O}(n)$ $\stackrel{\textstyle igorean}{\textstyle igorean}$ Einfügen $\mathcal{O}(1)^{19}$ $\stackrel{\textstyle igorean}{\textstyle igorean}$ Löschen $\mathcal{O}(n)$ $\stackrel{\textstyle igorean}{\textstyle igorean}$

onter der voradssetzung, dass wir die Existenz nicht prdien won

¹⁹Unter der Voraussetzung, dass wir die Existenz nicht prüfen wollen.

Sortierte Verkettete Liste

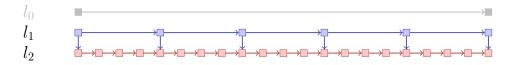
13.1 Skiplisten



Element / Einfügeort suchen: worst-case n Schritte.

351

Sortierte Verkettete Liste mit 2 Ebenen

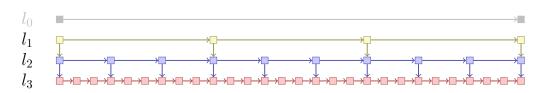


- Anzahl Elemente: $n_0 := n$
- Schrittweite Ebene 1: n₁
- Schrittweite Ebene 2: $n_2 = 1$
- \Rightarrow Element / Einfügeort suchen: worst-case $\frac{n_0}{n_1} + \frac{n_1}{n_2}$.
- \Rightarrow Beste Wahl für²⁰ n_1 : $n_1 = \frac{n_0}{n_1} = \sqrt{n_0}$.

Element / Einfügeort suchen: worst-case $2\sqrt{n}$ Schritte.

 20 Differenzieren und 0 setzen, siehe Anhang

Sortierte Verkettete Liste mit 3 Ebenen



- Anzahl Elemente: $n_0 := n$
- Schrittweiten Ebenen 0 < i < 3: n_i
- Schrittweite auf Ebene 3: $n_3 = 1$
- \Rightarrow Beste Wahl für (n_1,n_2) : $n_2=\frac{n_0}{n_1}=\frac{n_1}{n_2}=\sqrt[3]{n_0}$.

Element / Einfügeort suchen: worst-case $3 \cdot \sqrt[3]{n}$ Schritte.

0.00

Sortierte Verkettete Liste mit *k* **Ebenen (Skipliste)**

- Anzahl Elemente: $n_0 := n$
- Schrittweiten Ebenen 0 < i < k: n_i
- Schrittweite auf Ebene k: $n_k = 1$

$$\Rightarrow$$
 Beste Wahl für (n_1,\ldots,n_k) : $n_{k-1}=\frac{n_0}{n_1}=\frac{n_1}{n_2}=\cdots=\sqrt[k]{n_0}$.

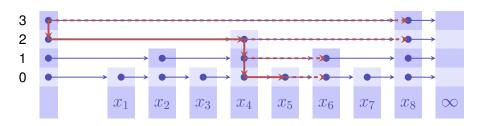
Element / Einfügeort suchen: worst-case $k \cdot \sqrt[k]{n}$ Schritte²¹ (Derivation: Appendix).

Annahme: $n = 2^k$

 \Rightarrow worst case $\log_2 n \cdot 2$ Schritte und $\frac{n_i}{n_{i+1}} = 2 \, \forall \, 0 \leq i < \log_2 n$.

Suche in Skipliste

Perfekte Skipliste



$$x_1 \leq x_2 \leq x_3 \leq \cdots \leq x_9$$
.

355

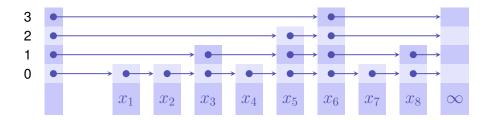
Beispiel: Suche nach einem Schlüssel x mit $x_5 < x < x_6$.

Analyse Perfekte Skipliste (schlechtester Fall)

Suchen in $\mathcal{O}(\log n)$. Einfügen in $\mathcal{O}(n)$.

Randomisierte Skipliste

ldee: Füge jeweils einen Knoten mit zufälliger Höhe H ein, wobei $\mathbb{P}(H=i)=\frac{1}{2^{i+1}}.$



²¹(Herleitung: Anhang)

Analyse Randomisierte Skipliste

Theorem

Die Anzahl an erwarteten Elementaroperationen für Suchen, Einfügen und Löschen eines Elements in einer randomisierten Skipliste ist $\mathcal{O}(\log n)$.

Der längliche Beweis, welcher im Rahmen dieser Vorlesung nicht geführt wird, betrachtet die Länge eines Weges von einem gesuchten Knoten zurück zum Startpunkt im höchsten Level.

13.2 [Selbstanordnung]

nicht im Unterricht präsentiert

359

Selbstanordnung

Problematisch bei der Verwendung verketteter Listen: lineare Suchzeit

Idee: Versuche, die Listenelemente so anzuordnen, dass Zugriffe über die Zeit hinweg schneller möglich sind

Zum Beispiel

- Transpose: Bei jedem Zugriff auf einen Schlüssel wird dieser um eine Position nach vorne bewegt.
- Move-to-Front (MTF): Bei jedem Zugriff auf einen Schlüssel wird dieser ganz nach vorne bewegt.

Transpose

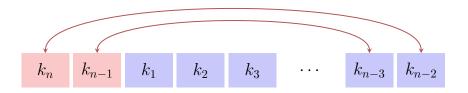
Transpose:

 k_1 k_2 k_3 k_4 k_5 \cdots k_{n-1} k_n

Worst case: n Wechselnde Zugriffe auf k_{n-1} und k_n . Laufzeit: $\Theta(n^2)$

Move-to-Front

Move-to-Front:



n Wechselnde Zugriffe auf k_{n-1} und k_n . Laufzeit: $\Theta(n)$

Man kann auch hier Folge mit quadratischer Laufzeit angeben, z.B. immer das letzte Element. Aber dafür ist keine offensichtliche Strategie bekannt, die viel besser sein könnte als MTF.

Analyse

Vergleichen MTF mit dem bestmöglichen Konkurrenten (Algorithmus) A. Wie viel besser kann A sein?

Annahmen:

363

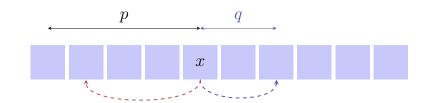
- MTF und A dürfen jeweils nur das zugegriffene Element *x* verschieben.
- MTF und A starten mit derselben Liste.

 M_k und A_k bezeichnen die Liste nach dem k-ten Schritt. $M_0 = A_0$.

Analyse

Kosten:

- Zugriff auf x: Position p von x in der Liste.
- Keine weiteren Kosten, wenn x vor p verschoben wird.
- Weitere Kosten q für jedes Element, das x von p aus nach hinten verschoben wird.



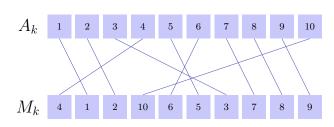
Amortisierte Analyse

Sei eine beliebige Folge von Suchanfragen gegeben und seien $G_k^{(M)}$ und $G_k^{(A)}$ jeweils die Kosten im Schritt k für Move-to-Front und A. Suchen Abschätzung für $\sum_k G_k^{(M)}$ im Vergleich zu $\sum_k G_k^{(A)}$.

 \Rightarrow Amortisierte Analyse mit Potentialfunktion Φ .

Potentialfunktion

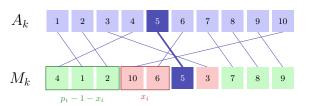
Potentialfunktion $\Phi =$ Anzahl der Inversionen von A gegen MTF. Inversion = Paar x, y so dass für die Positionen von x und y $\left(p^{(A)}(x) < p^{(A)}(y)\right) \neq \left(p^{(M)}(x) < p^{(M)}(y)\right)$

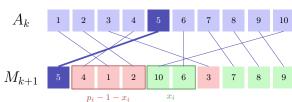


#Inversionen = #Kreuzungen

Abschätzung der Potentialfunktion: MTF

- Element i an Position $p_i := p^{(M)}(i)$.
- **Z**ugriffskosten $C_k^{(M)} = p_i$.
- \mathbf{x}_i : Anzahl Elemente, die in M vor p_i und in A nach i stehen.
- \blacksquare MTF löst x_i Inversionen auf.
- $p_i x_i 1$: Anzahl Elemente, die in M vor p_i und in A vor i stehen.
- MTF erzeugt $p_i 1 x_i$ Inversionen.

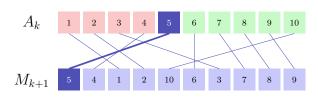


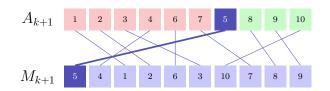


Inversionen.

Abschätzung der Potentialfunktion: A

- Element i an Position $p^{(A)}(i)$.
- $X_k^{(A)}$: Anzahl Verschiebungen nach hinten (sonst 0).
- $\begin{tabular}{l} \bf A & {\rm erh\"{o}ht} & {\rm die} & {\rm Anzahl} \\ {\rm Inversionen} & {\rm h\"{o}chstens} & {\rm um} \\ X_k^{(A)}. \end{tabular}$





Abschätzung

367

$$\Phi_{k+1} - \Phi_k \le -x_i + (p_i - 1 - x_i) + X_k^{(A)}$$

Amortisierte Kosten von MTF im *k*-ten Schritt:

$$a_k^{(M)} = C_k^{(M)} + \Phi_{k+1} - \Phi_k$$

$$\leq p_i - x_i + (p_i - 1 - x_i) + X_k^{(A)}$$

$$= (p_i - x_i) + (p_i - x_i) - 1 + X_k^{(A)}$$

$$\leq C_k^{(A)} + C_k^{(A)} - 1 + X_k^{(A)} \leq 2 \cdot C_k^{(A)} + X_k^{(A)}.$$

Abschätzung

Kosten Summiert

$$\begin{split} \sum_{k} G_{k}^{(M)} &= \sum_{k} C_{k}^{(M)} \leq \sum_{k} a_{k}^{(M)} \leq \sum_{k} 2 \cdot C_{k}^{(A)} + X_{k}^{(A)} \\ &\leq 2 \cdot \sum_{k} C_{k}^{(A)} + X_{k}^{(A)} \\ &= 2 \cdot \sum_{k} G_{k}^{(A)} \end{split}$$

MTF führt im schlechtesten Fall höchstens doppelt so viele Operationen aus wie eine optimale Strategie.

13.3 Anhang

Mathematik zur Skipliste

371

[Mathematik zur k-Level Skipliste]

Gegeben Anzahl Datenpunkte n_0 , Anzahl Level k>0 und Anzahl Elemente n_l die pro Level l übersprungen werden, $n_k=1$. Maximale Anzahl totaler Schritte in der Skipliste:

$$f(\vec{n}) = \frac{n_0}{n_1} + \frac{n_1}{n_2} + \dots \frac{n_{k-1}}{n_k}$$

Minimiere f für (n_1, \ldots, n_{k-1}) : $\frac{\partial f(\vec{n})}{\partial n_t} = 0$ für alle 0 < t < k, $\frac{\partial f(\vec{n})}{\partial n_t} = -\frac{n_{t-1}}{n_{t^2}} + \frac{1}{n_{t+1}} = 0 \Rightarrow n_{t+1} = \frac{n_t^2}{n_{t-1}}$ und $\frac{n_{t+1}}{n_t} = \frac{n_t}{n_{t-1}}$.

[Mathematik zur k-Level Skipliste]

Vorige Folie
$$\Rightarrow \frac{n_t}{n_0} = \frac{n_t}{n_{t-1}} \frac{n_{t-1}}{n_{t-2}} \dots \frac{n_1}{n_0} = \left(\frac{n_1}{n_0}\right)^t$$

Insbesondere
$$1=n_k=\frac{n_1^k}{n_0^{k-1}} \Rightarrow n_1=\sqrt[k]{n_0^{k-1}}$$

Also
$$n_{k-1} = \frac{n_0}{n_1} = \sqrt[k]{\frac{n_0^k}{n_0^{k-1}}} = \sqrt[k]{n_0}$$
.

Maximale Anzahl Schritte in der Skipliste $f(\vec{n}) = k \cdot (\sqrt[k]{n_0})$

Angenommen $n_0 = 2^k$, dann $\frac{n_l}{n_{l+1}} = 2$ für alle $0 \le l < k$ (Skipliste halbiert die Daten in jedem Level), und $f(n) = k \cdot 2 = 2\log_2 n \in \Theta(\log n)$.

Motivierendes Beispiel

14. Hashing

Hashtabellen, Pre-Hashing, Hashing, Kollisionsauflösung durch Verketten, Einfaches gleichmässiges Hashing, Gebräuchliche Hashfunktionen, Tabellenvergrösserung, offene Addressierung: Sondieren, Gleichmässiges Hashing, Universelles hashing, Perfektes Hashing [Ottman/Widmayer, Kap. 4.1-4.3.2, 4.3.4, Cormen et al, Kap. 11-11.4]

Ziel: Effiziente Verwaltung einer Tabelle aller *n* ETH-Studenten *Mögliche Anforderung:* Schneller Zugriff (Einfügen, Löschen, Finden) von Datensätzen nach Name.

375

Wörterbuch (Dictionary)

Abstrakter Datentyp (ADT) D zur Verwaltung einer Menge von Einträgen²² i mit Schlüsseln $k \in \mathcal{K}$. Operationen

- D.insert(i): Hinzufügen oder Überschreiben von i im Wörterbuch D.
- $D.\mathtt{delete}(i)$: Löschen von i aus dem Wörterbuch D. Nicht vorhanden \Rightarrow Fehlermeldung.
- D.search(k): Liefert Eintrag mit Schlüssel k, wenn er existiert.

Wörterbuch in C++

Assoziativer Container std::unordered_map<>

3//

 $^{^{22}}$ Schlüssel-Wert Paare (k,v), im Folgenden betrachten wir hauptsächlich die Schlüssel.

Motivation / Verwendung

Wahrscheinlich die gängigste Datenstruktur

- Unterstützt in vielen Programmiersprachen (C++, Java, Python, Ruby, Javascript, C# ...)
- Offensichtliche Verwendung
 - Datenbanken / Tabellenkalkulation
 - Symboltabellen in Compilern und Interpretern
- Weniger offensichtlich
 - Substring Suche (Google, grep)
 - Ähnlichkeit von Texten (Dokumentenvergleich, DNA)
 - Dateisynchronisation
 - Kryptographie: Filetransfer / Identifikation

1. Idee: Direkter Zugriff (Array)

Index	Eintrag			
0	-			
1	-			
2	-			
3	[3,wert(3)]			
4	-			
5	-			
:	:			
k	[k,wert(k)]			
:	:			

Probleme

- Schlüssel müssen nichtnegative ganze Zahlen sein
- 2 Grosser Schlüsselbereich ⇒ grosses Array

379

Lösung zum ersten Problem: Pre-hashing

Prehashing: Bilde Schlüssel ab auf positive Ganzzahlen mit einer Funktion $ph:\mathcal{K}\to\mathbb{N}$

- Theoretisch immer möglich, denn jeder Schlüssel ist als Bitsequenz im Computer gespeichert
- Theoretisch auch: $x = y \Leftrightarrow ph(x) = ph(y)$
- In der Praxis: APIs bieten Funktionen zum pre-hashing an. (Java: object.hashCode(), C++: std::hash<>, Python: hash(object))
- APIs bilden einen Schlüssel aus der Schlüsselmenge ab auf eine Ganzzahl mit beschränkter Grösse.²³

Prehashing Beispiel: String

Zuordnung Name $s = s_1 s_2 \dots s_{l_s}$ zu Schlüssel

$$ph(s) = \left(\sum_{i=1}^{l_s} s_{l_s - i + 1} \cdot b^i\right) \bmod 2^w$$

 \boldsymbol{b} so, dass verschiedene Namen möglichst verschiedene Schlüssel erhalten.

w Wortgrösse des Systems (z.B. 32 oder 64).

Beispiel (Java), mit b = 31, w = 32 Ascii-Werte s_i .

Anna $\mapsto 2045632$

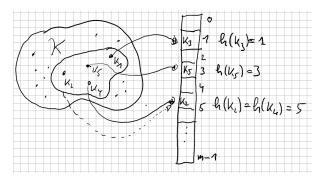
381

Jacqueline $\mapsto 2042089953442505 \mod 2^{32} = 507919049$

²³Somit gilt die Implikation $ph(x) = ph(y) \Rightarrow x = y$ **nicht** mehr für alle x,y.

Lösung zum zweiten Problem: Hashing

Reduziere des Schlüsseluniversum: Abbildung (Hash-Funktion) $h: \mathcal{K} \to \{0, ..., m-1\}$ ($m \approx n = \text{Anzahl Einträge in der Tabelle})$



Kollision: $h(k_i) = h(k_j)$.

Nomenklatur

383

Hashfunktion h: Abbildung aus der Menge der Schlüssel \mathcal{K} auf die Indexmenge $\{0, 1, \dots, m-1\}$ eines Arrays (*Hashtabelle*).

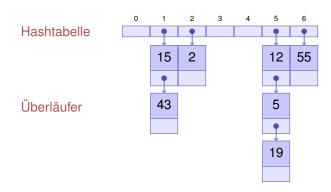
$$h: \mathcal{K} \to \{0, 1, \dots, m-1\}.$$

Meist $|\mathcal{K}| \gg m$. Es gibt also $k_1, k_2 \in \mathcal{K}$ mit $h(k_1) = h(k_2)$ (*Kollision*). Eine Hashfunktion sollte die Menge der Schlüssel möglichst gleichmässig auf die Positionen der Hashtabelle verteilen.

Behandlung von Kollisionen: Verkettung

Beispiel m = 7, $K = \{0, ..., 500\}$, $h(k) = k \mod m$. Schlüssel 12, 55, 5, 15, 2, 19, 43

Direkte Verkettung der Überläufer



Algorithmen zum Hashing mit Verkettung

- insert(i) Prüfe ob Schlüssel k vom Eintrag i in Liste an Position h(k). Falls nein, füge i am Ende der Liste ein; andernfalls ersetze das Element durch i.
- find(k) Prüfe ob Schlüssel k in Liste an Position h(k). Falls ja, gib die Daten zum Schlüssel k zurück. Andernfalls Rückgabe eines leeren Elements null.
- delete(k) Durchsuche die Liste an Position h(k) nach k. Wenn Suche erfolgreich, entferne das entsprechende Listenelement.

Worst-case Analyse

Einfaches Gleichmässiges Hashing

Schlechtester Fall: alle Schlüssel werden auf den gleichen Index abgebildet.

 $\Rightarrow \Theta(n)$ pro Operation im schlechtesten Fall. \bigotimes

Starke Annahmen: Jeder beliebige Schlüssel wird

- mit gleicher Wahrscheinlichkeit (Uniformität)
- und unabhängig von den anderen Schlüsseln (Unabhängigkeit)

auf einen der m verfügbaren Slots abgebildet.

Einfaches Gleichmässiges Hashing

Unter der Voraussetzung von einfachem gleichmässigen Hashing: $\it Erwartete\ L\"ange$ einer Kette, wenn $\it n$ Elemente in eine Hashtabelle mit $\it m$ Elementen eingefügt werden

$$\begin{split} \mathbb{E}(\text{Länge Kette j}) &= \mathbb{E}\left(\sum_{i=0}^{n-1}\mathbb{1}(k_i=j)\right) = \sum_{i=0}^{n-1}\mathbb{P}(k_i=j) \\ &= \sum_{i=1}^{n}\frac{1}{m} = \frac{n}{m} \end{split}$$

 $\alpha = n/m$ heisst *Belegungsfaktor* oder *Füllgrad* der Hashtabelle.

Einfaches Gleichmässiges Hashing

Theorem

Sei eine Hashtabelle Verkettung gefüllt mit Füllgrad $\alpha = \frac{n}{m} < 1$. Unter der Annahme vom einfachen gleichmässigen Hashing hat die nächste Operation erwartete Laufzeitkosten von $\leq 1 + \alpha$.

Folgerung: ist die Anzahl der Slots m der Hashtabelle immer mindestens proportional zur Anzahl Elemente n in der Hashtabelle, $n \in \mathcal{O}(m) \Rightarrow$ Erwartete Laufzeit der Operationen Suchen, Einfügen und Löschen ist $\mathcal{O}(1)$.

Weitere Analyse (direkt verkettete Liste)

- I Erfolglose Suche. Durchschnittliche Listenlänge ist $\alpha = \frac{n}{m}$. Liste muss ganz durchlaufen werden.
 - ⇒ Durchschnittliche Anzahl betrachteter Einträge

$$C'_n = \alpha$$
.

- **2** Erfolgreiche Suche. Betrachten die Einfügehistorie: Schlüssel j sieht durchschnittliche Listenlänge (j-1)/m.
 - ⇒ Durchschnittliche Anzahl betrachteter Einträge

$$C_n = \frac{1}{n} \sum_{j=1}^{n} (1 + (j-1)/m) = 1 + \frac{1}{n} \frac{n(n-1)}{2m} \approx 1 + \frac{\alpha}{2}.$$

Vor und Nachteile der Verkettung

Vorteile der Strategie:

- Belegungsfaktoren $\alpha > 1$ möglich
- Entfernen von Schlüsseln einfach

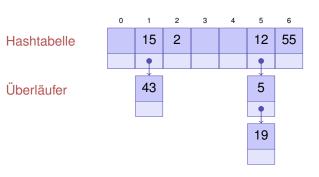
Nachteile

Speicherverbrauch der Verkettung

[Variante:Indirekte Verkettung]

Beispiel m = 7, $K = \{0, ..., 500\}$, $h(k) = k \mod m$. Schlüssel 12, 55, 5, 15, 2, 19, 43

Indirekte Verkettung der Überläufer



Beispiele gebräuchlicher Hashfunktionen

$$h(k) = k \mod m$$

Ideal: m Primzahl, nicht zu nahe bei Potenzen von 2 oder 10

Aber oft: $m = 2^k - 1$ ($k \in \mathbb{N}$)

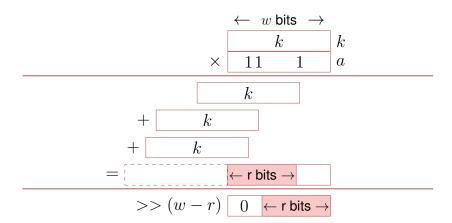
Beispiele gebräuchlicher Hashfunktionen

Multiplikationsmethode

$$h(k) = \lfloor (a \cdot k \bmod 2^w)/2^{w-r} \rfloor \bmod m$$

- \blacksquare $m=2^r$, w= Grösse des Maschinenworts in Bits.
- Multiplikation addiert k entlang aller Bits von a, Ganzzahldivision mit 2^{w-r} und $\operatorname{mod} m$ extrahiert die oberen r Bits.
- Als Code geschrieben: a * k >> (w-r)
- Guter Wert für a: $\left\lfloor \frac{\sqrt{5}-1}{2} \cdot 2^w \right\rfloor$: Integer, der die ersten w Bits des gebrochenen Teils der irrationalen Zahl darstellt.

Illustration



Tabellenvergrösserung

- Wissen nicht a priori, wie gross n sein wird.
- Benötigen $m = \Theta(n)$ zu jeder Zeit.

Grösse der Tabelle muss angepasst werden. Hash-Funktion ändert sich ⇒ *Rehashing*

- Alloziere Array A' mit Grösse m' > m
- Füge jeden Eintrag von A erneut in A' ein (mit erneutem Hashing)
- Setze $A \leftarrow A'$.
- Kosten: $\mathcal{O}(n+m+m')$.

Wie wählt man m'?

Tabellenvergrösserung

- 1.ldee $n=m\Rightarrow m'\leftarrow m+1$ Bei jedem Einfügen vergrössern. Kosten $\Theta(1+2+3+\cdots+n)=\Theta(n^2)$
- 2.Idee $n=m\Rightarrow m'\leftarrow 2m$ Vergrössern nur wenn $m=2^i$: $\Theta(1+2+4+8+\cdots+n)=\Theta(n)$ Einige Einfügeoperationen kosten lineare Zeit, aber im Durchschnitt kosten sie $\Theta(1)$ =

Jede Operation vom Hashing mit Verketten hat erwartet amortisierte Kosten $\Theta(1)$.

(⇒ Amortisierte Analyse)

Offene Addressierung²⁴

Speichere die Überläufer direkt in der Hashtabelle mit einer Sondierungsfunktion $s: \mathcal{K} \times \{0,1,\ldots,m-1\} \rightarrow \{0,1,\ldots,m-1\}$

Tabellenposition des Schlüssels entlang der Sondierungsfolge

$$S(k) := (s(k,0), s(k,1), \dots, s(k,m-1)) \mod m$$

Sondierungsfolge muss für jedes $k \in \mathcal{K}$ eine Permutation sein von $\{0,1,\ldots,m-1\}$

Algorithmen zur offenen Addressierung

- insert(i) Suche Schlüssel k von i in der Tabelle gemäss Sondierungssequenz S(k). Ist k nicht vorhanden, füge k an die erste freie Position in der Sondierungsfolge ein. Andernfalls Fehlermeldung.
- find(k) Durchlaufe Tabelleneinträge gemäss S(k). Wird k gefunden, gib die zu k gehörenden Daten zurück. Andernfalls Rückgabe eines leeres Elements null.
- delete(k) Suche k in der Tabelle gemäss S(k). Wenn k gefunden, ersetze k durch den speziellen Schlüssel removed.

Lineares Sondieren

 $s(k,j) = h(k) + j \Rightarrow S(k) = (h(k), h(k) + 1, \dots, h(k) + m - 1)$ mod m

Beispiel m = 7, $K = \{0, ..., 500\}$, $h(k) = k \mod m$. Schlüssel 12, 55, 5, 15, 2, 19

[Analyse Lineares Sondieren (ohne Herleitung)]

399

Erfolglose Suche. Durchschnittliche Anzahl betrachteter Einträge

$$C_n' \approx \frac{1}{2} \left(1 + \frac{1}{(1-\alpha)^2} \right)$$

Erfolgreiche Suche. Durchschnittliche Anzahl betrachteter Einträge

$$C_n \approx \frac{1}{2} \left(1 + \frac{1}{1 - \alpha} \right).$$

40

²⁴Begriffsklärung: Dieses Verfahren nutzt *offene Addressierung* (Positionen in der Hashtabelle nicht fixiert), ist aber *ein geschlossenes Hashverfahren* (Einträge bleiben in der Hashtabelle)

Diskussion

Beispiel $\alpha = 0.95$

Erfolglose Suche betrachtet im Durchschnitt 200 Tabelleneinträge! (hier ohne Herleitung).

? Grund für die schlechte Performance?

① Primäre Häufung: Ähnliche Hashaddressen haben ähnliche
 Sondierungsfolgen ⇒ lange zusammenhängende belegte Bereiche.

Quadratisches Sondieren

$$s(k,j) = h(k) + \lceil j/2 \rceil^2 (-1)^{j+1}$$

$$S(k) = (h(k), h(k) + 1, h(k) - 1, h(k) + 4, h(k) - 4, \dots) \mod m$$

Beispiel m = 7, $K = \{0, ..., 500\}$, $h(k) = k \mod m$. Schlüssel 12, 55, 5, 15, 2, 19

0	1	2	3	4	5	6
19	15	2		5	12	55

403

[Analyse Quadratisches Sondieren (ohne Herleitung)]

Erfolglose Suche. Durchschnittliche Anzahl betrachteter Einträge

$$C_n' \approx \frac{1}{1-\alpha} - \alpha + \ln\left(\frac{1}{1-\alpha}\right)$$

Erfolgreiche Suche. Durchschnittliche Anzahl betrachteter Einträge

$$C_n \approx 1 + \ln\left(\frac{1}{1-\alpha}\right) - \frac{\alpha}{2}.$$

Diskussion

Beispiel $\alpha = 0.95$

Erfolglose Suche betrachtet im Durchschnitt 22 Tabelleneinträge (hier ohne Herleitung)

② Grund für die schlechte Performance?

igodeligap Sekundäre Häufung: Synonyme k und k' (mit h(k) = h(k')) durchlaufen dieselbe Sondierungsfolge.

Double Hashing

Zwei Hashfunktionen h(k) und h'(k). $s(k,j) = h(k) + j \cdot h'(k)$. $S(k) = (h(k), h(k) + h'(k), h(k) + 2h'(k), \dots, h(k) + (m-1)h'(k)) \mod m$

Beispiel:

m = 7, $K = \{0, ..., 500\}$, $h(k) = k \mod 7$, $h'(k) = 1 + k \mod 5$. Schlüssel 12, 55, 5, 15, 2, 19

0	1	2	3	4	5	6
5	15	2	19		12	.55

Double Hashing

- Sondierungsreihenfolge muss Permutation aller Hashadressen bilden. Also $h'(k) \neq 0$ und h'(k) darf m nicht teilen, z.B. garantiert mit m prim.
- h' sollte möglichst unabhängig von h sein (Vermeidung sekundärer Häufung).

Unabhängigkeit:

407

$$\mathbb{P}((h(k) = h(k')) \land (h'(k) = h'(k'))) = \mathbb{P}(h(k) = h(k')) \cdot \mathbb{P}(h'(k) = h'(k')).$$

Unabhängigkeit weitgehend erfüllt von $h(k) = k \mod m$ und $h'(k) = 1 + k \mod (m-2)$ (m prim).

[Analyse Double Hashing]

Sind h und h' unabhängig, dann:

Erfolglose Suche. Durchschnittliche Anzahl betrachteter Einträge

$$C_n' \approx \frac{1}{1-\alpha}$$

Erfolgreiche Suche. Durchschnittliche Anzahl betrachteter Einträge

$$C_n \approx \frac{1}{\alpha} \ln \left(\frac{1}{1 - \alpha} \right)$$

Gleichmässiges Hashing

Starke Annahme: Die Sondierungssequenz S(k) eines Schlüssels k ist mit gleicher Wahrscheinlichkeit eine der m! vielen Permutationssequenzen von $\{0, 1, \ldots, m-1\}$.

(Double Hashing kommt dem am ehesten nahe)

Analyse gleichmässiges Hashing mit offener Addressierung

Theorem

Sei eine Hashtabelle mit offener Addressierung gefüllt mit Füllgrad $\alpha = \frac{n}{m} < 1$. Unter der Annahme vom gleichmässigen Hashing hat die nächste Operation erwartete Laufzeitkosten von $\leq \frac{1}{1-\alpha}$.

Analyse gleichmässiges Hashing mit offener Addressierung

Beweis des Theorems: Zufallsvariable X: Anzahl Sondierungen bei einer erfolglosen Suche.

$$\mathbb{P}(X \ge i) \stackrel{*}{=} \frac{n}{m} \cdot \frac{n-1}{m-1} \cdot \frac{n-2}{m-2} \cdots \frac{n-i+2}{m-i+2}$$

$$\stackrel{**}{\le} \left(\frac{n}{m}\right)^{i-1} = \alpha^{i-1}. \quad (1 \le i \le m)$$

*: *A_i*:Slot beim *j*-ten Schritt belegt.

$$\begin{split} \mathbb{P}(\ddot{A_1} \cap \dots \cap \ddot{A_{i-1}}) &= \mathbb{P}(A_1) \cdot \mathbb{P}(\ddot{A_2}|A_1) \cdot \dots \cdot \mathbb{P}(A_{i-1}|A_1 \cap \dots \cap A_{i-2}), \\ ^{\star\star} \colon \tfrac{n-1}{m-1} < \tfrac{n}{m} \operatorname{da}^{25} n < m. \end{split}$$

Ausserdem $\mathbb{P}(x \geq i) = 0$ für $i \geq m$. Also

$$\mathbb{E}(X) \stackrel{\mathrm{Anhang}}{=} \sum_{i=1}^{\infty} \mathbb{P}(X \geq i) \leq \sum_{i=1}^{\infty} \alpha^{i-1} = \sum_{i=0}^{\infty} \alpha^{i} = \frac{1}{1-\alpha}.$$

 $\frac{-25 \frac{n-1}{m-1} < \frac{n}{m} \Leftrightarrow \frac{n-1}{n} < \frac{m-1}{m} \Leftrightarrow 1 - \frac{1}{n} < 1 - \frac{1}{m} \Leftrightarrow n < m \ (n > 0, m > 0)}{n}$

411

[Erfolgreiche Suche beim gleichmässigen offenen Hashing]

Theorem

Sei eine Hashtabelle mit offener Addressierung gefüllt mit Füllgrad $\alpha = \frac{n}{m} < 1$. Unter der Annahme vom gleichmässigen Hashing hat die erfolgreiche Suche erwartete Laufzeitkosten von $\leq \frac{1}{\alpha} \cdot \log \frac{1}{1-\alpha}$.

Beweis: Cormen et al, Kap. 11.4

Übersicht

	$\alpha = 0.50$		$\alpha = 0.90$		$\alpha = 0.95$	
	C_n	C'_n	C_n	C'_n	C_n	C'_n
(Direkte) Verkettung	1.25	0.50	1.45	0.90	1.48	0.95
Lineares Sondieren	1.50	2.50	5.50	50.50	10.50	200.50
Quadratisches Sondieren	1.44	2.19	2.85	11.40	3.52	22.05
Gleichmässiges Hashing	1.39	2.00	2.56	10.00	3.15	20.00

[:] C_n : Anzahl Schritte erfolgreiche Suche, C'_n : Anzahl Schritte erfolglose Suche, Belegungsgrad α .

Universelles Hashing

- $|\mathcal{K}| > m \Rightarrow$ Menge "ähnlicher Schlüssel" kann immer so gewählt sein, so dass überdurchschnittlich viele Kollisionen entstehen.
- Unmöglich, einzelne für alle Fälle "beste" Hashfunktion auszuwählen.
- Jedoch möglich²⁶: randomisieren!

Universelle Hashklasse $\mathcal{H} \subseteq \{h : \mathcal{K} \to \{0, 1, \dots, m-1\}\}$ ist eine Familie von Hashfunktionen, so dass

$$\forall k_1 \neq k_2 \in \mathcal{K} \text{ gilt } |\{h \in \mathcal{H} \text{ mit } h(k_1) = h(k_2)\}| \leq \frac{|\mathcal{H}|}{m}.$$

Universelles Hashing

Theorem

Eine aus einer universellen Klasse $\mathcal H$ von Hashfunktionen zufällig gewählte Funktion $h \in \mathcal H$ verteilt im Erwartungswert eine beliebige Folge von Schlüsseln aus $\mathcal K$ so gleichmässig wie nur möglich auf die verfügbaren Plätze.

Beim Hashing mit Verketten ist die erwartete Kettenlänge für ein nicht enthaltenes Element $\leq \alpha = n/m$. Die erwartete Kettenlänge für ein enthaltenes Element ist $\leq 1 + \alpha$.

Universelles Hashing

Vorbemerkung zum Beweis des Theorems.

Definiere mit $x, y \in \mathcal{K}, h \in \mathcal{H}, Y \subseteq \mathcal{K}$:

$$\begin{split} \delta(h,x,y) &= \begin{cases} 1, & \text{falls } h(x) = h(y) \\ 0, & \text{sonst}, \end{cases} & \text{ist } h(x) = h(y) \text{ (0 oder 1)?} \\ \delta(h,x,Y) &= \sum_{y \in Y} \delta(x,y,h), & \text{für viele } y \in Y \text{ ist } h(x) = h(y)? \\ \delta(\mathcal{H},x,y) &= \sum_{h \in \mathcal{H}} \delta(x,y,h) & \text{für wie viele } h \in \mathcal{H} \text{ ist } h(x) = h(y)?. \end{split}$$

 \mathcal{H} ist universell, wenn für alle $x, y \in \mathcal{K}, x \neq y : \delta(\mathcal{H}, x, y) \leq |\mathcal{H}|/m$.

Universelles Hashing

Beweis des Theorems

 $S \subseteq \mathcal{K}$: bereits gespeicherte Schlüssel. x wird hinzugefügt: $(x \notin S)$

Erwartete Anzahl Kollisionen von x mit S

$$\mathbb{E}_{\mathcal{H}}(\delta(h, x, S)) = \sum_{h \in \mathcal{H}} \delta(h, x, S) / |\mathcal{H}|$$

$$= \frac{1}{|\mathcal{H}|} \sum_{h \in \mathcal{H}} \sum_{y \in S} \delta(h, x, y) = \frac{1}{|\mathcal{H}|} \sum_{y \in S} \sum_{h \in \mathcal{H}} \delta(h, x, y)$$

$$= \frac{1}{|\mathcal{H}|} \sum_{y \in S} \delta(\mathcal{H}, x, y)$$

$$\leq \frac{1}{|\mathcal{H}|} \sum_{y \in S} \frac{|\mathcal{H}|}{m} = \frac{|S|}{m} = \alpha.$$

41

41

²⁶Ähnlich wie beim Quicksort

Universelles Hashing

 $S \subseteq \mathcal{K}$: bereits gespeicherte Schlüssel, nun $x \in S$.

Erwartete Anzahl Kollisionen von x mit S

$$\begin{split} \mathbb{E}_{\mathcal{H}}(\delta(x,S,h)) &= \sum_{h \in \mathcal{H}} \delta(x,S,h)/|\mathcal{H}| \\ &= \frac{1}{|\mathcal{H}|} \sum_{h \in \mathcal{H}} \sum_{y \in S} \delta(h,x,y) = \frac{1}{|\mathcal{H}|} \sum_{y \in S} \sum_{h \in \mathcal{H}} \delta(h,x,y) \\ &= \frac{1}{|\mathcal{H}|} \left(\delta(\mathcal{H},x,x) + \sum_{y \in S - \{x\}} \delta(\mathcal{H},x,y) \right) \\ &\leq \frac{1}{|\mathcal{H}|} \left(|\mathcal{H}| + \sum_{y \in S - \{x\}} |\mathcal{H}|/m \right) = 1 + \frac{|S| - 1}{m} = 1 + \frac{n - 1}{m} \leq 1 + \alpha. \end{split}$$

Konstruktion Universelle Hashklasse

Sei Schlüsselmenge $\mathcal{K}=\{0,\ldots,u-1\}$ und $p\geq u$ Primzahl.. Mit $a\in\mathcal{K}\setminus\{0\},\,b\in\mathcal{K}$ definiere

$$h_{ab}: \mathcal{K} \to \{0, \dots, m-1\}, h_{ab}(x) = ((ax+b) \bmod p) \bmod m.$$

Dann gilt

Theorem

Die Klasse $\mathcal{H} = \{h_{ab} | a, b \in \mathcal{K}, a \neq 0\}$ ist eine universelle Klasse von Hashfunktionen.

(Hier ohne Beweis. Siehe z.B. Cormen et al, Kap. 11.3.3)

Perfektes Hashing

Ist im Vorhinein die Menge der verwendeten Schlüssel bekannt? Dann kann die Hashfunktion perfekt, also kollisionsfrei, gewählt werden.

Beispiel: Tabelle der Schlüsselwörter in einem Compiler.

Beobachtung (Geburtstagsparadoxon umgekehrt)

- \blacksquare h zufällig gewählt aus universeller Hashfamilie \mathcal{H} .
- \blacksquare n Schlüssel $S \subset \mathcal{K}$
- lacksquare Zufallsvariable X: Anzahl Kollisionen der n Schlüssel aus S

 \Rightarrow

$$\mathbb{E}(X) = \mathbb{E}\left(\sum_{i \neq j} \mathbb{1}(h(k_i) = h(k_j))\right) = \sum_{i \neq j} \mathbb{E}\left(\mathbb{1}(h(k_i) = h(k_j))\right)$$

$$\stackrel{*}{=} \binom{n}{2} \frac{1}{m} \leq \frac{n^2}{2m}$$

421

...

^{* #} Ungeordnete Paare $\sum_{i \neq j} 1 = \sum_{i=0}^{n-1} \sum_{j=i+1}^{n-1} 1 = \sum_{i=0}^{n-1} (n-1-i) = n(n-1) - n(n-1)/2 = n(n-1)/2$

Perfektes Hashing mit $\Theta(n^2)$ Speicherbedarf

Wenn
$$m = n^2 \Rightarrow \mathbb{E}(X) \leq \frac{1}{2}$$
.

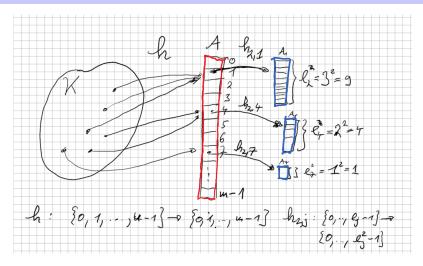
Markov-Ungleichung²⁷ $\mathbb{P}(X \ge 1) \le \frac{\mathbb{E}(X)}{1} \le \frac{1}{2}$

Also

$$\mathbb{E}(X < 1) = \mathbb{E}(\mathsf{keine\ Kollision}) \geq \frac{1}{2}.$$

Folgerung: in erwartet $2 \cdot n$ Schritten kann man zu n Schlüsseln eine kollisionsfreie Hashtabelle der Grösse $m=n^2$ durch zufällige Wahl aus einer universellen Hashfamilie konstruieren.

Perfect Hashing Idee



Perfektes Hashing mit $\Theta(n)$ Speicherbedarf

2-Stufiges Verfahren

Wähle m=n und $h:\{0,1,\ldots,u-1\}\to\{0,1,\ldots,m-1\}$ aus einer universellen Hashfamilie. Füge alle n Schlüssel in die Hashtabelle mit Verketten ein. Sei l_i die Länge der Kette am Index i.

Wenn $\sum_{i=0}^{m-1} l_i^2 > 4n$, dann wiederhole diesen Schritt 1.

Für jeden Index $i=1,\ldots,m-1$ mit $l_i>0$ erzeuge so lange Hashtabellen für die enthaltenen l_i Schlüssel der Länge l_i^2 mit universellem Hashing (Hashfunktion $h_{2,i}$), bis keine Kollisionen auftreten.

Speicherbedarf $\Theta(n)$.

Erwartete Laufzeiten

■ Für Schritt 1: Hashtabelle der Grösse m=n. Wir zeigen auf der nächsten Seite, dass $\mathbb{E}\left(\sum_{j=0}^{m-1} l_j^2\right) \leq 2n$.

Dann folgt (Markov): $\mathbb{P}\left(\sum_{j=0}^{m-1} l_j^2 \ge 4n\right) \le \frac{2n}{4n} = \frac{1}{2}$.

- ⇒ Erwartete zwei Wiederholungen vom Schritt 1.
- Für Schritt 2: $\sum l_i^2 \le 4n$. Für jedes i erwartet zwei Versuche mit Laufzeit l_i^2 . Insgesamt $\mathcal{O}(n)$
- \Rightarrow Die perfekte Hashtabelle kann in erwartet $\mathcal{O}(n)$ Schritten erstellt werden.

²⁷Appendix

Erwarteter Speicherverbrauch Hashtabellen 2.Stufe

$$\mathbb{E}\left(\sum_{j=0}^{m-1} l_j^2\right) = \mathbb{E}\left(\sum_{j=0}^{m-1} \sum_{i=0}^{n-1} \sum_{i'=0}^{n-1} \mathbb{1}(h(k_i) = h(k_{i'}) = j)\right)$$

$$= \mathbb{E}\left(\sum_{i=0}^{n-1} \sum_{i'=0}^{n-1} \mathbb{1}(h(k_i) = h(k_{i'}))\right)$$

$$= \mathbb{E}\left(\sum_{i=i'} \mathbb{1}(h(k_i) = h(k_{i'})) + 2 \cdot \sum_{i \neq i'} \mathbb{1}(h(k_i) = h(k_{i'}))\right)$$

$$= n + 2 \cdot \sum_{i \neq i'} \mathbb{E}\left(\mathbb{1}(h(k_i) = h(k_{i'}))\right)$$

$$= n + 2\binom{n}{2} \frac{1}{m} \stackrel{m=n}{=} 2n - 1 \le 2n.$$

14.9 Anhang

Mathematische Formeln

[Geburtstagsparadoxon]

Annahme: m Urnen, n Kugeln (oBdA $n \le m$). n Kugeln werden gleichverteilt in Urnen gelegt.

Wie gross ist die Kollisionswahrscheinlichkeit?

Geburtstagsparadoxon: Bei wie vielen Personen (n) ist die Wahrscheinlichkeit, dass zwei am selben Tag (m=365) Geburtstag haben grösser als 50%?

[Geburtstagsparadoxon]

 $\mathbb{P}(\text{keine Kollision}) = \frac{m}{m} \cdot \frac{m-1}{m} \cdot \dots \cdot \frac{m-n+1}{m} = \frac{m!}{(m-n)! \cdot m^m}.$

Sei $a \ll m$. Mit $e^x = 1 + x + \frac{x^2}{2!} + \ldots$ approximiere $1 - \frac{a}{m} \approx e^{-\frac{a}{m}}$. Damit:

$$1 \cdot \left(1 - \frac{1}{m}\right) \cdot \left(1 - \frac{2}{m}\right) \cdot \dots \cdot \left(1 - \frac{n-1}{m}\right) \approx e^{-\frac{1 + \dots + n - 1}{m}} = e^{-\frac{n(n-1)}{2m}}.$$

Es ergibt sich

$$\mathbb{P}(\mathsf{Kollision}) = 1 - e^{-\frac{n(n-1)}{2m}}.$$

Auflösung zum Geburtstagsparadoxon: Bei 23 Leuten ist die Wahrscheinlichkeit für Geburstagskollision 50.7%. Zahl stammt von der leicht besseren Approximation via Stirling Formel. $n! \approx \sqrt{2\pi n} \cdot n^n \cdot e^{-n}$

[Erwartungswertformel]

 $X \geq 0$ diskrete Zufallsvariable mit $\mathbb{E}(X) < \infty$

$$\begin{split} \mathbb{E}(X) &\stackrel{(def)}{=} \sum_{x=0}^{\infty} x \mathbb{P}(X=x) \\ &\stackrel{\text{Aufzählen}}{=} \sum_{x=1}^{\infty} \sum_{y=x}^{\infty} \mathbb{P}(X=y) \\ &= \sum_{x=0}^{\infty} \mathbb{P}(X \geq x) \end{split}$$

[Markov Ungleichung]

diskrete Version

$$\mathbb{E}(X) = \sum_{x=-\infty}^{\infty} x \mathbb{P}(X = x)$$

$$\geq \sum_{x=a}^{\infty} x \mathbb{P}(X = x)$$

$$\geq a \sum_{x=a}^{\infty} \mathbb{P}(X = x)$$

$$= a \cdot \mathbb{P}(X \geq a)$$

 \Rightarrow

431

$$\mathbb{P}(X \ge a) \le \frac{\mathbb{E}(X)}{a}$$

Was lernen wir heute?

15. C++ vertieft (III): Funktoren und Lambda

- Funktoren: Objekte mit überladenem Funktionsoperator ().
- Closures
- Lambda-Ausdrücke: Syntaktischer Zucker
- Captures
- Variablen vom Funktionstyp

Funktoren: Motivierung

Funktoren: Motivierung

Ein simpler Ausgabefilter

```
template <typename T, typename Function>
void filter(const T& collection, Function f){
   for (const auto& x: collection)
      if (f(x)) std::cout << x << " ";
   std::cout << "\n";
}</pre>
```

(filter funktioniert wenn das erste Argument einen Iterator anbietet und das zweite auf Elemente angewendet werden kann und das Resultat zu bool konvertiertbar ist.)

```
template <typename T, typename Function>
void filter(const T& collection, Function f);

template <typename T>
bool even(T x){
   return x % 2 == 0;
}

std::vector<int> a {1,2,3,4,5,6,7,9,11,16,19};
filter(a,even<int>); // output: 2,4,6,16
```

435

Funktor: Objekt mit überladenem Operator ()

```
class GreaterThan{
  int value; // state
  public:
  GreaterThan(int x):value{x}{}

  bool operator() (int par) const {
    return par > value;
  }
};
```

Ein Funktor ist ein aufrufbares Objekt. Kann verstanden werden als Funktion mit Zustand.

```
std::vector<int> a {1,2,3,4,5,6,7,9,11,16,19};
int value=8;
filter(a,GreaterThan(value)); // 9,11,16,19
```

Funktor: Objekt mit überladenem Operator ()

```
template <typename T>
class GreaterThan{
    T value;
public:
    GreaterThan(T x):value{x}{}

    bool operator() (T par) const{
       return par > value;
    }
};
```

(geht natürlich auch mit Template)

```
std::vector<int> a {1,2,3,4,5,6,7,9,11,16,19};
int value=8;
filter(a,GreaterThan<int>(value)); // 9,11,16,19
```

Dasselbe mit Lambda-Expression

Summe aller Elemente - klassisch

```
std::vector<int> a {1,2,3,4,5,6,7,9,11,16,19};
int value=8;
filter(a, [value](int x) {return x > value;});
```

```
std::vector<int> a {1,2,3,4,5,6,7,9,11,16,19};
int sum = 0;
for (auto x: a)
   sum += x;
std::cout << sum << std::endl; // 83</pre>
```

439

Summe aller Elemente - mit Funktor

```
template <typename T>
struct Sum{
    T value = 0;

    void operator() (T par){ value += par; }
};

std::vector<int> a {1,2,3,4,5,6,7,9,11,16,19};
Sum<int> sum;
// for_each copies sum: we need to copy the result back
sum = std::for_each(a.begin(), a.end(), sum);
std::cout << sum.value << std::endl; // 83</pre>
```

Summe aller Elemente - mit Referenzen²⁸

```
template <typename T>
struct SumR{
   T& value;
   SumR (T& v):value{v} {}

   void operator() (T par){ value += par; }
};

std::vector<int> a {1,2,3,4,5,6,7,9,11,16,19};
int s=0;
SumR<int> sum{s};
// cannot (and do not need to) assign to sum here
std::for_each(a.begin(), a.end(), sum);
std::cout << s << std::endl; // 83</pre>
```

²⁸Geht natürlich sehr ähnlich auch mit Zeigern

Summe aller Elemente - mit \wedge

```
std::vector<int> a {1,2,3,4,5,6,7,9,11,16,19};
int s=0;
std::for_each(a.begin(), a.end(), [&s] (int x) {s += x;} );
std::cout << s << std::endl;</pre>
```

Sortieren, mal anders

```
// pre: i >= 0
// post: returns sum of digits of i
int q(int i){
   int res =0;
   for(;i>0;i/=10)
       res += i % 10;
   return res;
}

std::vector<int> v {10,12,9,7,28,22,14};
std::sort (v.begin(), v.end(),
   [] (int i, int j) { return q(i) < q(j);}
);

Jetzt v =10,12,22,14,7,9,28 (sortiert nach Quersumme)</pre>
```

Lambda-Expressions im Detail

Closure

```
[value] (int x) ->bool {return x > value;}
```

- Lambda-Expressions evaluieren zu einem temporären Objekt einer closure
- Die closure erhält den Ausführungskontext der Funktion, also die captured Objekte.
- Lambda-Expressions können als Funktoren implementiert werden.

Simple Lambda-Expression

```
[]()->void {std::cout << "Hello World";}
Aufruf:
[]()->void {std::cout << "Hello World";}();
Zuweisung:
auto f = []()->void {std::cout << "Hello World";};</pre>
```

Minimale Lambda-Expression

[]{}

■ Rückgabetyp kann inferiert werden, wenn kein oder nur ein return:²⁹

```
[]() {std::cout << "Hello World";}</pre>
```

■ Keine Parameter und kein expliziter Rückgabetyp ⇒ () kann weggelassen werden

```
[]{std::cout << "Hello World";}</pre>
```

■ [...] kann nie weggelassen werden.

Beispiele

```
[](int x, int y) {std::cout << x * y;} (4,5);
Output: 20
```

Beispiele

447

```
int k = 8;
auto f = [](int& v) {v += v;};
f(k);
std::cout << k;
Output: 16</pre>
```

²⁹Seit C++14 auch mehrere returns, sofern derselbe Rückgabetyp deduziert wird

Beispiele

```
int k = 8;
auto f = [](int v) {v += v;};
f(k);
std::cout << k;
Output: 8</pre>
```

Capture – Lambdas

Für Lambda-Expressions bestimmt die capture-Liste über den zugreifbaren Teil des Kontextes

Syntax:

451

- [x]: Zugriff auf kopierten Wert von x (nur lesend)
- [&x]: Zugriff zur Referenz von x
- [&x,y]: Zugriff zur Referenz von x und zum kopierten Wert von y
- [&]: Default-Referenz-Zugriff auf alle Objekte im Kontext der Lambda-Expression
- [=]: Default-Werte-Zugriff auf alle Objekte im Kontext der Lambda-Expression

Capture – Lambdas

```
int elements=0;
int sum=0;
std::for_each(v.begin(), v.end(),
   [&] (int k) {sum += k; elements++;} // capture all by reference
)
```

Capture - Lambdas

```
template <typename T>
void sequence(vector<int> & v, T done){
  int i=0;
  while (!done()) v.push_back(i++);
}

vector<int> s;
sequence(s, [&] {return s.size() >= 5;} )

jetzt v = 0 1 2 3 4
```

Die capture liste bezieht sich auf den Kontext der Lambda Expression

Capture – Lambdas

Wann wird der Wert gelesen?

```
int v = 42;
auto func = [=] {std::cout << v << "\n"};
v = 7;
func();</pre>
```

Ausgabe: 42

Werte werden bei der Definition der (temporären) Lambda-Expression zugewiesen.

Capture – Lambdas

```
(Warum) funktioniert das?
```

```
class Limited{
  int limit = 10;
public:
  // count entries smaller than limit
  int count(const std::vector<int>& a){
    int c = 0;
    std::for_each(a.begin(), a.end(),
        [=,&c] (int x) {if (x < limit) c++;}
    );
    return c;
  }
};</pre>
```

Der this pointer wird per default implizit kopiert

Capture – Lambdas

```
struct mutant{
  int i = 0;
  void do(){ [=] {i=42;}();}
};

mutant m;
m.do();
std::cout << m.i;</pre>
```

Ausgabe: 42

Der this pointer wird per default implizit kopiert

Lambda Ausdrücke sind Funktoren

```
[x, &y] () {y = x;}
kann implementiert werden als
  unnamed {x,y};
mit
  class unnamed {
    int x; int& y;
    unnamed (int x_, int& y_) : x (x_), y (y_) {}
    void operator () () {y = x;}
};
```

Lambda Ausdrücke sind Funktoren

```
[=] () {return x + y;}
kann implementiert werden als
  unnamed {x,y};
mit
  class unnamed {
   int x; int y;
   unnamed (int x_, int y_) : x (x_), y (y_) {}
   int operator () () const {return x + y;}
};
```

Polymorphic Function Wrapper std::function

```
#include <functional>
int k= 8;
std::function<int(int)> f;
f = [k](int i){ return i+k; };
std::cout << f(8); // 16

Kann verwendet werden, um Lambda-Expressions zu speichern.
Andere Beispiele
std::function<int(int,int)>;
std::function<void(double)> ...

http://en.cppreference.com/w/cpp/utility/functional/function
```

Beispiel

```
template <typename T>
auto toFunction(std::vector<T> v){
  return [v] (T x) -> double {
    int index = (int)(x+0.5);
    if (index < 0) index = 0;
    if (index >= v.size()) index = v.size()-1;
    return v[index];
  };
}
```

Beispiel

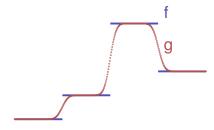
459

```
auto Gaussian(double mu, double sigma){
    return [mu,sigma](double x) {
        const double a = ( x - mu ) / sigma;
        return std::exp( -0.5 * a * a );
    };
}

template <typename F, typename Kernel>
auto smooth(F f, Kernel kernel){
    return [kernel,f] (auto x) {
        // compute convolution ...
        // and return result
    };
}
```

Beispiel

```
std::vector<double> v {1,2,5,3};
auto f = toFunction(v);
auto k = Gaussian(0,0.1);
auto g = smooth(f,k);
```



16. Natürliche Suchbäume

[Ottman/Widmayer, Kap. 5.1, Cormen et al, Kap. 12.1 - 12.3]

Zusammenfassung

- Funktoren erlauben die funktionale Programmierung mit C++. Lambdas sind syntaktischer Zucker, der das deutlich vereinfacht
- Mit Funktoren/Lambdas sind klassische Muster aus der funktionalen Programmierung (z.B. map / filter / reduce) auch in C++ möglich.
- In Kombination mit Templates und Typinferenz (auto) können sehr mächtige Funktionen in Variablen gespeichert werden, Funktionen können sogar Funktionen zurückgeben (sog. Funktionen höherer Ordnung).

463

Wörterbuchimplementationen

Hashing: Implementierung von Wörterbüchern mit erwartet sehr schnellen Zugriffszeiten.

Nachteile von Hashing: im schlechtesten Fall lineare Zugriffszeit. Manche Operationen gar nicht unterstützt:

- Aufzählen von Schlüssel in aufsteigender Anordnung
- Nächst kleinerer Schlüssel zu gegebenem Schlüssel
- Schlüssel k in vorgegebenem Intervall $k \in [l, r]$

Bäume

Bäume sind

- Verallgemeinerte Listen: Knoten k\u00f6nnen mehrere Nachfolger haben
- Spezielle Graphen: Graphen bestehen aus Knoten und Kanten. Ein Baum ist ein zusammenhängender, gerichteter, azyklischer Graph.

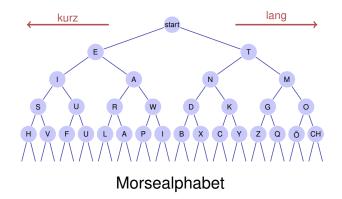
Bäume

Verwendung

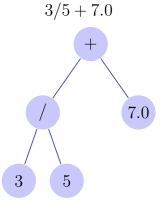
- Entscheidungsbäume: Hierarchische Darstellung von Entscheidungsregeln
- Syntaxbäume: Parsen und Traversieren von Ausdrücken, z.B. in einem Compiler
- Codebäume: Darstellung eines Codes, z.B. Morsealphabet, Huffmann Code
- Suchbäume: ermöglichen effizientes Suchen eines Elementes

.

Beispiele

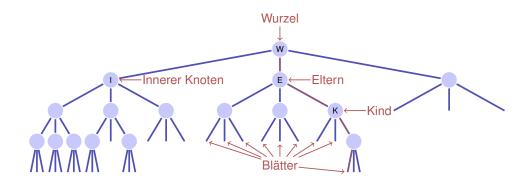


Beispiele



Ausdrucksbaum

Nomenklatur



- Ordnung des Baumes: Maximale Anzahl Kindknoten, hier: 3
- Höhe des Baumes: maximale Pfadlänge Wurzel Blatt (hier: 4)

Binäre Bäume

Ein binärer Baum ist

- entweder ein Blatt, d.h. ein leerer Baum,
- oder ein innerer Knoten mit zwei Bäumen T_l (linker Teilbaum) und T_r (rechter Teilbaum) als linken und rechten Nachfolger.

In jedem inneren Knoten v wird gespeichert

key			
left	right		

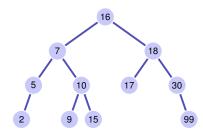
- ein Schlüssel v.key und
- zwei Zeiger v.left und v.right auf die Wurzeln der linken und rechten Teilbäume.

Ein Blatt wird durch den null-Zeiger repräsentiert

Binärer Suchbaum

Ein binärer Suchbaum ist ein binärer Baum, der die *Suchbaumeigenschaft* erfüllt:

- Jeder Knoten v speichert einen Schlüssel
- Schlüssel im linken Teilbaum v.left kleiner als v.key
- Schlüssel im rechten Teilbaum v.right grösser als v.key



Suchen

471

```
Input: Binärer Suchbaum mit Wurzel r, Schlüssel k
Output: Knoten v mit v.\ker = k oder null v \leftarrow r
while v \neq null do

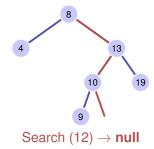
if k = v.\ker  then

return v
else if k < v.\ker  then

v \leftarrow v.\ker  then

v \leftarrow v.\ker
```

return null



Höhe eines Baumes

Einfügen eines Schlüssels

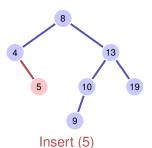
Die Höhe h(T) eines binären Baumes T mit Wurzel r ist gegeben als

$$h(r) = \begin{cases} 0 & \text{falls } r = \textbf{null} \\ 1 + \max\{h(r.\text{left}), h(r.\text{right})\} & \text{sonst.} \end{cases}$$

Die Laufzeit der Suche ist somit im schlechtesten Fall $\mathcal{O}(h(T))$

Einfügen des Schlüssels k

- Suche nach k.
- Wenn erfolgreich: Fehlerausgabe
- Wenn erfolglos: Einfügen des Schlüssels am erreichten Blatt.



475

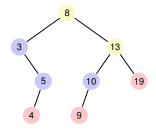
47

Knoten entfernen

Drei Fälle möglich

- Knoten hat keine Kinder
- Knoten hat ein Kind
- Knoten hat zwei Kinder

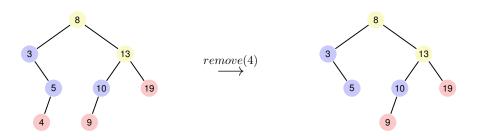
[Blätter zählen hier nicht]



Knoten entfernen

Knoten hat keine Kinder

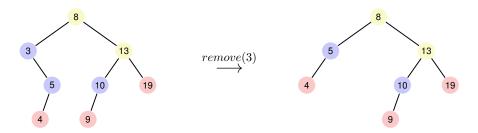
Einfacher Fall: Knoten durch Blatt ersetzen.



Knoten entfernen

Knoten hat ein Kind

Auch einfach: Knoten durch das einzige Kind ersetzen.



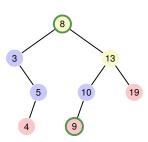
Knoten entfernen

Knoten v hat zwei Kinder

Beobachtung: Der kleinste Schlüssel im rechten Teilbaum v.right (der *symmetrische Nachfolger* von v)

- ist kleiner als alle Schlüssel in v.right
- ist grösser als alle Schlüssel in v.left
- und hat kein linkes Kind.

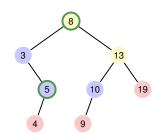
Lösung: ersetze v durch seinen symmetrischen Nachfolger



Aus Symmetriegründen...

Knoten v hat zwei Kinder

Auch möglich: ersetze v durch seinen symmetrischen Vorgänger



Algorithmus SymmetricSuccessor(v)

Input: Knoten v eines binären Suchbaumes **Output:** Symmetrischer Nachfolger von v

 $w \leftarrow v.\text{right}$ $x \leftarrow w.\text{left}$

479

while $x \neq \text{null do}$

 $w \leftarrow x \\ x \leftarrow x.\text{left}$

return w

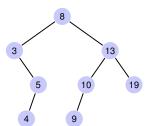
Analyse

Löschen eines Elementes v aus einem Baum T benötigt $\mathcal{O}(h(T))$ Elementarschritte:

- Suchen von v hat Kosten $\mathcal{O}(h(T))$
- Hat v maximal ein Kind ungleich **null**, dann benötigt das Entfernen $\mathcal{O}(1)$
- Das Suchen des symmetrischen Nachfolgers n benötigt $\mathcal{O}(h(T))$ Schritte. Entfernen und Einfügen von n hat Kosten $\mathcal{O}(1)$

Traversierungsarten

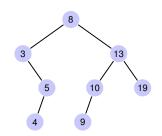
- Hauptreihenfolge (preorder): v, dann $T_{\rm left}(v)$, dann $T_{\rm right}(v)$. 8, 3, 5, 4, 13, 10, 9, 19
- Nebenreihenfolge (postorder): $T_{\text{left}}(v)$, dann $T_{\text{right}}(v)$, dann v.
 4, 5, 3, 9, 10, 19, 13, 8
- Symmetrische Reihenfolge (inorder): $T_{\rm left}(v)$, dann v, dann $T_{\rm right}(v)$. 3, 4, 5, 8, 9, 10, 13, 19



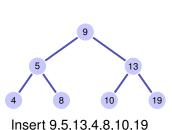
83

Weitere unterstützte Operationen

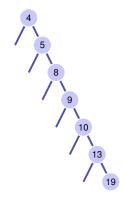
- Min(T): Auslesen des Minimums in $\mathcal{O}(h)$
- ExtractMin(T): Auslesen und Entfernen des Minimums in $\mathcal{O}(h)$
- List(T): Ausgeben einer sortierten Liste der Elemente von T
- Join(T_1, T_2): Zusammenfügen zweier Bäume mit $\max(T_1) < \min(T_2)$ in $\mathcal{O}(n)$.



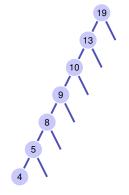
Degenerierte Suchbäume



bestmöglich balanciert



Insert 4,5,8,9,10,13,19 Lineare Liste



Insert 19,13,10,9,8,5,4 Lineare Liste

Probabilistisch

Ein Suchbaum, welcher aus einer zufälligen Sequenz von Zahlen erstellt wird hat erwartete Pfadlänge von $\mathcal{O}(\log n)$.

Achtung: das gilt nur für Einfügeoperation. Wird der Baum zufällig durch Einfügen und Entfernen gebildet, ist die erwartete Pfadlänge $\mathcal{O}(\sqrt{n})$.

Balancierte Bäume stellen beim Einfügen und Entfernen (z.B. durch Rotationen) sicher, dass der Baum balanciert bleibt und liefern eine $\mathcal{O}(\log n)$ Worst-Case-Garantie.

17. AVL Bäume

Balancierte Bäume [Ottman/Widmayer, Kap. 5.2-5.2.1, Cormen et al, Kap. Problem 13-3]

487

Ziel

Suchen, Einfügen und Entfernen eines Schlüssels in Baum mit n Schlüsseln, welche in zufälliger Reihenfolge eingefügt wurden im Mittel in $\mathcal{O}(\log_2 n)$ Schritten.

Schlechtester Fall jedoch: $\Theta(n)$ (degenerierter Baum).

Ziel: Verhinderung der Degenerierung. Künstliches, bei jeder Update-Operation erfolgtes Balancieren eines Baumes

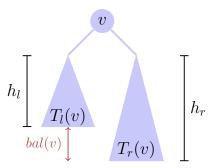
Balancierung: garantiere, dass ein Baum mit n Knoten stets eine Höhe von $\mathcal{O}(\log n)$ hat.

Adelson-Venskii und Landis (1962): AVL-Bäume

Balance eines Knotens

Die *Balance* eines Knotens v ist definiert als die Höhendifferenz seiner beiden Teilbäume $T_l(v)$ und $T_r(v)$

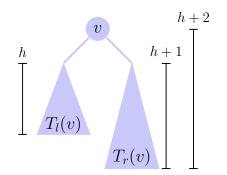
$$bal(v) := h(T_r(v)) - h(T_l(v))$$

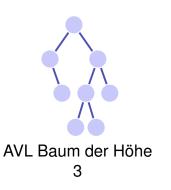


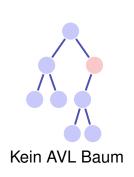
AVL Bedingung

(Gegen-)Beispiele

AVL Bedingung: für jeden Knoten v eines Baumes gilt $\mathrm{bal}(v) \in \{-1,0,1\}$







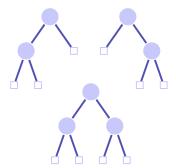
91

Anzahl Blätter

- 1. Beobachtung: Ein Suchbaum mit n Schlüsseln hat genau n+1 Blätter. Einfaches Induktionsargument.
 - Der Suchbaum mit n = 0 Schlüsseln hat m = 1 Blätter
 - Wird ein Schlüssel (Knoten) hinzugefügt ($n \rightarrow n+1$), so ersetzt er ein Blatt und fügt zwei Blätter hinzu ($m \rightarrow m-1+2=m+1$).
- 2. Beobachtung: untere Grenze für Anzahl Blätter eines Suchbaums zu gegebener Höhe erlaubt Abschätzung der maximalen Höhe eines Suchbaums zu gegebener Anzahl Schlüssel.

Untere Grenze Blätter

AVL Baum der Höhe 1 hat N(1):=2 Blätter

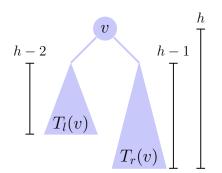


AVL Baum der Höhe 2 hat mindestens N(2):=3 Blätter

Untere Grenze Blätter für h>2

- Höhe eines Teilbaums > h 1.
- Höhe des anderen Teilbaums > h 2. Minimale Anzahl Blätter N(h) ist

$$N(h) = N(h-1) + N(h-2)$$



Insgesamt gilt $N(h) = F_{h+2}$ mit Fibonacci-Zahlen $F_0 := 0$, $F_1 := 1$, $F_n := F_{n-1} + F_{n-2}$ für n > 1.

Fibonacci Zahlen, geschlossene Form

Es gilt³⁰

$$F_i = \frac{1}{\sqrt{5}} (\phi^i - \hat{\phi}^i)$$

mit den Wurzeln ϕ , $\hat{\phi}$ der Gleichung vom goldenen Schnitt $x^2 - x - 1 = 0$:

$$\phi = \frac{1 + \sqrt{5}}{2} \approx 1.618$$

$$\hat{\phi} = \frac{1 - \sqrt{5}}{2} \approx -0.618$$

³⁰Herleitung mit Erzeugendenfunktionen (Potenzreihen) im Anhang

Fibonacci Zahlen, Induktiver Beweis

$$F_i \stackrel{!}{=} \frac{1}{\sqrt{5}} (\phi^i - \hat{\phi}^i)$$
 [*]

$$\left(\phi = \frac{1+\sqrt{5}}{2}, \hat{\phi} = \frac{1-\sqrt{5}}{2}\right).$$

- **II** Klar für i = 0, i = 1.
- Sei i > 2 und Behauptung [*] wahr für alle F_i , j < i.

$$F_i \stackrel{def}{=} F_{i-1} + F_{i-2} \stackrel{[*]}{=} \frac{1}{\sqrt{5}} (\phi^{i-1} - \hat{\phi}^{i-1}) + \frac{1}{\sqrt{5}} (\phi^{i-2} - \hat{\phi}^{i-2})$$

$$= \frac{1}{\sqrt{5}} (\phi^{i-1} + \phi^{i-2}) - \frac{1}{\sqrt{5}} (\hat{\phi}^{i-1} + \hat{\phi}^{i-2}) = \frac{1}{\sqrt{5}} \phi^{i-2} (\phi + 1) - \frac{1}{\sqrt{5}} \hat{\phi}^{i-2} (\hat{\phi} + 1)$$

$$(\phi, \hat{\phi} \text{ erfüllen } x+1=x^2)$$

$$= \frac{1}{\sqrt{5}}\phi^{i-2}(\phi^2) - \frac{1}{\sqrt{5}}\hat{\phi}^{i-2}(\hat{\phi}^2) = \frac{1}{\sqrt{5}}(\phi^i - \hat{\phi}^i).$$

Baumhöhe

Da $|\hat{\phi}| < 1$, gilt insgesamt

$$N(h) \in \Theta\left(\left(\frac{1+\sqrt{5}}{2}\right)^h\right) \subseteq \Omega(1.618^h)$$

und somit

$$N(h) \ge c \cdot 1.618^h$$

$$\Rightarrow h \le 1.44 \log_2 n + c'.$$

Ein AVL Baum ist asymptotisch nicht mehr als 44% höher als ein perfekt balancierter Baum.31

³¹Ein perfekt balancierter Baum hat Höhe $\lceil \log_2 n + 1 \rceil$

Einfügen

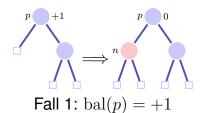
Balancieren

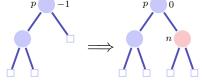
- Speichern der Balance für jeden Knoten
- Baum rebalancieren bei jeder Update-Operation

Neuer Knoten *n* wird eingefügt:

- Zuerst einfügen wie bei Suchbaum.
- Prüfe die Balance-Bedingung für alle Knoten aufsteigend von *n* zur Wurzel.

Balance am Einfügeort





Fall 2: bal(p) = -1

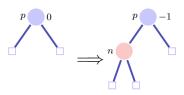
Fertig in beiden Fällen, denn der Teilbaum ist nicht gewachsen.

499

Balance am Einfügeort

$\begin{array}{c} p & 0 \\ & \\ & \\ \end{array}$

Fall 3.1: bal(p) = 0 rechts



Fall 3.2: bal(p) = 0, links

Fall 3.2. $\operatorname{pal}(p) = 0$, in

upin(p) - Invariante

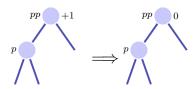
Beim Aufruf von upin(p) gilt, dass

- der Teilbaum ab p gewachsen ist und
- $bal(p) \in \{-1, +1\}$

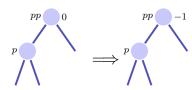
In beiden Fällen noch nicht fertig. Aufruf von upin(p).

upin(p)

Annahme: p ist linker Sohn von pp^{32}



Fall 1: bal(pp) = +1, fertig.



Fall 2: bal(pp) = 0, upin(pp)

In beiden Fällen gilt nach der Operation die AVL-Bedingung für den Teilbaum ab pp

upin(p)

Annahme: p ist linker Sohn von pp

Fall 3: bal(pp) = -1,

Dieser Fall ist problematisch: das Hinzufügen von n im Teilbaum ab pp hat die AVL-Bedingung verletzt. Rebalancieren!

Zwei Fälle bal(p) = -1, bal(p) = +1

503

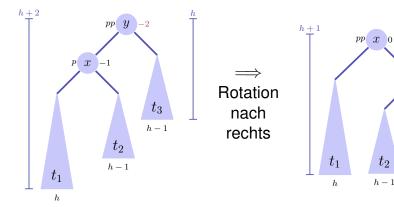
505

h+1

p y 0

Rotationen

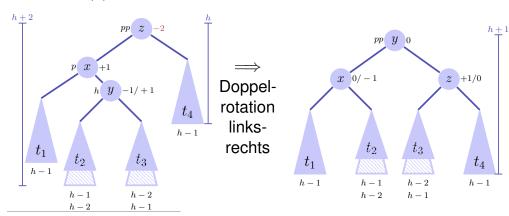
Fall 1.1 bal(p) = -1. ³³



 $^{^{33}}p$ rechter Sohn $\Rightarrow \mathrm{bal}(pp) = \mathrm{bal}(p) = +1$, Linksrotation

Rotationen

Fall 1.2 bal(p) = +1. ³⁴



 $^{^{34}}p$ rechter Sohn $\Rightarrow bal(pp) = +1$, bal(p) = -1, Doppelrotation rechts links

 $^{^{32}}$ Ist p rechter Sohn: symmetrische Fälle unter Vertauschung von +1 und -1

Analyse

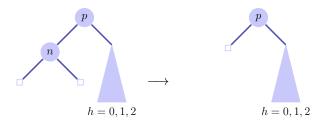
- Höhe des Baumes: $\mathcal{O}(\log n)$.
- Einfügen wie beim binären Suchbaum.
- Balancieren durch Rekursion vom Knoten zur Wurzel. Maximale Pfadlänge $\mathcal{O}(\log n)$.

Das Einfügen im AVL-Baum hat Laufzeitkosten von $\mathcal{O}(\log n)$.

Löschen

Fall 1: Knoten n hat zwei Blätter als Kinder Sei p Elternknoten von n.

- \Rightarrow Anderer Teilbaum hat Höhe h'=0, 1 oder 2
- h' = 1: bal(p) anpassen.
- h' = 0: bal(p) anpassen. Aufruf upout(p).
- h' = 2: Rebalancieren des Teilbaumes. Aufruf upout (p).



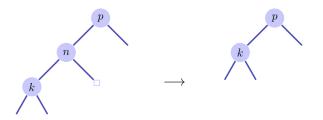
507

EO

Löschen

Fall 2: Knoten n hat einen inneren Knoten k als Kind

■ Ersetze n durch k. upout (k)



Löschen

Fall 3: Knoten *n* hat zwei inneren Knoten als Kinder

- Ersetze *n* durch symmetrischen Nachfolger. upout (k)
- Löschen des symmetrischen Nachfolgers wie in Fall 1 oder 2.

upout(p)

Sei pp der Elternknoten von p

(a) p linkes Kind von pp

 $bal(pp) = -1 \Rightarrow bal(pp) \leftarrow 0.$ upout (pp)

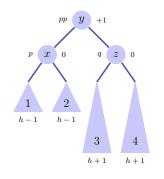
 $\operatorname{bal}(pp) = 0 \Rightarrow \operatorname{bal}(pp) \leftarrow +1.$

 $\operatorname{bal}(pp) = +1 \Rightarrow \operatorname{n\"{a}chste}$ Folien.

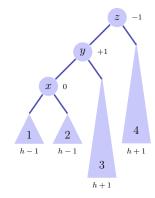
(b) p rechtes Kind von pp: Symmetrische Fälle unter Vertauschung von +1 und -1.

upout(p)

Fall (a).3: bal(pp) = +1. Sei q Bruder von p (a).3.1: bal(q) = 0.35



 \Longrightarrow Linksrotation (y)

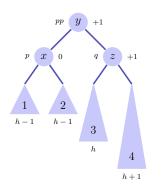


 35 (b).3.1: bal(pp) = -1, bal(q) = -1, Rechtsrotation.

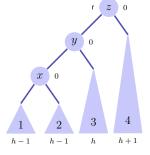
512

upout(p)

Fall (a).3: bal(pp) = +1. (a).3.2: bal(q) = +1.



 \Longrightarrow Linksrotation (y)



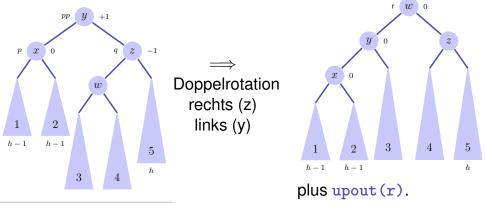
plus upout (r).

upout(p)

511

513

Fall (a).3: bal(pp) = +1. (a).3.3: bal(q) = -1.



 $^{^{37}}$ (b).3.3: bal(pp) = -1, bal(q) = -1, Links-Rechts-Rotation + upout

³⁶(b).3.2: $\operatorname{bal}(pp) = -1$, $\operatorname{bal}(q) = +1$, Rechtsrotation+upout

Zusammenfassung

- AVL-Bäume haben asymptotische Laufzeit von $\mathcal{O}(\log n)$ (schlechtester Fall) für das Suchen, Einfügen und Löschen von Schlüsseln
- Einfügen und Löschen ist verhältnismässig aufwändig und für kleine Probleme relativ langsam.

17.5 Anhang

Herleitung einiger mathematischen Formeln

515

[Fibonacci Zahlen: geschlossene Form]

Geschlossene Form der Fibonacci Zahlen: Berechnung über erzeugende Funktionen:

Potenzreihenansatz

$$f(x) := \sum_{i=0}^{\infty} F_i \cdot x^i$$

[Fibonacci Zahlen: geschlossene Form]

Für Fibonacci Zahlen gilt $F_0 = 0$, $F_1 = 1$, $F_i = F_{i-1} + F_{i-2} \ \forall \ i > 1$. Daher:

$$f(x) = x + \sum_{i=2}^{\infty} F_i \cdot x^i = x + \sum_{i=2}^{\infty} F_{i-1} \cdot x^i + \sum_{i=2}^{\infty} F_{i-2} \cdot x^i$$

$$= x + x \sum_{i=2}^{\infty} F_{i-1} \cdot x^{i-1} + x^2 \sum_{i=2}^{\infty} F_{i-2} \cdot x^{i-2}$$

$$= x + x \sum_{i=0}^{\infty} F_i \cdot x^i + x^2 \sum_{i=0}^{\infty} F_i \cdot x^i$$

$$= x + x \cdot f(x) + x^2 \cdot f(x).$$

[Fibonacci Zahlen: geschlossene Form]

3 Damit:

$$f(x) \cdot (1 - x - x^2) = x.$$

 $\Leftrightarrow f(x) = \frac{x}{1 - x - x^2} = -\frac{x}{x^2 + x - 1}$

Mit den Wurzeln $-\phi$ und $-\hat{\phi}$ von $x^2 + x - 1$

$$\phi = \frac{1+\sqrt{5}}{2} \approx 1.6, \qquad \hat{\phi} = \frac{1-\sqrt{5}}{2} \approx -0.6.$$

gilt $\phi \cdot \hat{\phi} = -1$ und somit

$$f(x) = -\frac{x}{(x+\phi)\cdot(x+\hat{\phi})} = \frac{x}{(1-\phi x)\cdot(1-\hat{\phi}x)}$$

[Fibonacci Zahlen: geschlossene Form]

Es gilt:

$$(1 - \hat{\phi}x) - (1 - \phi x) = \sqrt{5} \cdot x.$$

Damit:

$$f(x) = \frac{1}{\sqrt{5}} \frac{(1 - \hat{\phi}x) - (1 - \phi x)}{(1 - \phi x) \cdot (1 - \hat{\phi}x)}$$
$$= \frac{1}{\sqrt{5}} \left(\frac{1}{1 - \phi x} - \frac{1}{1 - \hat{\phi}x} \right)$$

[Fibonacci Zahlen: geschlossene Form]

5 Potenzreihenentwicklung von $g_a(x) = \frac{1}{1-a \cdot x}$ ($a \in \mathbb{R}$):

$$\frac{1}{1 - a \cdot x} = \sum_{i=0}^{\infty} a^i \cdot x^i.$$

Sieht man mit Taylor-Entwicklung von $g_a(x)$ um x=0 oder so: Sei $\sum_{i=0}^{\infty}G_i\cdot x^i$ eine Potenzreihenentwicklung von g. Mit der Identität $g_a(x)(1-a\cdot x)=1$ gilt für alle x (im Konvergenzradius)

$$1 = \sum_{i=0}^{\infty} G_i \cdot x^i - a \cdot \sum_{i=0}^{\infty} G_i \cdot x^{i+1} = G_0 + \sum_{i=1}^{\infty} (G_i - a \cdot G_{i-1}) \cdot x^i$$

Für x=0 folgt $G_0=1$ und für $x\neq 0$ folgt dann $G_i=a\cdot G_{i-1}\Rightarrow G_i=a^i$.

[Fibonacci Zahlen: geschlossene Form]

Einsetzen der Potenzreihenentwicklung:

$$f(x) = \frac{1}{\sqrt{5}} \left(\frac{1}{1 - \phi x} - \frac{1}{1 - \hat{\phi} x} \right) = \frac{1}{\sqrt{5}} \left(\sum_{i=0}^{\infty} \phi^i x^i - \sum_{i=0}^{\infty} \hat{\phi}^i x^i \right)$$
$$= \sum_{i=0}^{\infty} \frac{1}{\sqrt{5}} (\phi^i - \hat{\phi}^i) x^i$$

Koeffizientenvergleich mit $f(x) = \sum_{i=0}^{\infty} F_i \cdot x^i$ liefert

$$F_i = \frac{1}{\sqrt{5}} (\phi^i - \hat{\phi}^i).$$

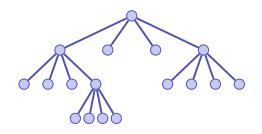
52

18. Quadtrees

Quadtrees, Kollisionsdetektion, Bildsegmentierung

Quadtree

Ein Quadtree ist ein Baum der Ordnung 4.

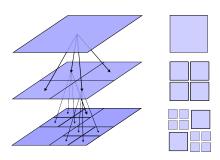


... und ist als solcher nicht besonders interessant, ausser man verwendet ihn zur...

523

Quadtree - Interpretation und Nutzen

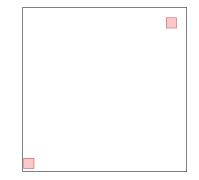
Partitionierung eines zweidimensionalen Bereiches in 4 gleich grosse Teile.



[Analog für drei Dimensionen mit einem Octtree (Baum der Ordnung 8)]

Beispiel 1: Erkennung von Kollisionen

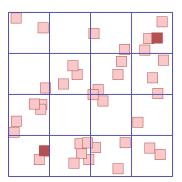
- Objekte in der 2D-Ebene, z.B. Teilchensimulation auf dem Bildschirm.
- Ziel: Erkennen von Kollisionen



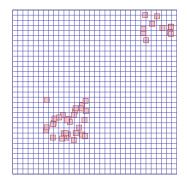
Idee

Gitter

- Viele Objekte: n² Vergleiche (naiv)
- Verbesserung?
- Offensichtlich: keine Kollisionsdetektion für weit entfernte Objekte nötig.
- Was ist "weit entfernt"?
- Gitter $(m \times m)$
- Kollisionsdetektion pro Gitterzelle



- Gitter hilft oft, aber nicht immer
- Verbesserung?
- Gitter verfeinern?
- Zu viele Gitterzellen!

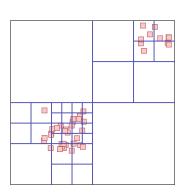


527

F

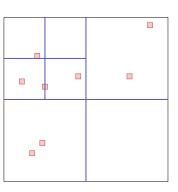
Adaptive Gitter

- Gitter hilft oft, aber nicht immer
- Verbesserung?
- Gitter adaptiv verfeinern!
- Quadtree!



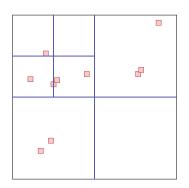
Algorithmus: Einfügen

- Quadtree startet mit einem einzigen Knoten
- Objekte werden zu dem Knoten hinzugefügt. Wenn in einem Knoten zu viele Objekte sind, wird der Knoten geteilt.
- Objekte, die beim Split auf dem Rand zu liegen kommen, werden im höher gelegenen Knoten belassen.

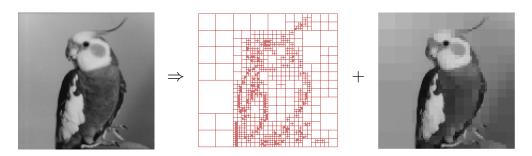


Algorithmus: Kollisionsdetektion

Durchlaufe den Quadtree rekursiv. Für jeden Knoten teste die Kollision der enthaltenen Objekte mit Objekten im selben Knoten oder (rekursiv) enthaltenen Knoten.

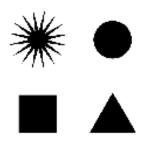


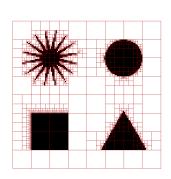
Beispiel 2: Bildsegmentierung



(Mögliche Anwendungen: Kompression, Entrauschen, Kantendetektion)

Quadtree auf Einfarbenbild

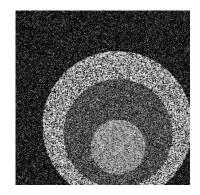


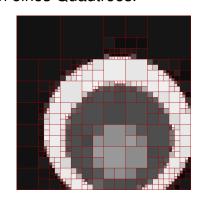


Erzeugung des Quadtree ähnlich wie oben: unterteile Knoten rekursiv bis jeder Knoten nur Pixel einer Farbe enthält.

Quadtree mit Approximation

Wenn mehr als zwei Farbewerte vorhanden sind, wird der Quadtree oft sehr gross. ⇒ Komprimierte Darstellung: *approximiere* das Bild stückweise konstant auf Rechtecken eines Quadtrees.





Stückweise konstante Approximation

(Graustufen-)Bild $z \in \mathbb{R}^S$ auf den Pixelindizes S. ³⁸

Rechteck $r \subset S$.

Ziel: bestimme

$$\arg\min_{x\in r}\sum_{s\in r}\left(z_{s}-x\right)^{2}$$

Lösung: das arithmetisches Mittel $\mu_r = \frac{1}{|r|} \sum_{s \in r} z_s$

Zwischenergebnis

Die im Sinne des mittleren quadratischen Fehlers beste Approximation

$$\mu_r = \frac{1}{|r|} \sum_{s \in r} z_s$$

und der dazugehörige Fehler

$$\sum_{s \in r} (z_s - \mu_r)^2 =: \|z_r - \mu_r\|_2^2$$

können nach einer $\mathcal{O}(|S|)$ Tabellierung schnell berechnet werden: Präfixsummen!

535

Welcher Quadtree?

Konflikt

- Möglichst nahe an den Daten ⇒ kleine Rechtecke, grosser Quadtree. Extremer Fall: ein Knoten pro Pixel. Approximation = Original
- Möglichst wenige Knoten ⇒ Grosse Rechtecke, kleiner Quadtree Extremfall: ein einziges Rechteck. Approximation = ein Grauwert

Welcher Quadtree?

ldee: wähle zwischen Datentreue und Komplexität durch Einführung eines Regularisierungsparameters $\gamma \geq 0$

Wähle Quadtree T mit Blättern 39 L(T) so, dass T folgenden Funktion minimiert

$$H_{\gamma}(T,z) := \gamma \cdot \underbrace{\lfloor L(T) \rfloor}_{\text{Anzahl Blätter}} + \underbrace{\sum_{r \in L(T)} \|z_r - \mu_r\|_2^2}_{}$$

Summierter Approximationsfehler aller Blätter

 $^{^{38} \}rm{Wir}$ nehmen an, dass S ein Quadrat ist mit Seitenlänge 2^k für ein $k \geq 0$

³⁹hier: Blatt = Knoten mit Nullkindern

Regulariseriung

Sei T ein Quadtree über einem Rechteck S_T und seien $T_{ll}, T_{lr}, T_{ul}, T_{ur}$ vier mögliche Unterbäume und

$$\widehat{H}_{\gamma}(T, z) := \min_{T} \gamma \cdot |L(T)| + \sum_{r \in L(T)} ||z_r - \mu_r||_2^2$$

Extremfälle:

 $\gamma = 0 \Rightarrow$ Originaldaten; $\gamma \to \infty \Rightarrow$ ein Rechteck

Beobachtung: Rekursion

■ Wenn der (Sub-)Quadtree *T* nur ein Pixel hat, so kann nicht aufgeteilt werden und es gilt

$$\widehat{H}_{\gamma}(T,z) = \gamma$$

Andernfalls seien

$$M_1 := \gamma + \|z_{S_T} - \mu_{S_T}\|_2^2$$

$$M_2 := \widehat{H}_{\gamma}(T_{ll}, z) + \widehat{H}_{\gamma}(T_{lr}, z) + \widehat{H}_{\gamma}(T_{ul}, z) + \widehat{H}_{\gamma}(T_{ur}, z)$$

Dann

$$\widehat{H}_{\gamma}(T,z) = \min\{\underbrace{M_1(T,\gamma,z)}_{\text{kein Split}}, \underbrace{M_2(T,\gamma,z)}_{\text{Split}}\}$$

Algorithmus: Minimize (z,r,γ)

Input: Bilddaten $z \in \mathbb{R}^S$, Rechteck $r \subset S$, Regularisierung $\gamma > 0$ **Output:** $\min_T \gamma |L(T)| + ||z - \mu_{L(T)}||_2^2$

output:
$$\min_{T} \gamma |L(T)| + \|z - \mu_L(T)\|_2$$

if $|r| = 0$ then return 0
 $m \leftarrow \gamma + \sum_{s \in r} (z_s - \mu_r)^2$

if $|r| > 1$ then

Split r into $r_{ll}, r_{lr}, r_{ul}, r_{ur}$
 $m_1 \leftarrow \text{Minimize}(z, r_{ll}, \gamma); m_2 \leftarrow \text{Minimize}(z, r_{lr}, \gamma)$
 $m_3 \leftarrow \text{Minimize}(z, r_{ul}, \gamma); m_4 \leftarrow \text{Minimize}(z, r_{ur}, \gamma)$
 $m' \leftarrow m_1 + m_2 + m_3 + m_4$

else

 L $m' \leftarrow \infty$

if $m' < m$ then $m \leftarrow m'$

return m

Analyse

539

Der Minimierungsalgorithmus über dyadische Partitionen (Quadtree) benötigt $\mathcal{O}(|S|\log|S|)$ Schritte.

54

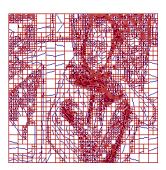
Anwendung: Entrauschen (zusätzlich mit Wedgelets)

A

 $\gamma = 0.3$

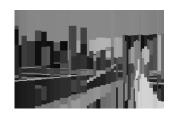
5

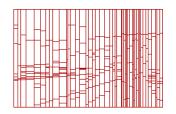
Erweiterungen: Affine Regression + Wedgelets



Andere Ideen

kein Quadtree: hierarchisch-eindimensionales Modell (benötigt Dynamic Programming)





19. Dynamische Programmierung I

Memoisieren, Optimale Substruktur, Überlappende Teilprobleme, Abhängigkeiten, Allgemeines Vorgehen. Beispiele: Fibonacci, Schneiden von Eisenstangen, Längste aufsteigende Teilfolge, längste gemeinsame Teilfolge, Editierdistanz, Matrixkettenmultiplikation, Matrixmultiplikation nach Strassen [Ottman/Widmayer, Kap. 1.2.3, 7.1, 7.4, Cormen et al, Kap. 15]

Fibonacci Zahlen

Algorithmus FibonacciRecursive(n)

$$F_n := \begin{cases} n & \text{wenn } n < 2 \\ F_{n-1} + F_{n-2} & \text{wenn } n \geq 2. \end{cases}$$

Analyse: warum ist der rekursive Algorithmus so langsam.

$$\begin{array}{l} \textbf{Input: } n \geq 0 \\ \textbf{Output: } n\text{-te Fibonacci Zahl} \\ \textbf{if } n < 2 \textbf{ then} \\ \mid f \leftarrow n \\ \textbf{else} \\ \mid f \leftarrow \text{FibonacciRecursive}(n-1) + \text{FibonacciRecursive}(n-2) \\ \textbf{return } f \end{array}$$

547

Analyse

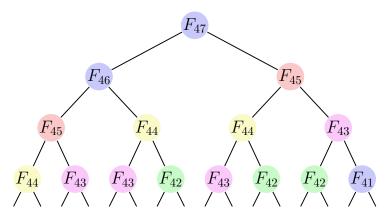
T(n): Anzahl der ausgeführten Operationen.

- $n = 0, 1: T(n) = \Theta(1)$
- $n \ge 2$: T(n) = T(n-2) + T(n-1) + c.

$$T(n) = T(n-2) + T(n-1) + c \ge 2T(n-2) + c \ge 2^{n/2}c' = (\sqrt{2})^n c'$$

Algorithmus ist *exponentiell* (!) in n.

Grund, visualisiert



Knoten mit denselben Werten werden (zu) oft ausgewertet.

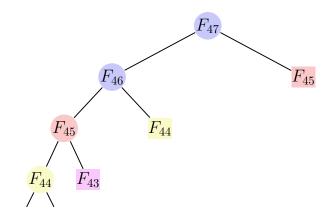
54

Memoization

Memoization (sic) Abspeichern von Zwischenergebnissen.

- Bevor ein Teilproblem gelöst wird, wird Existenz eines entsprechenden Zwischenergebnis geprüft.
- Existiert ein gespeichertes Zwischenergebnis bereits, so wird dieses verwendet.
- Andernfalls wird der Algorithmus ausgeführt und das Ergebnis wird entsprechend gespeichert.

Memoization bei Fibonacci



Rechteckige Knoten wurden bereits ausgewertet.

551

Algorithmus FibonacciMemoization(n)

```
Input: n \geq 0 Output: n-te Fibonacci Zahl if n \leq 2 then |f \leftarrow 1| else if \exists \mathsf{memo}[n] then |f \leftarrow \mathsf{memo}[n]| else |f \leftarrow \mathsf{FibonacciMemoization}(n-1) + \mathsf{FibonacciMemoization}(n-2)  |f \leftarrow \mathsf{memo}[n] \leftarrow f return f
```

Analyse

Berechnungsaufwand:

$$T(n) = T(n-1) + c = \dots = \mathcal{O}(n).$$

denn nach dem Aufruf von f(n-1) wurde f(n-2) bereits berechnet.

Das lässt sich auch so sehen: Für jedes n wird f(n) maximal einmal rekursiv berechnet. Laufzeitkosten: n Aufrufe mal $\Theta(1)$ Kosten pro Aufruf $n \cdot c \in \Theta(n)$. Die Rekursion verschwindet aus der Berechnung der Laufzeit.

Algorithmus benötigt $\Theta(n)$ Speicher.⁴⁰

 $^{^{40}}$ Allerdings benötigt der naive Algorithmus auch $\Theta(n)$ Speicher für die Rekursionsverwaltung

Genauer hingesehen ...

Algorithmus FibonacciBottomUp(n)

... berechnet der Algorithmus der Reihe nach die Werte F_1 , F_2 , F_3 , ... verkleidet im *Top-Down* Ansatz der Rekursion.

Man kann den Algorithmus auch gleich *Bottom-Up* hinschreiben. Das ist charakteristisch für die *dynamische Programmierung*.

Input: $n \geq 0$ Output: n-te Fibonacci Zahl $F[1] \leftarrow 1$ $F[2] \leftarrow 1$ for $i \leftarrow 3, \dots, n$ do $| F[i] \leftarrow F[i-1] + F[i-2]$

return F[n]

Dynamische Programmierung: Idee

- Aufteilen eines komplexen Problems in eine vernünftige Anzahl kleinerer Teilprobleme
- Die Lösung der Teilprobleme wird zur Lösung des komplexeren Problems verwendet
- Identische Teilprobleme werden nur einmal gerechnet

Dynamische Programmierung: Konsequenz

Identische Teilprobleme werden nur einmal gerechnet

⇒ Resultate werden zwischengespeichert

Wir tauschen Laufzeit gegen Speicherplatz

Dynamic Programming: Beschreibung

- 1 Verwalte *DP-Tabelle* mit Information zu den Teilproblemen. Dimension der Tabelle? Bedeutung der Einträge?
- Berechnung der Randfälle.
 Welche Einträge hängen nicht von anderen ab?
- Berechnungsreihenfolge bestimen.
 In welcher Reihenfolge können Einträge berechnet werden, so dass benötigte Einträge jeweils vorhanden sind?
- 4 Auslesen der Lösung.
 Wie kann sich Lösung aus der Tabelle konstruieren lassen?

Laufzeit (typisch) = Anzahl Einträge der Tabelle mal Aufwand pro Eintrag.

Dynamic Programming: Beschreibung am Beispiel

- Dimension der Tabelle? Bedeutung der Einträge?

 Tabelle der Grösse $n \times 1$. n-ter Eintrag enthält n-te Fibonacci Zahl.
- Welche Einträge hängen nicht von anderen ab? Werte F_1 und F_2 sind unabhängig einfach "berechenbar".
- In welcher Reihenfolge können Einträge berechnet werden, so dass benötigte Einträge jeweils vorhanden sind? F_i mit aufsteigenden i.
- Wie kann sich Lösung aus der Tabelle konstruieren lassen? F_n ist die n-te Fibonacci-Zahl.

559

Dynamic Programming = Divide-And-Conquer?

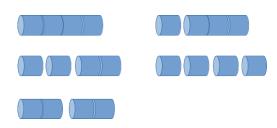
- In beiden Fällen ist das Ursprungsproblem (einfacher) lösbar, indem Lösungen von Teilproblemen herangezogen werden können. Das Problem hat optimale Substruktur.
- Bei Divide-And-Conquer Algorithmen (z.B. Mergesort) sind Teilprobleme unabhängig; deren Lösungen werden im Algorithmus nur einmal benötigt.
- Beim DP sind Teilprobleme nicht unabhängig. Das Problem hat überlappende Teilprobleme, welche im Algorithmus mehrfach gebraucht werden.
- Damit sie nur einmal gerechnet werden müssen, werden Resultate tabelliert. Dafür darf es zwischen Teilproblemen keine zirkulären Abhängigkeiten geben.

Schneiden von Eisenstäben

- Metallstäbe werden zerschnitten und verkauft.
- Metallstäbe der Länge $n \in \mathbb{N}$ verfügbar. Zerschneiden kostet nichts.
- Für jede Länge $l \in \mathbb{N}$, $l \leq n$ bekannt: Wert $v_l \in \mathbb{R}^+$
- \blacksquare Ziel: Zerschneide die Stange so (in $k \in \mathbb{N}$ Stücke), dass

$$\sum_{i=1}^k v_{l_i} \text{ maximal unter } \sum_{i=1}^k l_i = n.$$

Schneiden von Eisenstäben: Beispiel



Arten, einen Stab der Länge 4 zu zerschneiden (ohne Permutationen)

Länge	0	1	2	3	4	$\frac{4}{9}$ \Rightarrow Bester Schnitt: 3 + 1 mit Wert 10.
Preis	0	2	3	8	9	

Wie findet man den DP Algorithmus

- Genaue Formulierung der gesuchten Lösung
- Definiere Teilprobleme (und bestimme deren Anzahl)
- 2 Raten / Aufzählen (und bestimme die Laufzeit für das Raten)
- Rekursion: verbinde die Teilprobleme
- Memoisieren / Tabellieren. Bestimme die Abhängigkeiten der Teilprobleme
- 5 Lösung des Problems Laufzeit = #Teilprobleme × Zeit/Teilproblem

563

Struktur des Problems

- **o** Gesucht: r_n = maximal erreichbarer Wert von (ganzem oder geschnittenem) Stab mit Länge n.
- **Teilprobleme:** maximal erreichbarer Wert r_k für alle $0 \le k < n$
- Rate Länge des ersten Stückes
- **Rekursion**

$$r_k = \max \{v_i + r_{k-i} : 0 < i \le k\}, \quad k > 0$$

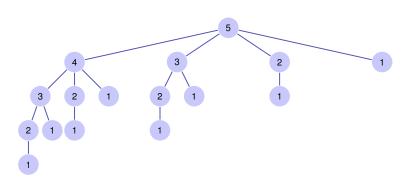
 $r_0 = 0$

- Abhängigkeit: r_k hängt (nur) ab von den Werten v_i , $l \le i \le k$ und den optimalen Schnitten r_i , i < k
- ullet Lösung in r_n

Algorithmus RodCut(v,n)

 $^{^{41}}T(n) = T(n-1) + \sum_{i=0}^{n-2} T(i) + c = T(n-1) + (T(n-1) - c) + c = 2T(n-1) \quad (n > 0)$

Rekursionsbaum



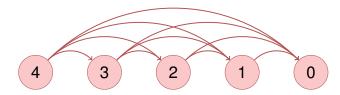
Algorithmus RodCutMemoized(m, v, n)

```
Input: n \geq 0, Preise v, Memoization Tabelle m
Output: bester Wert q \leftarrow 0
if n > 0 then
\begin{array}{c|c} & \text{if } \exists \ m[n] \ \text{then} \\ & q \leftarrow m[n] \\ & \text{else} \\ & & for \ i \leftarrow 1, \dots, n \ \text{do} \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &
```

567

Teilproblem-Graph

beschreibt die Abhängigkeiten der Teilprobleme untereinander



und darf keine Zyklen enthalten

Konstruktion des optimalen Schnittes

- Während der (rekursiven) Berechnung der optimalen Lösung für jedes $k \le n$ bestimmt der rekursive Algorithmus die optimale Länge des ersten Stabes
- Speichere die Länge des ersten Stabes für jedes $k \le n$ in einer Tabelle mit n Einträgen.

Bottom-Up Beschreibung am Beispiel

Dimension der Tabelle? Bedeutung der Einträge?

- Tabelle der Grösse $n \times 1$. n-ter Eintrag enthält besten Wert eines Stabes der Länge n.
- Welche Einträge hängen nicht von anderen ab?

Wert r_0 ist 0.

In welcher Reihenfolge können Einträge berechnet werden, so dass benötigte Einträge jeweils vorhanden sind?

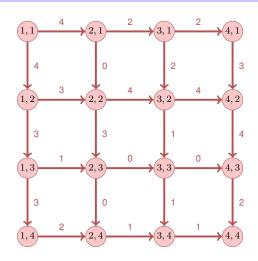
$$r_i, i = 1, ..., n.$$

Wie kann sich Lösung aus der Tabelle konstruieren lassen?

 r_n ist der beste Wert für eine Stange der Länge n

Kaninchen!

Ein Kaninchen sitzt auf Platz (1,1) eines $n \times n$ Gitters. Es kann nur nach Osten oder nach Süden gehen. Auf jedem Wegstück liegt eine Anzahl Rüben. Wie viele Rüben sammelt das Kaninchen maximal ein?

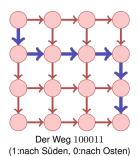


E-7

Kaninchen!

Anzahl mögliche Pfade?

- Auswahl von n-1 Wegen nach Süden aus 2n-2 Wegen insgesamt.
 - $\binom{2n-2}{n-1} \in \Omega(2^n)$
- ⇒ Naiver Algorithmus hat keine Chance



Rekursion

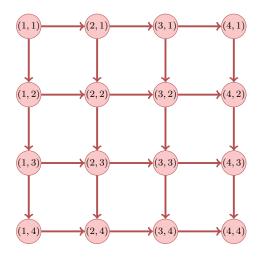
Gesucht: $T_{0,0}$ = Maximale Anzahl Rüben von (0,0) nach (n,n).

Sei $w_{(i,j)-(i',j')}$ Anzahl Rüben auf Kante von (i,j) nach (i',j').

Rekursion (maximale Anzahl Rüben von (i, j) nach (n, n))

$$T_{ij} = \begin{cases} \max\{w_{(i,j)-(i,j+1)} + T_{i,j+1}, w_{(i,j)-(i+1,j)} + T_{i+1,j}\}, & i < n, j < n \\ w_{(i,j)-(i,j+1)} + T_{i,j+1}, & i = n, j < n \\ w_{(i,j)-(i+1,j)} + T_{i+1,j}, & i < n, j = n \\ 0 & i = j = n \end{cases}$$

Teilproblemabhängigkeitsgraph



Bottom-Up Beschreibung am Beispiel

Dimension der Tabelle? Bedeutung der Einträge?

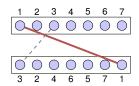
- Tabelle T der Grösse $n \times n$. Eintrag bei i,j enthält die maximale Anzahl Rüben von (i,j) nach (n,n).
- Welche Einträge hängen nicht von anderen ab? Wert $T_{n,n}$ ist 0.

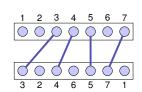
In welcher Reihenfolge können Einträge berechnet werden, so dass benötigte Einträge jeweils vorhanden sind?

- $T_{i,j}$ mit $i=n\searrow 1$ und für jedes i: $j=n\searrow 1$, (oder umgekehrt: $j=n\searrow 1$ und für jedes j: $i=n\searrow 1$).
- Wie kann sich Lösung aus der Tabelle konstruieren lassen?

575

Längste aufsteigende Teilfolge (LAT)





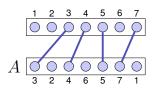
Verbinde so viele passende Anschlüsse wie möglich, ohne dass sich die Anschlüsse kreuzen.

Formalisieren

- Betrachte Folge $A_n = (a_1, \ldots, a_n)$.
- Suche eine längste aufsteigende Teilfolge von A_n .

 $T_{1,1}$ enthält die maximale Anzahl Rüben

■ Beispiele aufsteigender Teilfolgen: (3,4,5), (2,4,5,7), (3,4,5,7), (3,7).



Verallgemeinerung: Lasse Zahlen ausserhalb von 1, ..., n zu, auch mit Mehrfacheinträgen. (Weitehrhin aber nur strikt aufsteigende Teilfolgen) Beispiel: (2,3,3,3,5,1) mit aufsteigender Teilfolge (2,3,5).

Erster Entwurf

Sei L_i = längste Teilfolge von A_i , $(1 \le i \le n)$.

Annahme: LAT L_k von A_k für bekannt. Wollen nun LAT L_{k+1} für A_{k+1} berechnen.

Wenn a_{k+1} zu L_k passt, dann $L_{k+1} = L_k \oplus a_{k+1}$?

Gegenbeispiel: $A_5 = (1, 2, 5, 3, 4)$. Sei $A_3 = (1, 2, 5)$ mit $L_3 = A$.

Bestimme L_4 aus L_3 ?

So kommen wir nicht weiter: können nicht von L_k auf L_{k+1} schliessen.

Zweiter Entwurf

Sei L_i = längste Teilfolge von A_i , ($1 \le i \le n$).

Annahme: eine LAT L_j für alle $j \leq k$ bekannt. Wollen nun LAT L_{k+1} für k+1 berechnen.

Betrachte alle passenden $L_{k+1} = L_j \oplus a_{k+1}$ ($j \leq k$) und wähle eine längste solche Folge.

Gegenbeispiel: $A_5=(1,2,5,3,4)$. Sei $A_4=(1,2,5,3)$ mit $L_1=(1)$, $L_2=(1,2)$, $L_3=(1,2,5)$, $L_4=(1,2,5)$. Bestimme L_5 aus L_1,\ldots,L_4 ?

So kommen wir nicht weiter: können nicht von *jeweils nur einer beliebigen Lösung* L_j auf L_{k+1} schliessen. Wir müssten alle möglichen LAT betrachten. Zu viel!

Dritter Entwurf

Sei $M_{n,i}$ = längste Teilfolge von A_n der Länge i ($1 \le i \le n$)

Annahme: die LAT $M_{k,j}$ für A_k , welche mit kleinstem Element enden seien für alle Längen $1 \le j \le k$ bekannt.

Betrachte nun alle passenden $M_{k,j} \oplus a_{k+1}$ ($j \leq k$) und aktualisiere die Tabelle der längsten aufsteigenden Folgen, welche mit kleinstem Element enden.

Dritter Entwurf Beispiel

Beispiel: A = (1, 1000, 1001, 4, 5, 2, 6, 7)

A	LAT $M_{k,\cdot}$
1	(1)
+ 1000	(1), (1, 1000)
+ 1001	(1), (1, 1000), (1, 1000, 1001)
+4	(1), (1, 4), (1, 1000, 1001)
+ 5	(1), (1,4), (1,4,5)
+2	(1), (1, 2), (1, 4, 5)
+6	(1), (1, 2), (1, 4, 5), (1, 4, 5, 6)
+ 7	(1), (1, 2), (1, 4, 5), (1, 4, 5, 6), (1, 4, 5, 6, 7)

579

DP Table

- Idee: speichere jeweils nur das letzte Element der aufsteigenden Folge $M_{k,j}$ am Slot j.
- Beispielfolge:3 2 5 1 6 4
- Problem: Tabelle enthält zum Schluss nicht die Folge, nur den letzten Wert.
- Lösung: Zweite Tabelle mit den Vorgängern.

Index	1	2	3	4	5	6
Wert	3	2	5	1	6	4
Vorgänger	$-\infty$	$-\infty$	2	$-\infty$	5	1

Index	0	1	2	3	4	
$(L_i)_i$	$-\infty$	1	4	6	∞	

Dynamic Programming Algorithmus LAT

Dimension der Tabelle? Bedeutung der Einträge?

Zwei Tabellen T[0, ..., n] und V[1, ..., n].

1 T[j]: letztes Element der aufsteigenden Folge $M_{n,j}$

V[j]: Wert des Vorgängers von a_j . Zu Beginn $T[0] \leftarrow -\infty, T[i] \leftarrow \infty \ \forall i > 1$

Berechnung eines Eintrags

Einträge in T aufsteigend sortiert. Für jeden Neueintrag a_{k+1} binäre Suche nach l, so dass $T[l] < a_k < T[l+1]$. Setze $T[l+1] \leftarrow a_{k+1}$. Setze V[k] = T[l].

Dynamic Programming Algorithmus LAT

Berechnungsreihenfolge

Beim Traversieren der Liste werden die Einträge T[k] und V[k] mit aufsteigendem k berechnet.

Wie kann sich Lösung aus der Tabelle konstruieren lassen?

Suche das grösste l mit $T[l] < \infty$. l ist der letzte Index der LAT. Suche von l ausgehend den Index i < l, so dass $V[l] = a_i$, i ist der Vorgänger von l. Repetiere mit $l \leftarrow i$ bis $T[l] = -\infty$

Analyse

583

- Berechnung Tabelle:
 - Initialisierung: $\Theta(n)$ Operationen
 - Berechnung k-ter Eintrag: Binäre Suche auf Positionen $\{1, \ldots, k\}$ plus konstante Anzahl Zuweisungen.

$$\sum_{k=1}^{n} (\log k + \mathcal{O}(1)) = \mathcal{O}(n) + \sum_{k=1}^{n} \log(k) = \Theta(n \log n).$$

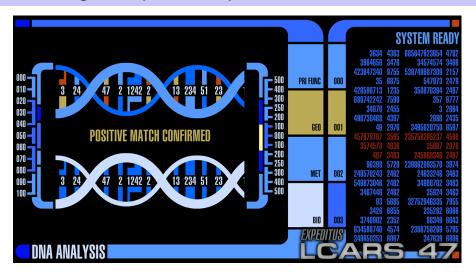
■ Rekonstruktion: Traversiere A von rechts nach links: $\mathcal{O}(n)$.

Somit Gesamtlaufzeit

$$\Theta(n \log n)$$
.

0 (11108)

DNA - Vergleich (Star Trek)



DNA - Vergleich

- DNA besteht aus Sequenzen von vier verschiedenen Nukleotiden
 Adenin Guanin Thymin Cytosin
- DNA-Sequenzen (Gene) werden mit Zeichenketten aus A, G, T und C beschrieben.
- Ein möglicher Vergleich zweier Gene: Bestimme Längste gemeinsame Teilfolge

Das Problem, die längste gemeinsame Teilfolge zu finden ist ein Spezialfall der minimalen Editierdistanz. Die folgenden Folien werden daher in der Vorlesung nicht behandelt.

587

[Längste Gemeiname Teilfolge]

Teilfolgen einer Zeichenkette:

Teilfolgen(KUH): (), (K), (U), (H), (KU), (KH), (UH), (KUH)

Problem:

- Eingabe: Zwei Zeichenketten $A=(a_1,\ldots,a_m)$, $B=(b_1,\ldots,b_n)$ der Längen m>0 und n>0.
- Gesucht: Eine längste gemeinsame Teilfolge (LGT) von A und B.

[Längste Gemeiname Teilfolge]

Beispiele:

LGT(IGEL,KATZE)=E, LGT(TIGER,ZIEGE)=IGE

Ideen zur Lösung?

T I GER Z I EGE -

[Rekursives Vorgehen]

Annahme: Lösungen L(i,j) bekannt für $A[1,\ldots,i]$ und $B[1,\ldots,j]$ für alle $1 \le i \le m$ und $1 \le j \le n$, jedoch nicht für i=m und j=n.

Betrachten Zeichen a_m , b_n . Drei Möglichkeiten:

- 1 A wird um ein Leerzeichen erweitert. L(m,n) = L(m,n-1)
- **2** B wird um ein Leerzeichen erweitert. L(m,n) = L(m-1,n)
- $L(m,n) = L(m-1,n-1) + \delta_{mn} \ \text{mit} \ \delta_{mn} = 1 \ \text{wenn} \ a_m = b_n \\ \text{und} \ \delta_{mn} = 0 \ \text{sonst}$

[Rekursion]

 $L(m,n) \leftarrow \max \left\{ L(m-1,n-1) + \delta_{mn}, L(m,n-1), L(m-1,n) \right\}$ für m,n>0 und Randfälle $L(\cdot,0)=0$, $L(0,\cdot)=0$.

	Ø	Z	I	Ε	G 0 0 1 2 2 2	Ε
Ø	0	0	0	0	0	0
Τ	0	0	0	0	0	0
I	0	0	1	1	1	1
G	0	0	1	1	2	2
Ε	0	0	1	2	2	3
R	0	0	1	2	2	3

[Dynamic Programming Algorithmus LGT]

Dimension der Tabelle? Bedeutung der Einträge?

Tabelle $L[0,\ldots,m][0,\ldots,n]$. L[i,j]: Länge einer LGT der Zeichenketten (a_1,\ldots,a_i) und (b_1,\ldots,b_j)

Berechnung eines Eintrags

 $L[0,i] \leftarrow 0 \ \forall 0 \leq i \leq m, \ L[j,0] \leftarrow 0 \ \forall 0 \leq j \leq n. \ \text{Berechnung von} \ L[i,j] \\ \text{sonst mit} \ L[i,j] = \max(L[i-1,j-1] + \delta_{ij}, L[i,j-1], L[i-1,j]).$

[Dynamic Programming Algorithmus LGT]

Berechnungsreihenfolge

Abhängigkeiten berücksichtigen: z.B. Zeilen aufsteigend und innerhalb von Zeilen Spalten aufsteigend.

Wie kann sich Lösung aus der Tabelle konstruieren lassen?

Beginne bei $j=m,\,i=n.$ Falls $a_i=b_j$ gilt, gib a_i aus und fahre fort mit $(j,i)\leftarrow(j-1,i-1);$ sonst, falls L[i,j]=L[i,j-1] fahre fort mit $j\leftarrow j-1$; sonst, falls L[i,j]=L[i-1,j] fahre fort mit $i\leftarrow i-1$. Terminiere für i=0 oder j=0.

593

[Analyse LGT]

- Anzahl Tabelleneinträge: $(m+1) \cdot (n+1)$.
- Berechnung jeweils mit konstanter Anzahl Zuweisungen und Vergleichen. Anzahl Schritte $\mathcal{O}(mn)$
- Bestimmen der Lösung: jeweils Verringerung von i oder j. Maximal $\mathcal{O}(n+m)$ Schritte.

Laufzeit insgesamt:

 $\mathcal{O}(mn)$.

Minimale Editierdistanz

Editierdistanz von zwei Zeichenketten $A_n = (a_1, \ldots, a_m)$, $B_m = (b_1, \ldots, b_m)$.

Editieroperationen:

- Einfügen eines Zeichens
- Löschen eines Zeichens
- Änderung eines Zeichens

Frage: Wie viele Editieroperationen sind mindestens nötig, um eine gegebene Zeichenkette A in eine Zeichenkette B zu überführen.

TIGER ZIGER ZIEGER ZIEGE

Minimale Editierdistanz

Gesucht: Günstigste zeichenweise Transformation $A_n \to B_m$ mit Kosten

Operation	Levenshtein	LGT ⁴²	allgemein
c einfügen	1	1	ins(c)
c löschen	1	1	del(c)
Ersetzen $c \rightarrow c'$	$\mathbb{1}(c \neq c')$	$\infty \cdot \mathbb{1}(c \neq c')$	repl(c,c')

Beispiel

DP

597

- o E(n,m) = minimale Anzahl Editieroperationen (ED Kosten) für $a_{1...n} \rightarrow b_{1...m}$
- Teilprobleme E(i, j) = ED von $a_{1...i}$. $b_{1...i}$. #TP = $n \cdot m$
- Raten/Probieren
 - $a_{1..i} \rightarrow a_{1...i-1}$ (löschen)
 - $a_{1..i} \rightarrow a_{1...i}b_i$ (einfügen)
 - $a_{1..i} \rightarrow a_{1...i_1}b_j$ (ersetzen)
- Rekursion

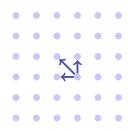
$$E(i,j) = \min egin{cases} \mathsf{del}(a_i) + E(i-1,j), \\ \mathsf{ins}(b_j) + E(i,j-1), \\ \mathsf{repl}(a_i,b_j) + E(i-1,j-1) \end{cases}$$

Kosten $\Theta(1)$

⁴²Längste gemeinsame Teilfolge – Spezialfall des Editierproblems

DP

Abhängigkeiten



- \Rightarrow Berechnung von links oben nach rechts unten. Zeilen- oder Spaltenweise.
- **5** Lösung steht in E(n,m)

Beispiel (Levenshteinabstand)

$$E[i,j] \leftarrow \min \{ E[i-1,j]+1, E[i,j-1]+1, E[i-1,j-1]+1 (a_i \neq b_j) \}$$

	Ø	Z	-	Ε	G	Ε
\emptyset	0	1	2	3	4	5
Τ	1	1	2	3	4	5
	2	2	1	2	3	4
G	3	3	2	2	2	3
Ε	4	4	3	2	3	2
R	5	5	4	3	4 4 3 2 3 3	3

Editierschritte: von rechts unten nach links oben, der Rekursion folgend. Bottom-Up Beschreibung des Algorithmus: Übung

Bottom-Up DP Algorithmus ED]

Dimension der Tabelle? Bedeutung der Einträge?

Tabelle $E[0,\ldots,m][0,\ldots,n]$. E[i,j]: Minimaler Editierabstand der Zeichenketten (a_1,\ldots,a_i) und (b_1,\ldots,b_j)

Berechnung eines Eintrags

 $E[0,i] \leftarrow i \ \forall 0 \leq i \leq m, \ E[j,0] \leftarrow i \ \forall 0 \leq j \leq n. \ \text{Berechnung von} \ E[i,j] \\ \text{sonst mit} \ E[i,j] = \\ \min\{ \det(a_i) + E(i-1,j), \operatorname{ins}(b_j) + E(i,j-1), \operatorname{repl}(a_i,b_j) + E(i-1,j-1) \}$

Bottom-Up DP Algorithmus ED

Berechnungsreihenfolge

Abhängigkeiten berücksichtigen: z.B. Zeilen aufsteigend und innerhalb von Zeilen Spalten aufsteigend.

Wie kann sich Lösung aus der Tabelle konstruieren lassen?

Beginne bei j=m, i=n. Falls $E[i,j]=\operatorname{repl}(a_i,b_j)+E(i-1,j-1)$ gilt, gib $a_i\to b_j$ aus und fahre fort mit $(j,i)\leftarrow (j-1,i-1)$; sonst, falls $E[i,j]=\operatorname{del}(a_i)+E(i-1,j)$ gib $\operatorname{del}(a_i)$ aus fahre fort mit $j\leftarrow j-1$; sonst, falls $E[i,j]=\operatorname{ins}(b_j)+E(i,j-1)$, gib $\operatorname{ins}(b_j)$ aus und fahre fort mit $i\leftarrow i-1$. Terminiere für i=0 und j=0.

Matrix-Kettenmultiplikation

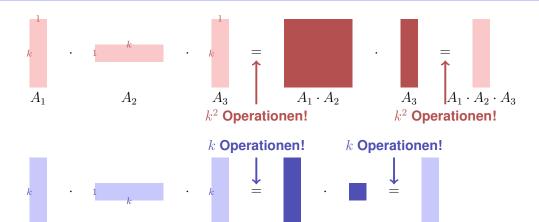
Aufgabe: Berechnung des Produktes $A_1 \cdot A_2 \cdot ... \cdot A_n$ von Matrizen A_1, \ldots, A_n .

Matrizenmultiplikation ist assoziativ, d.h. Klammerung kann beliebig gewählt werden.

Ziel: möglichst effiziente Berechnung des Produktes.

Annahme: Multiplikation einer $(r \times s)$ -Matrix mit einer $(s \times u)$ -Matrix hat Kosten $r \cdot s \cdot u$.

Macht das einen Unterschied?



603

Rekursion

- Annahme, dass die bestmögliche Berechnung von $(A_1 \cdot A_2 \cdots A_i)$ und $(A_{i+1} \cdot A_{i+2} \cdot \cdot \cdot A_n)$ für jedes *i* bereits bekannt ist.
- Bestimme bestes *i*, fertig.

 $n \times n$ -Tabelle M. Eintrag M[p,q] enthält Kosten der besten Klammerung von $(A_p \cdot A_{p+1} \cdots A_q)$.

 $M[p,q] \leftarrow \min_{p \leq i < q} \left(M[p,i] + M[i+1,q] + \text{Kosten letzte Multiplikation} \right)$

Berechnung der DP-Tabelle

- Randfälle: $M[p, p] \leftarrow 0$ für alle $1 \le p \le n$.
- Berechnung von M[p,q] hängt ab von M[i,j] mit $p \le i \le j \le q$, $(i,j) \neq (p,q)$.

Insbesondere hängt M[p,q] höchstens ab von Einträgen M[i,j]mit i - j < q - p.

Folgerung: Fülle die Tabelle von der Diagonale ausgehend.

Analyse

DP-Tabelle hat n^2 Einträge. Berechung eines Eintrages bedingt Betrachten von bis zu n-1 anderen Einträgen. Gesamtlaufzeit $\mathcal{O}(n^3)$.

Auslesen der Reihenfolge aus M: Übung!

Exkurs: Matrixmultiplikation

Betrachten Multiplikation zweier $n \times n$ -Matrizen.

Seien

$$A = (a_{ij})_{1 \le i,j \le n}, B = (b_{ij})_{1 \le i,j \le n}, C = (c_{ij})_{1 \le i,j \le n},$$

 $C = A \cdot B$

dann

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

Naiver Algorithmus benötigt $\Theta(n^3)$ elementare Multiplikationen.

Divide and Conquer

B	

A

C = AB

		c	d
e	f	ea + fc	eb + fd
g	h	ga + hc	gb+hd

a

Divide and Conquer

- Annahme $n=2^k$.
- Anzahl elementare Multiplikationen: M(n) = 8M(n/2), M(1) = 1.
- Ergibt $M(n) = 8^{\log_2 n} = n^{\log_2 8} = n^3$. Kein Gewinn \bigcirc

a	b
c	d

e	f	ea + fc	eb+fd
g	h	ga + hc	gb + hd

609

Strassens Matrixmultiplikation

- Nichttriviale Beobachtung von Strassen (1969): Es genügt die Berechnung der sieben Produkte $A=(e+h)\cdot(a+d), B=(g+h)\cdot a,$ $C=e\cdot(b-d), D=h\cdot(c-a), E=(e+f)\cdot d,$ $F=(g-e)\cdot(a+b), G=(f-h)\cdot(c+d).$ Denn: ea+fc=A+D-E+G, eb+fd=C+E, ga+hc=B+D, gb+hd=A-B+C+F.
- Damit ergibt sich M'(n) = 7M(n/2), M'(1) = 1. Also $M'(n) = 7^{\log_2 n} = n^{\log_2 7} \approx n^{2.807}.$
- Schnellster bekannter Algorithmus: $\mathcal{O}(n^{2.37})$

a	b
c	d

e	f	ea + fc	eb + fd
g	h	ga + hc	gb+hd

20. Dynamic Programming II

Subset Sum Problem, Rucksackproblem, Greedy Algorithmus vs dynamische Programmierung [Ottman/Widmayer, Kap. 7.2, 7.3, 5.7, Cormen et al, Kap. 15,35.5]

611

Aufgabe

Teile obige "Gegenstände" so auf zwei Mengen auf, dass beide Mengen den gleichen Wert haben.

Eine Lösung:

Subset Sum Problem

Seien $n \in \mathbb{N}$ Zahlen $a_1, \ldots, a_n \in \mathbb{N}$ gegeben.

Ziel: Entscheide, ob eine Auswahl $I \subseteq \{1, \dots, n\}$ existiert mit

$$\sum_{i \in I} a_i = \sum_{i \in \{1, \dots, n\} \setminus I} a_i.$$

Naiver Algorithmus

Prüfe für jeden Bitvektor $b = (b_1, \ldots, b_n) \in \{0, 1\}^n$, ob

$$\sum_{i=1}^{n} b_i a_i \stackrel{?}{=} \sum_{i=1}^{n} (1 - b_i) a_i$$

Schlechtester Fall: n Schritte für jeden der 2^n Bitvektoren b. Anzahl Schritte: $\mathcal{O}(n \cdot 2^n)$.

Algorithmus mit Aufteilung

- **Z**erlege Eingabe in zwei gleich grosse Teile: $a_1, \ldots, a_{n/2}$ und $a_{n/2+1}, \ldots, a_n$.
- Iteriere über alle Teilmengen der beiden Teile und berechne Teilsummen $S_1^k, \ldots, S_{2^{n/2}}^k$ (k = 1, 2).
- Sortiere die Teilsummen: $S_1^k \leq S_2^k \leq \cdots \leq S_{2^{n/2}}^k$.
- Prüfe ob es Teilsummen gibt, so dass $S_i^1 + S_i^2 = \frac{1}{2} \sum_{i=1}^n a_i =: h$
 - Beginne mit $i = 1, j = 2^{n/2}$.

 - $\begin{array}{l} \blacksquare \text{ Gilt } S_i^1 + S_j^2 = h \text{ dann fertig} \\ \blacksquare \text{ Gilt } S_i^1 + S_j^2 > h \text{ dann } j \leftarrow j-1 \\ \blacksquare \text{ Gilt } S_i^1 + S_j^2 < h \text{ dann } i \leftarrow i+1 \\ \end{array}$

615

Beispiel

Menge $\{1, 6, 2, 3, 4\}$ mit Wertesumme 16 hat 32 Teilmengen.

Aufteilung in $\{1,6\}$, $\{2,3,4\}$ ergibt folgende 12 Teilmengen mit Wertesummen:

 \Leftrightarrow Eine Lösung: $\{1, 3, 4\}$

Analyse

- Teilsummegenerierung in jedem Teil: $\mathcal{O}(2^{n/2} \cdot n)$.
- Sortieren jeweils: $\mathcal{O}(2^{n/2}\log(2^{n/2})) = \mathcal{O}(n2^{n/2})$.
- **Z**usammenführen: $\mathcal{O}(2^{n/2})$

Gesamtlaufzeit

$$\mathcal{O}\left(n\cdot 2^{n/2}\right) = \mathcal{O}\left(n\left(\sqrt{2}\right)^n\right).$$

Wesentliche Verbesserung gegenüber ganz naivem Verfahren – aber immer noch exponentiell!

Dynamische Programmierung

Aufgabe: sei $z=\frac{1}{2}\sum_{i=1}^n a_i$. Suche Auswahl $I\subset\{1,\ldots,n\}$, so dass $\sum_{i\in I}a_i=z$.

DP-Tabelle: $[0,\ldots,n] \times [0,\ldots,z]$ -Tabelle T mit Wahrheitseinträgen. T[k,s] gibt an, ob es eine Auswahl $I_k \subset \{1,\ldots,k\}$ gibt, so dass $\sum_{i \in I_k} a_i = s$.

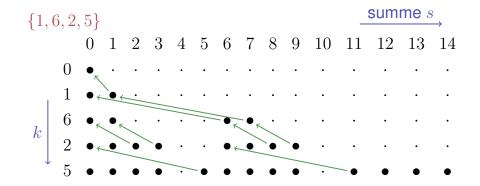
Initialisierung: T[0,0] = true. T[0,s] = false für s > 1.

Berechnung:

$$T[k,s] \leftarrow \begin{cases} T[k-1,s] & \text{falls } s < a_k \\ T[k-1,s] \lor T[k-1,s-a_k] & \text{falls } s \ge a_k \end{cases}$$

für aufsteigende k und innerhalb k dann s.

Beispiel



Auslesen der Lösung: wenn T[k,s] = T[k-1,s] dann a_k nicht benutzt und bei T[k-1,s] weiterfahren, andernfalls a_k benutzt und bei $T[k-1,s-a_k]$ weiterfahren.

Rätselhaftes

Der Algorithmus benötigt $\mathcal{O}(n \cdot z)$ Elementaroperationen.

Was ist denn jetzt los? Hat der Algorithmus plötzlich polynomielle Laufzeit?

Aufgelöst

Der Algorithmus hat nicht unbedingt eine polynomielle Laufzeit. z ist eine Zahl und keine Anzahl!

Eingabelänge des Algorithmus \cong Anzahl Bits zur *vernünftigen* Repräsentation der Daten. Bei der Zahl z wäre das $\zeta = \log z$.

Also: Algorithmus benötigt $\mathcal{O}(n \cdot 2^{\zeta})$ Elementaroperationen und hat exponentielle Laufzeit in ζ .

Sollte z allerdings polynomiell sein in n, dann hat der Algorithmus polynomielle Laufzeit in n. Das nennt man *pseudopolynomiell*.

620

621

NP

Man weiss, dass der Subset-Sum Algorithmus zur Klasse der *NP*-vollständigen Probleme gehört (und somit *NP-schwer* ist).

P: Menge aller in Polynomialzeit lösbarer Probleme.

NP: Menge aller Nichtdeterministisch in Polynomialzeit lösbarer Probleme.

Implikationen:

- NP enthält P.
- Probleme in Polynomialzeit *verifizierbar*.
- Unter der (noch?) unbewiesenen⁴³ Annahme, dass NP ≠ P, gibt es für das Problem *keinen Algorithmus mit polynomieller Laufzeit*.

Das Rucksackproblem

Wir packen unseren Koffer und nehmen mit ...

- Zahnbürste
- Zahnbürste

Zahnbürste

Hantelset

Luftballon

Kaffemaschine

- Kaffemaschine
- Taschenmesser
- Taschenmesser

- Oh jeh zu schwer.
- Ausweis

Ausweis

Hantelset

- Oh jeh zu schwer.
- Oh jeh zu schwer.

Wollen möglichst viel mitnehmen. Manche Dinge sind uns aber wichtiger als andere.

Rucksackproblem (engl. Knapsack problem)

Gegeben:

- Menge von $n \in \mathbb{N}$ Gegenständen $\{1, \ldots, n\}$.
- Jeder Gegenstand i hat Nutzwert $v_i \in \mathbb{N}$ und Gewicht $w_i \in \mathbb{N}$.
- Maximalgewicht $W \in \mathbb{N}$.
- Bezeichnen die Eingabe mit $E = (v_i, w_i)_{i=1,...,n}$.

Gesucht:

eine Auswahl $I\subseteq\{1,\ldots,n\}$ die $\sum_{i\in I}v_i$ maximiert unter $\sum_{i\in I}w_i\leq W$.

Gierige (engl. greedy) Heuristik

Sortiere die Gegenstände absteigend nach Nutzen pro Gewicht v_i/w_i : Permutation p mit $v_{p_i}/w_{p_i} \geq v_{p_{i+1}}/w_{p_{i+1}}$

Füge Gegenstände in dieser Reihenfolge hinzu $(I \leftarrow I \cup \{p_i\})$, sofern das zulässige Gesamtgewicht dadurch nicht überschritten wird.

Das ist schnell: $\Theta(n \log n)$ für Sortieren und $\Theta(n)$ für die Auswahl. Aber ist es auch gut?

02

⁴³Die bedeutenste ungelöste Frage der theoretischen Informatik!

Gegenbeispiel zur greedy strategy

$$v_1 = 1$$
 $w_1 = 1$ $v_1/w_1 = 1$ $v_2 = W - 1$ $w_2 = W$ $v_2/w_2 = \frac{W-1}{W}$

Greedy Algorithmus wählt $\{v_1\}$ mit Nutzwert 1. Beste Auswahl: $\{v_2\}$ mit Nutzwert W-1 und Gewicht W.

Greedy kann also beliebig schlecht sein.

Dynamic Programming

Unterteile das Maximalgewicht.

Dreidimensionale Tabelle m[i,w,v] ("machbar") aus Wahrheitswerten.

m[i, w, v] =true genau dann wenn

- Auswahl der ersten i Teile existiert ($0 \le i \le n$)
- lacktriangle deren Gesamtgewicht höchstens w ($0 \le w \le W$) und
- Nutzen mindestens v ($0 \le v \le \sum_{i=1}^{n} v_i$) ist.

Berechnung der DP Tabelle

Initial

- \blacksquare $m[i, w, 0] \leftarrow$ true für alle $i \ge 0$ und alle $w \ge 0$.
- $\blacksquare m[0, w, v] \leftarrow$ false für alle $w \ge 0$ und alle v > 0.

Berechnung

$$m[i,w,v] \leftarrow \begin{cases} m[i-1,w,v] \lor m[i-1,w-w_i,v-v_i] & \text{falls } w \ge w_i \text{ und } v \ge v_i \\ m[i-1,w,v] & \text{sonst.} \end{cases}$$

aufsteigend nach i und für festes i aufsteigend nach w und für festes i und w aufsteigend nach v.

Lösung: Grösstes v, so dass m[i, w, v] = true für ein i und w.

Beobachtung

627

Nach der Definition des Problems gilt offensichtlich, dass

- für m[i,w,v]= true gilt: m[i',w,v]= true $\forall i'\geq i$, m[i,w',v]= true $\forall w'\geq w$, m[i,w,v']= true $\forall v'\leq v.$
- für m[i, w, v] = false gilt: m[i', w, v] = false $\forall i' \leq i$, m[i, w', v] = false $\forall w' \leq w$, m[i, w, v'] = false $\forall v' \geq v$.

Das ist ein starker Hinweis darauf, dass wir keine 3d-Tabelle benötigen.

02

DP Tabelle mit 2 Dimensionen

Tabelleneintrag t[i,w] enthält statt Wahrheitswerten das jeweils grösste v, das erreichbar ist⁴⁴ mit

- den Gegenständen $1, \ldots, i \ (0 \le i \le n)$
- bei höchstem zulässigen Gewicht w ($0 \le w \le W$).

Berechnung

Initial

 \bullet $t[0,w] \leftarrow 0$ für alle $w \geq 0$.

Berechnung

$$t[i,w] \leftarrow \begin{cases} t[i-1,w] & \text{falls } w < w_i \\ \max\{t[i-1,w],t[i-1,w-w_i]+v_i\} & \text{sonst.} \end{cases}$$

aufsteigend nach i und für festes i aufsteigend nach w.

Lösung steht in t[n, w]

Beispiel

 $E = \{(2,3), (4,5), (1,1)\} \qquad \underbrace{w} \\ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \\ \emptyset \quad 0_{\kappa} \quad 0_{\kappa} \quad 0_{\kappa} \quad 0_{\kappa} \quad 0_{\kappa} \quad 0 \quad 0 \quad 0 \\ (2,3) \quad 0_{\kappa} \quad 0_{\kappa} \quad 0_{\kappa} \quad 0_{\kappa} \quad 0 \quad 0 \quad 0 \\ (2,3) \quad 0_{\kappa} \quad 0_{\kappa} \quad 0_{\kappa} \quad 0_{\kappa} \quad 0 \quad 0 \quad 0 \\ (4,5) \quad 0_{\kappa} \quad 0 \quad 3_{\kappa} \quad 3 \quad 5_{\kappa} \quad 5 \quad 8_{\kappa} \quad 8 \\ (1,1) \quad 0 \quad 1 \quad 3 \quad 4 \quad 5 \quad 6 \quad 8 \quad 9 \\ \end{cases}$

Auslesen der Lösung: wenn t[i,w]=t[i-1,w] dann Gegenstand i nicht benutzt und bei t[i-1,w] weiterfahren, andernfalls benutzt und bei $t[i-1,s-w_i]$ weiterfahren.

Analyse

631

633

Die beiden Algorithmen für das Rucksackproblem haben eine Laufzeit in $\Theta(n\cdot W\cdot \sum_{i=1}^n v_i)$ (3d-Tabelle) und $\Theta(n\cdot W)$ (2d-Tabelle) und sind beide damit pseudopolynomiell, liefern aber das bestmögliche Resultat.

Der greedy Algorithmus ist sehr schnell, liefert aber unter Umständen beliebig schlechte Resultate.

Im folgenden beschäftigen wir uns mit einer Lösung dazwischen.

63

⁴⁴So etwas ähnliches hätten wir beim Subset Sum Problem auch machen können, um die dünnbesetzte Tabelle etwas zu verkleinern

21. Dynamic Programming III

FPTAS [Ottman/Widmayer, Kap. 7.2, 7.3, Cormen et al, Kap. 15,35.5]

Approximation

Sei ein $\varepsilon\in(0,1)$ gegeben. Sei $I_{\rm opt}$ eine bestmögliche Auswahl. Suchen eine gültige Auswahl I mit

$$\sum_{i \in I} v_i \ge (1 - \varepsilon) \sum_{i \in I_{\mathsf{opt}}} v_i.$$

Summe der Gewichte darf W natürlich in keinem Fall überschreiten.

Andere Formulierung des Algorithmus

 $\mbox{\bf Bisher: Gewichtsschranke } w \rightarrow \mbox{maximaler Nutzen } v \\ \mbox{\bf Umkehrung Nutzen } v \rightarrow \mbox{minimales Gewicht } w \\$

- \Rightarrow Alternative Tabelle: g[i,v] gibt das minimale Gewicht an, welches
- \blacksquare eine Auswahl der ersten i Gegenstände $(0 \le i \le n)$ hat, die
- einen Nutzen von genau v aufweist ($0 \le v \le \sum_{i=1}^{n} v_i$).

Berechnung

Initial

635

- $g[0,0] \leftarrow 0$
- $g[0,v] \leftarrow \infty$ (Nutzen v kann mit 0 Gegenständen nie erreicht werden.).

Berechnung

$$g[i,v] \leftarrow \begin{cases} g[i-1,v] & \text{falls } v < v_i \\ \min\{g[i-1,v], g[i-1,v-v_i] + w_i\} & \text{sonst.} \end{cases}$$

aufsteigend nach i und für festes i aufsteigend nach v. Lösung ist der grösste Index v mit $g[n,v] \leq w$.

Beispiel

$$E = \{(2,3), (4,5), (1,1)\}$$

$$0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9$$

$$\emptyset \quad 0 \quad \infty \quad \infty$$

$$(2,3) \quad 0 \quad \infty \quad \infty \quad 2 \quad \infty \quad \infty \quad \infty \quad \infty$$

$$i \quad (4,5) \quad 0_{\kappa} \quad \infty \quad \infty \quad 2_{\kappa} \quad \infty \quad 4_{\kappa} \quad \infty \quad \infty \quad 6_{\kappa} \quad \infty$$

$$(1,1) \quad 0 \quad 1 \quad \infty \quad 2 \quad 3 \quad 4 \quad 5 \quad \infty \quad 6 \quad 7$$

Auslesen der Lösung: wenn g[i,v]=g[i-1,v] dann Gegenstand i nicht benutzt und bei g[i-1,v] weiterfahren, andernfalls benutzt und bei $g[i-1,b-v_i]$ weiterfahren.

Der Approximationstrick

Pseudopolynomielle Laufzeit wird polynomiell, wenn vorkommenden Werte in Polynom der Eingabelänge beschränkt werden können.

Sei K>0 *geeignet* gewählt. Ersetze die Nutzwerte v_i durch "gerundete Werte" $\tilde{v_i}=\lfloor v_i/K \rfloor$ und erhalte eine neue Eingabe $E'=(w_i,\tilde{v_i})_{i=1...n}$.

Wenden nun den Algorithmus auf Eingabe E^\prime mit derselben Gewichtsschranke W an.

639

Idee

Beispiel K=5

Eingabe Nutzwerte

$$1, 2, 3, 4, 5, 6, 7, 8, 9, 10, \dots, 98, 99, 100$$
 \rightarrow
 $0, 0, 0, 0, 1, 1, 1, 1, 1, 2, \dots, 19, 19, 20$

Offensichtlich weniger unterschiedliche Nutzwerte

Eigenschaften des neuen Algorithmus

- Auswahl von Gegenständen aus E' ist genauso gültig wie die aus E. Gewicht unverändert!
- Laufzeit des Algorithmus ist beschränkt durch $\mathcal{O}(n^2 \cdot v_{\max}/K)$ $(v_{\max} := \max\{v_i | 1 \le i \le n\})$

Wie gut ist die Approximation?

Es gilt

$$v_i - K \le K \cdot \left\lfloor \frac{v_i}{K} \right\rfloor = K \cdot \tilde{v_i} \le v_i$$

Sei I'_{ont} eine optimale Lösung von E'. Damit

$$\left(\sum_{i \in I_{\mathsf{opt}}} v_i \right) - n \cdot K \overset{|I_{\mathsf{opt}}| \le n}{\le} \sum_{i \in I_{\mathsf{opt}}} (v_i - K) \le \sum_{i \in I_{\mathsf{opt}}} (K \cdot \tilde{v}_i) = K \sum_{i \in I_{\mathsf{opt}}} \tilde{v}_i$$

$$\le \sum_{I'_{\mathsf{opt}} \mathsf{optimal}} K \sum_{i \in I'_{\mathsf{opt}}} \tilde{v}_i = \sum_{i \in I'_{\mathsf{opt}}} K \cdot \tilde{v}_i \le \sum_{i \in I'_{\mathsf{opt}}} v_i.$$

Wahl von K

Forderung:

$$\sum_{i \in I'} v_i \ge (1 - \varepsilon) \sum_{i \in I_{\mathsf{opt}}} v_i.$$

Ungleichung von oben:

$$\sum_{i \in I_{\mathsf{opt}}'} v_i \ge \left(\sum_{i \in I_{\mathsf{opt}}} v_i\right) - n \cdot K$$

Also:
$$K = \varepsilon \frac{\sum_{i \in I_{\mathsf{opt}}} v_i}{n}$$
.

Wahl von K

Wähle $K=arepsilon rac{\sum_{i\in I_{\mathrm{opt}}} v_i}{n}$. Die optimale Summe ist aber unbekannt, daher wählen wir $K'=arepsilon rac{v_{\mathrm{max}}}{n}.^{45}$

Es gilt $v_{\max} \leq \sum_{i \in I_{\text{opt}}} v_i$ und somit $K' \leq K$ und die Approximation ist sogar etwas besser.

Die Laufzeit des Algorithmus ist beschränkt durch

$$\mathcal{O}(n^2 \cdot v_{\text{max}}/K') = \mathcal{O}(n^2 \cdot v_{\text{max}}/(\varepsilon \cdot v_{\text{max}}/n)) = \mathcal{O}(n^3/\varepsilon).$$

FPTAS

643

Solche Familie von Algorithmen nennt man *Approximationsschema*: die Wahl von ε steuert Laufzeit und Approximationsgüte.

Die Laufzeit $\mathcal{O}(n^3/\varepsilon)$ ist ein Polynom in n und in $\frac{1}{\varepsilon}$. Daher nennt man das Verfahren auch ein voll polynomielles Approximationsschema *FPTAS - Fully Polynomial Time Approximation Scheme*

⁴⁵Wir können annehmen, dass vorgängig alle Gegenstände i mit $w_i > W$ entfernt wurden.

21. Dynamic Programming III

Optimale Suchbäume [Ottman/Widmayer, Kap. 5.7]

Optimale binäre Suchbäume

Gegeben: Suchwahrscheinlichkeiten p_i zu jedem Schlüssel k_i $(i=1,\ldots,n)$ und q_i zu jedem Intervall d_i $(i=0,\ldots,n)$ zwischen Suchschlüsseln eines binären Suchbaumes. $\sum_{i=1}^n p_i + \sum_{i=0}^n q_i = 1$.

Gesucht: Optimaler Suchbaum T mit Schlüsseltiefen $\operatorname{depth}(\cdot)$, welcher die erwarteten Suchkosten

$$C(T) = \sum_{i=1}^{n} p_i \cdot (\operatorname{depth}(k_i) + 1) + \sum_{i=0}^{n} q_i \cdot (\operatorname{depth}(d_i) + 1)$$
$$= 1 + \sum_{i=1}^{n} p_i \cdot \operatorname{depth}(k_i) + \sum_{i=0}^{n} q_i \cdot \operatorname{depth}(d_i)$$

minimiert.

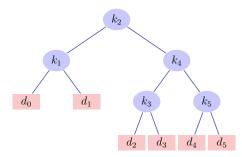
647

Beispiel

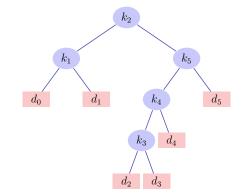
Erwartete Häufigkeiten

i	0	1	2	3	4	5
$\overline{p_i}$		0.15	0.10	0.05	0.10	0.20
q_i	0.05	0.10	0.05	0.05	0.05	0.10

Beispiel



Suchbaum mit erwarteten Kosten 2.8

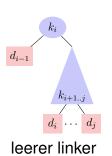


Suchbaum mit erwarteten Kosten 2.75

Struktur eines optimalen Suchbaumes

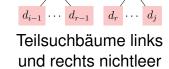
- Teilsuchbaum mit Schlüsseln k_i, \ldots, k_j und Intervallschlüsseln d_{i-1}, \ldots, d_j muss für das entsprechende Teilproblem optimal sein. ⁴⁶
- Betrachten aller Teilsuchbäume mit Wurzel k_r , $i \le r \le j$ und optimalen Teilbäumen k_i, \ldots, k_{r-1} und k_{r+1}, \ldots, k_j

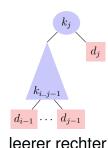
Teilsuchbäume



Teilsuchbaum

651





leerer rechter Teilsuchbaum

Erwartete Suchkosten

Sei $\operatorname{depth}_T(k)$ die Tiefe des Knotens im Teilbaum T. Sei k_r die Wurzel eines Teilbaumes T_r und T_{L_r} und T_{R_r} der linke und rechte Teilbaum von T_r . Dann

$$depth_T(k_i) = depth_{T_{L_r}}(k_i) + 1, (i < r)$$

$$depth_T(k_i) = depth_{T_{R_r}}(k_i) + 1, (i > r)$$

Erwartete Suchkosten

Seien e[i, j] die Kosten eines optimalen Suchbaumes mit Knoten k_i, \ldots, k_j .

Basisfall: e[i, i-1], erwartete Suchkosten d_{i-1}

Sei
$$w(i,j) = \sum_{l=i}^{j} p_l + \sum_{l=i-1}^{j} q_l$$
.

Wenn k_r die Wurzel eines optimalen Teilbaumes mit Schlüsseln k_i, \ldots, k_j , dann

$$\begin{split} e[i,j] &= p_r + (e[i,r-1] + w(i,r-1)) + (e[r+1,j] + w(r+1,j)) \\ \text{mit } w(i,j) &= w(i,r-1) + p_r + w(r+1,j) \\ e[i,j] &= e[i,r-1] + e[r+1,j] + w(i,j). \end{split}$$

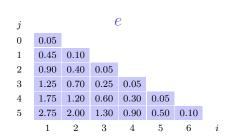
⁴⁶Das übliche Argument: wäre er nicht optimal, könnte er durch eine bessere Lösung ersetzt werden, welche die Gesamtlösung verbessert.

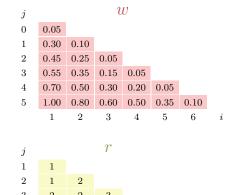
Dynamic Programming

$$e[i,j] = \begin{cases} q_{i-1} & \text{falls } j=i-1, \\ \min_{i \leq r \leq j} \{e[i,r-1] + e[r+1,j] + w[i,j]\} & \text{falls } i \leq j \end{cases}$$

Beispiel

i	0	1 2		3	4	5	
p_i		0.15	0.10	0.05	0.10	0.20	-
a.	0.05	0.10	0.05	0.05	0.05	0.10	





Berechnung

Tabellen $e[1\dots n+1,0\dots n], w[1\dots n+1,0\dots m], r[1\dots n,1\dots n]$ Initial

 \bullet $e[i, i-1] \leftarrow q_{i-1}, w[i, i-1] \leftarrow q_{i-1}$ für alle $1 \le i \le n+1$.

Berechnung

$$w[i, j] = w[i, j - 1] + p_j + q_j$$

$$e[i, j] = \min_{i \le r \le j} \{e[i, r - 1] + e[r + 1, j] + w[i, j]\}$$

$$r[i, j] = \arg\min_{i \le r \le j} \{e[i, r - 1] + e[r + 1, j] + w[i, j]\}$$

für Intervalle [i,j] mit ansteigenden Längen $l=1,\ldots,n$, jeweils für $i=1,\ldots,n-l+1$. Resultat steht in e[1,n], Rekonstruktion via r. Laufzeit $\Theta(n^3)$.

22. Gierige (Greedy) Algorithmen

Gebrochenes Rucksack Problem, Huffman Coding [Cormen et al, Kap. 16.1, 16.3]

Das Gebrochene Rucksackproblem

Menge von $n \in \mathbb{N}$ Gegenständen $\{1, \ldots, n\}$ gegeben. Jeder Gegenstand i hat Nutzwert $v_i \in \mathbb{N}$ und Gewicht $w_i \in \mathbb{N}$. Das Maximalgewicht ist gegeben als $W \in \mathbb{N}$. Bezeichnen die Eingabe mit $E = (v_i, w_i)_{i=1, \ldots, n}$.

Gesucht: Anteile $0 \le q_i \le 1$ $(1 \le i \le n)$ die die Summe $\sum_{i=1}^n q_i \cdot v_i$ maximieren unter $\sum_{i=1}^n q_i \cdot w_i \le W$.

Gierige (Greedy) Heuristik

Sortiere die Gegenstände absteigend nach Nutzen pro Gewicht v_i/w_i .

Annahme $v_i/w_i \geq v_{i+1}/w_{i+1}$

Sei $j = \max\{0 \le k \le n : \sum_{i=1}^k w_i \le W\}$. Setze

- $q_i = 1$ für alle $1 \le i \le j$.
- $q_{j+1} = \frac{W \sum_{i=1}^{j} w_i}{w_{j+1}}.$
- $q_i = 0$ für alle i > j + 1.

Das ist schnell: $\Theta(n \log n)$ für Sortieren und $\Theta(n)$ für die Berechnung der q_i .

Korrektheit

Annahme: Optimale Lösung (r_i) $(1 \le i \le n)$.

Der Rucksack wird immer ganz gefüllt: $\sum_i r_i \cdot w_i = \sum_i q_i \cdot w_i = W$.

Betrachte k: kleinstes i mit $r_i \neq q_i$. Die gierige Heuristik nimmt per Definition so viel wie möglich: $q_k > r_k$. Sei $x = q_k - r_k > 0$.

Konstruiere eine neue Lösung (r_i') : $r_i' = r_i \forall i < k$. $r_k' = q_k$. Entferne Gewicht $\sum_{i=k+1}^n \delta_i = x \cdot w_k$ von den Gegenständen k+1 bis n. Das geht, denn $\sum_{i=k}^n r_i \cdot w_i = \sum_{i=k}^n q_i \cdot w_i$.

Korrektheit

$$\sum_{i=k}^{n} r'_{i}v_{i} = r_{k}v_{k} + xw_{k}\frac{v_{k}}{w_{k}} + \sum_{i=k+1}^{n} (r_{i}w_{i} - \delta_{i})\frac{v_{i}}{w_{i}}$$

$$\geq r_{k}v_{k} + xw_{k}\frac{v_{k}}{w_{k}} + \sum_{i=k+1}^{n} r_{i}w_{i}\frac{v_{i}}{w_{i}} - \delta_{i}\frac{v_{k}}{w_{k}}$$

$$= r_{k}v_{k} + xw_{k}\frac{v_{k}}{w_{k}} - xw_{k}\frac{v_{k}}{w_{k}} + \sum_{i=k+1}^{n} r_{i}w_{i}\frac{v_{i}}{w_{i}} = \sum_{i=k}^{n} r_{i}v_{i}.$$

Also ist (r'_i) auch optimal. Iterative Anwendung dieser Idee erzeugt die Lösung (q_i) .

00

Huffman-Codierungen

Ziel: Speicherplatzeffizientes Speichern einer Folge von Zeichen mit einem binären Zeichencode aus Codewörtern.

Beispiel

File aus 100.000 Buchstaben aus dem Alphabet $\{a, \ldots, f\}$

	а	b	С	d	е	f
Häufigkeit (Tausend)	45	13	12	16	9	5
Codewort fester Länge	000	001	010	011	100	101
Codewort variabler Länge	0	101	100	111	1101	1100

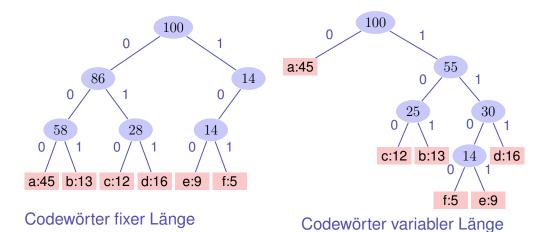
Speichergrösse (Code fixe Länge): 300.000 bits.

Speichergrösse (Code variabler Länge): 224.000 bits.

Huffman-Codierungen

- Betrachten *Präfixcodes*: kein Codewort kann mit einem anderen Codewort beginnen.
- Präfixcodes können im Vergleich mit allen Codes die optimale Datenkompression erreichen (hier ohne Beweis).
- Codierung: Verkettung der Codewörter ohne Zwischenzeichen (Unterschied zum Morsen!) $affe \rightarrow 0 \cdot 1100 \cdot 1100 \cdot 1101 \rightarrow 0110011001101$
- Decodierung einfach da Präfixcode $0110011001101 \rightarrow 0 \cdot 1100 \cdot 1100 \cdot 1101 \rightarrow affe$

Codebäume



Eigenschaften der Codebäume

663

665

- Optimale Codierung eines Files wird immer durch vollständigen binären Baum dargestellt: jeder innere Knoten hat zwei Kinder.
- Sei C die Menge der Codewörter, f(c) die Häufigkeit eines Codeworts c und $d_T(c)$ die Tiefe eines Wortes im Baum T. Definieren die *Kosten* eines Baumes als

$$B(T) = \sum_{c \in C} f(c) \cdot d_T(c).$$

(Kosten = Anzahl Bits des codierten Files)

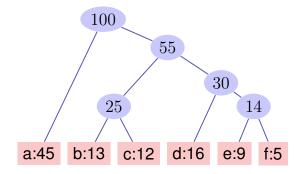
Bezeichnen im folgenden einen Codebaum als optimal, wenn er die Kosten minimiert.

6

Algorithmus Idee

Baum Konstruktion von unten nach oben

- Starte mit der Menge C der Codewörter
- Ersetze iterativ die beiden Knoten mit kleinster Häufigkeit durch ihren neuen Vaterknoten.



Algorithmus Huffman(*C***)**

Input: Codewörter $c \in C$

Output: Wurzel eines optimalen Codebaums

$$n \leftarrow |C| \\ Q \leftarrow C$$

for i = 1 to n - 1 do

Alloziere neuen Knoten z z.left \leftarrow ExtractMin(Q) // Extrahiere Wort mit minimaler Häufigkeit.

z.right \leftarrow ExtractMin(Q)

z.freq $\leftarrow z$.left.freq + z.right.freq Insert(Q, z)

return ExtractMin(Q)

667

Analyse

Verwendung eines Heaps: Heap bauen in $\mathcal{O}(n)$. Extract-Min in $O(\log n)$ für n Elemente. Somit Laufzeit $O(n \log n)$.

Das gierige Verfahren ist korrekt

Theorem

Seien x,y zwei Symbole mit kleinsten Frequenzen in C und sei T'(C') der optimale Baum zum Alphabet $C'=C-\{x,y\}+\{z\}$ mit neuem Symbol z mit f(z)=f(x)+f(y). Dann ist der Baum T(C) der aus T'(C') entsteht, indem der Knoten z durch einen inneren Knoten mit Kindern x und y ersetzt wird, ein optimaler Codebaum zum Alphabet C.

Beweis

Es gilt
$$f(x) \cdot d_T(x) + f(y) \cdot d_T(y) = (f(x) + f(y)) \cdot (d_{T'}(z) + 1) = f(z) \cdot d_{T'}(x) + f(x) + f(y)$$
. Also $B(T') = B(T) - f(x) - f(y)$.

Annahme: T sei nicht optimal. Dann existiert ein optimaler Baum T'' mit B(T'') < B(T). Annahme: x und y Brüder in T''. T''' sei der Baum T'' in dem der innere Knoten mit Kindern x und y gegen z getauscht wird. Dann gilt

$$B(T''') = B(T'') - f(x) - f(y) < B(T) - f(x) - f(y) = B(T').$$
 Widerspruch zur Optimalität von T' .

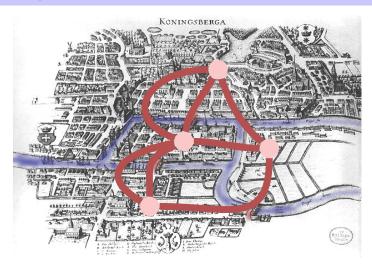
Die Annahme, dass x und y Brüder sind in T'' kann man rechtfertigen, da ein Tausch der Elemente mit kleinster Häufigkeit auf die unterste Ebene den Wert von B höchstens verkleinern kann.

23. Graphen

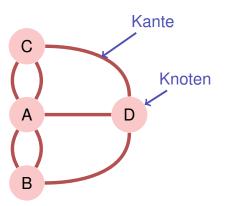
Notation, Repräsentation, Traversieren (DFS, BFS), Topologisches Sortieren, Reflexive transitive Hülle, Zusammenhangskomponenten [Ottman/Widmayer, Kap. 9.1 - 9.4, Cormen et al, Kap. 22]

671

Königsberg 1736



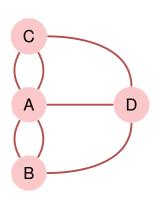
[Multi]Graph



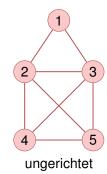
6/3

Zyklen

- Gibt es einen Rundweg durch die Stadt (den Graphen), welcher jede Brücke (jede Kante) genau einmal benutzt?
- Euler (1736): nein.
- Solcher Rundweg (Zyklus) heisst Eulerscher Kreis.
- Eulerzyklus ⇔ jeder Knoten hat gerade Anzahl Kanten (jeder Knoten hat einen geraden Grad).



Notation



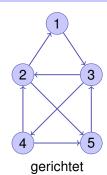
$$V = \{1, 2, 3, 4, 5\}$$

$$E = \{\{1, 2\}, \{1, 3\}, \{2, 3\}, \{2, 4\},$$

$$\{2, 5\}, \{3, 4\}, \{3, 5\}, \{4, 5\}\}$$

$$V = \{1, 2, 3, 4, 5\}$$

$$E = \{(1, 3), (2, 1), (2, 5), (3, 2), (3, 4), (4, 2), (4, 5), (5, 3)\}$$

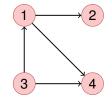


 $V = \{1, 2, 3, 4, 5\}$

(3,4), (4,2), (4,5), (5,3)

Notation

Ein *gerichteter Graph* besteht aus einer Menge $V = \{v_1, \dots, v_n\}$ von Knoten (*Vertices*) und einer Menge $E \subseteq V \times V$ von Kanten (Edges). Gleiche Kanten dürfen nicht mehrfach enthalten sein.



Schleife

Notation

675

677

Ein *ungerichteter Graph* besteht aus einer Menge $V = \{v_1, \dots, v_n\}$ von Knoten und einer Menge $E \subseteq \{\{u,v\}|u,v\in V\}$ von Kanten. Kanten dürfen nicht mehrfach enthalten sein 47



⁴⁷Im Gegensatz zum Eingangsbeispiel – dann Multigraph genannt.

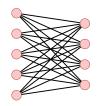
[&]quot;⇒" ist sofort klar. "←" ist etwas schwieriger, aber auch elementar.

Notation

Ein ungerichteter Graph G=(V,E) ohne Schleifen in dem jeder Knoten mit jedem anderen Knoten durch eine Kante verbunden ist, heisst *vollständig*.

Notation

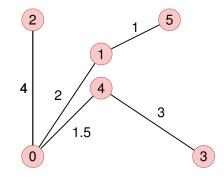
Ein Graph, bei dem V so in disjunkte U und W aufgeteilt werden kann, dass alle $e \in E$ einen Knoten in U und einen in W haben heisst $\emph{bipartit}$.



679

Notation

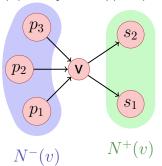
Ein *gewichteter Graph* G=(V,E,c) ist ein Graph G=(V,E) mit einer *Kantengewichtsfunktion* $c:E\to\mathbb{R}.$ c(e) heisst *Gewicht* der Kante e.



Notation

Für gerichtete Graphen G = (V, E)

- $w \in V$ heisst *adjazent* zu $v \in V$, falls $(v, w) \in E$
- Vorgängermenge von $v \in V$: $N^-(v) := \{u \in V | (u, v) \in E\}$. Nachfolgermenge: $N^+(v) := \{u \in V | (v, u) \in E\}$



Notation

Für gerichtete Graphen G = (V, E)

■ Eingangsgrad: $\deg^-(v) = |N^-(v)|$, Ausgangsgrad: $\deg^+(v) = |N^+(v)|$

$$\deg^-(v) = 3$$
, $\deg^+(v) = 2$ $\deg^-(w) = 1$, $\deg^+(w) = 1$

Notation

Für ungerichtete Graphen G = (V, E):

- $w \in V$ heisst *adjazent* zu $v \in V$, falls $\{v, w\} \in E$
- Nachbarschaft von $v \in V$: $N(v) = \{w \in V | \{v, w\} \in E\}$
- Grad von v: deg(v) = |N(v)| mit Spezialfall Schleifen: erhöhen Grad um 2.

$$\deg(v) = 5$$

$$\deg(w) = 2$$

683

Beziehung zwischen Knotengraden und Kantenzahl

Wege

In jedem Graphen G = (V, E) gilt

- $\sum_{v \in V} \deg^-(v) = \sum_{v \in V} \deg^+(v) = |E|$, falls G gerichtet
- $\sum_{v \in V} \deg(v) = 2|E|$, falls G ungerichtet.

- *Weg*: Sequenz von Knoten $\langle v_1, \ldots, v_{k+1} \rangle$ so dass für jedes $i \in \{1 \ldots k\}$ eine Kante von v_i nach v_{i+1} existiert.
- *Länge* des Weges: Anzahl enthaltene Kanten k.
- *Gewicht* des Weges (in gewichteten Graphen): $\sum_{i=1}^k c((v_i, v_{i+1}))$ (bzw. $\sum_{i=1}^k c(\{v_i, v_{i+1}\})$)
- Pfad (auch: einfacher Pfad): Weg der keinen Knoten mehrfach verwendet.

685

Zusammenhang

Einfache Beobachtungen

- Ungerichteter Graph heisst *zusammenhängend*, wenn für jedes Paar $v, w \in V$ ein verbindender Weg existiert.
- Gerichteter Graph heisst *stark zusammenhängend*, wenn für jedes Paar $v, w \in V$ ein verbindender Weg existiert.
- Gerichteter Graph heisst *schwach zusammenhängend*, wenn der entsprechende ungerichtete Graph zusammenhängend ist.

- Allgemein: $0 \le |E| \in \mathcal{O}(|V|^2)$
- Zusammenhängender Graph: $|E| \in \Omega(|V|)$
- Vollständiger Graph: $|E| = \frac{|V| \cdot (|V| 1)}{2}$ (ungerichtet)
- \blacksquare Maximal $|E|=|V|^2$ (gerichtet), $|E|=\frac{|V|\cdot(|V|+1)}{2}$ (ungerichtet)

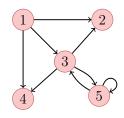
Zyklen

- **Zyklus:** Weg $\langle v_1, \ldots, v_{k+1} \rangle$ mit $v_1 = v_{k+1}$
- *Kreis*: Zyklus mit paarweise verschiedenen v_1, \ldots, v_k , welcher keine Kante mehrfach verwendet.
- Kreisfrei (azyklisch): Graph ohne jegliche Kreise.

Eine Folgerung: Ungerichtete Graphen können keinen Kreis der Länge 2 enthalten (Schleifen haben Länge 1).

Repräsentation mit Matrix

Graph G=(V,E) mit Knotenmenge v_1,\ldots,v_n gespeichert als Adjazenzmatrix $A_G=(a_{ij})_{1\leq i,j\leq n}$ mit Einträgen aus $\{0,1\}$. $a_{ij}=1$ genau dann wenn Kante von v_i nach v_j .

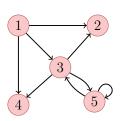


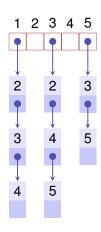
$$\left(\begin{array}{cccccccccc}
0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1
\end{array}\right)$$

Speicherbedarf $\Theta(|V|^2)$. A_G ist symmetrisch, wenn G ungerichtet.

Repräsentation mit Liste

Viele Graphen G=(V,E) mit Knotenmenge v_1,\ldots,v_n haben deutlich weniger als n^2 Kanten. Repräsentation mit $\mbox{\it Ad-jazenzliste}$: Array $A[1],\ldots,A[n],\ A_i$ enthält verkettete Liste aller Knoten in $N^+(v_i)$.



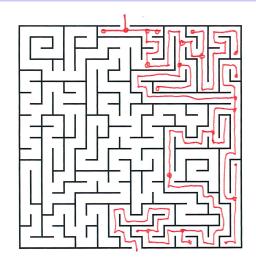


Speicherbedarf $\Theta(|V| + |E|)$.

Laufzeiten einfacher Operationen

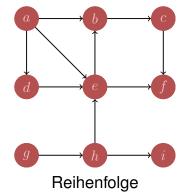
Operation	Matrix	Liste	
${\bf Nachbarn/Nachfolger\ von\ }v\in V\ {\bf finden}$	$\Theta(n)$	$\Theta(\deg^+ v)$	
$v \in V$ ohne Nachbar/Nachfolger finden	$\Theta(n^2)$	$\Theta(n)$	
$(u,v) \in E$?	$\Theta(1)$	$\Theta(\deg^+ v)$	
Kante einfügen	$\Theta(1)$	$\Theta(1)$	
Kante löschen	$\Theta(1)$	$\Theta(\deg^+ v)$	

Tiefensuche



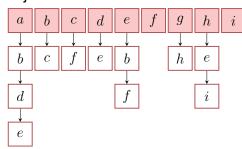
Graphen Traversieren: Tiefensuche

Verfolge zuerst Pfad in die Tiefe, bis nichts mehr besucht werden kann.



a, b, c, f, d, e, g, h, i

Adjazenzliste



Farben

Konzeptuelle Färbung der Knoten

- **Weiss:** Knoten wurde noch nicht entdeckt.
- Grau: Knoten wurde entdeckt und zur Traversierung vorgemerkt / in Bearbeitung.
- Schwarz: Knoten wurde entdeckt und vollständig bearbeitet

Algorithmus Tiefensuche DFS-Visit(G, v)

Tiefensuche ab Knoten v. Laufzeit (ohne Rekursion): $\Theta(\deg^+ v)$

695

696

Algorithmus Tiefensuche DFS-Visit(*G***)**

```
\begin{array}{l} \textbf{Input:} \;\; \mathsf{Graph} \;\; G = (V,E) \\ \textbf{foreach} \;\; v \in V \;\; \textbf{do} \\ \;\; \bigsqcup \;\; v.color \leftarrow \mathsf{white} \\ \textbf{foreach} \;\; v \in V \;\; \textbf{do} \\ \;\; \bigsqcup \;\; v.color = \mathsf{white} \;\; \textbf{then} \\ \;\; \bigsqcup \;\; \mathsf{DFS-Visit}(\mathsf{G,v}) \end{array}
```

Tiefensuche für alle Knoten eines Graphen. Laufzeit $\Theta(|V| + \sum_{v \in V} (\deg^+(v) + 1)) = \Theta(|V| + |E|).$

Iteratives DFS-Visit(G, v)

```
Input: Graph G = (V, E), v \in V mit v.color = white
Stack S \leftarrow \emptyset
v.color \leftarrow \mathsf{grey}; S.\mathsf{push}(v)
                                                  // invariant: grey nodes always on stack
while S \neq \emptyset do
     w \leftarrow \mathsf{nextWhiteSuccessor}(v)
                                                                               // code: next slide
     if w \neq \text{null then}
           w.color \leftarrow \mathsf{grey}; S.\mathsf{push}(w)
                                               // work on w. parent remains on the stack
     else
                                                    // no grey successors, v becomes black
           v.color \leftarrow \mathsf{black}
          if S \neq \emptyset then
                v \leftarrow S.pop()
                                                                      // visit/revisit next node
                if v.color = grey then S.push(v)
                                                                            Speicherbedarf Stack \Theta(|V|)
```

nextWhiteSuccessor(v)

Interpretation der Farben

Input: Knoten $v \in V$

Output: Nachfolgeknoten u von v mit u.color = white, null sonst

return null

Beim Traversieren des Graphen wird ein Baum (oder Wald) aufgebaut. Beim Entdecken von Knoten gibt es drei Fälle

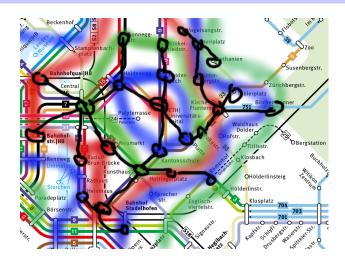
■ Weisser Knoten: neue Baumkante

■ Grauer Knoten: Zyklus ("Rückwärtskante")

Schwarzer Knoten: Vorwärts-/Seitwärtskante

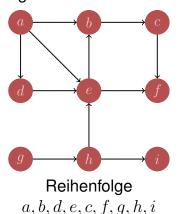
699

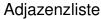
Breitensuche

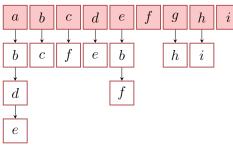


Graphen Traversieren: Breitensuche

Verfolge zuerst Pfad in die Breite, gehe dann in die Tiefe.







(Iteratives) BFS-Visit(G, v)

```
\begin{aligned} \textbf{Input:} & \text{Graph } G = (V, E) \\ & \text{Queue } Q \leftarrow \emptyset \\ & v.color \leftarrow \text{grey} \\ & \text{enqueue}(Q, v) \\ & \textbf{while } Q \neq \emptyset \text{ do} \\ & w \leftarrow \text{dequeue}(Q) \\ & \textbf{foreach } c \in N^+(w) \text{ do} \\ & & \text{if } c.color = \text{white then} \\ & & c.color \leftarrow \text{grey} \\ & \text{enqueue}(Q, c) \\ & w.color \leftarrow \text{black} \end{aligned}
```

Algorithmus kommt mit $\mathcal{O}(|V|)$ Extraplatz aus.

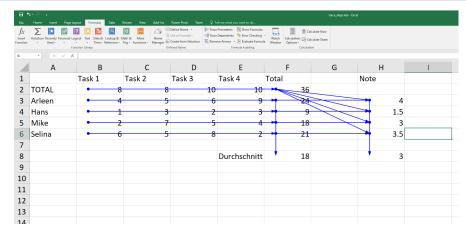
Rahmenprogramm BFS-Visit(*G***)**

```
\begin{array}{l} \textbf{Input:} \; \mathsf{Graph} \; G = (V, E) \\ \textbf{foreach} \; v \in V \; \textbf{do} \\ \quad \lfloor \; v.color \leftarrow \mathsf{white} \\ \textbf{foreach} \; v \in V \; \textbf{do} \\ \quad \rfloor \; \; \textbf{if} \; v.color = \mathsf{white} \; \textbf{then} \\ \quad \lfloor \; \mathsf{BFS-Visit}(\mathsf{G,v}) \\ \end{array}
```

Breitensuche für alle Knoten eines Graphen. Laufzeit $\Theta(|V| + |E|)$.

703

Topologisches Sortieren



Auswertungsreihenfolge?

Topologische Sortierung

Topologische Sortierung eines azyklischen gerichteten Graphen G = (V, E):

Bijektive Abbildung

ord :
$$V \to \{1, ..., |V|\}$$

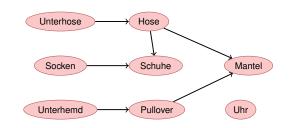
so dass

$$\operatorname{ord}(v) < \operatorname{ord}(w) \ \forall \ (v, w) \in E.$$

Identifizieren Wert i mit dem Element $v_i := \operatorname{ord}^{-1}(i)$. Topologische Sortierung $\widehat{=} \langle v_1, \dots, v_{|V|} \rangle$.

(Gegen-)Beispiele

Zyklischer Graph: kann nicht topologisch sortiert



Eine mögliche Topologische Sortierung des Graphen: Unterhemd, Pullover, Unterhose, Uhr, Hose, Mantel, Socken, Schuhe

Beobachtung

Theorem

Ein gerichteter Graph G = (V, E) besitzt genau dann eine topologische Sortierung, wenn er kreisfrei ist

Beweis " \Rightarrow ": Wenn G einen Kreis besitzt, so besitzt er keine topologische Sortierung. Denn in einem Kreis $\langle v_{i_1}, \dots, v_{i_m} \rangle$ gälte $v_{i_1} < \cdots < v_{i_m} < v_{i_1}$.

707

Induktiver Beweis Gegenrichtung

- \blacksquare Anfang (n=1): Graph mit einem Knoten ohne Schleife ist topologisch sortierbar. Setze $\operatorname{ord}(v_1) = 1$.
- Hypothese: Graph mit *n* Knoten kann topologisch sortiert werden.
- \blacksquare Schritt $(n \rightarrow n+1)$:
 - If G enthalt einen Knoten v_g mit Eingangsgrad $\deg^-(v_g) = 0$. Andernfalls verfolge iterativ Kanten rückwärts – nach spätestens n+1 Iterationen würde man einen Knoten besuchen, welcher bereits besucht wurde. Widerspruch zur Zyklenfreiheit.
 - **2** Graph ohne Knoten v_a und ohne dessen Eingangskanten kann nach Hypothese topologisch sortiert werden. Verwende diese Sortierung, setze $\operatorname{ord}(v_i) \leftarrow \operatorname{ord}(v_i) + 1$ für alle $i \neq q$ und setze $\operatorname{ord}(v_q) \leftarrow 1$.

Algorithmus, vorläufiger Entwurf

Graph G = (V, E). $d \leftarrow 1$

- Traversiere von beliebigem Knoten rückwärts bis ein Knoten v_a mit Eingangsgrad 0 gefunden ist.
- 2 Wird kein Knoten mit Eingangsgrad 0 gefunden (n Schritte), dann Zyklus gefunden.
- Setze ord $(v_a) \leftarrow d$.
- **4** Entferne v_q und seine Kanten von G.
- **5** Wenn $V \neq \emptyset$, dann $d \leftarrow d+1$, gehe zu Schritt 1.

Laufzeit im schlechtesten Fall: $\Theta(|V|^2)$.

Verbesserung

Idee?

Berechne die Eingangsgrade der Knoten im Voraus und durchlaufe dann jeweils die Knoten mit Eingangsgrad 0 die Eingangsgrade der Nachfolgeknoten korrigierend.

Algorithmus Topological-Sort(*G*)

```
\begin{array}{l} \textbf{Input: Graph } G = (V, E). \\ \textbf{Output: Topologische Sortierung ord} \\ \textbf{Stack } S \leftarrow \emptyset \\ \textbf{foreach } v \in V \ \textbf{do} \ A[v] \leftarrow 0 \\ \textbf{foreach } (v, w) \in E \ \textbf{do} \ A[w] \leftarrow A[w] + 1 \ / \ \text{Eingangsgrade berechnen} \\ \textbf{foreach } v \in V \ \text{with } A[v] = 0 \ \textbf{do} \ \text{push}(S, v) \ / \ \text{Merke Nodes mit Eingangsgrad} \\ 0 \\ i \leftarrow 1 \\ \textbf{while } S \neq \emptyset \ \textbf{do} \\ v \leftarrow \text{pop}(S); \ \text{ord}[v] \leftarrow i; \ i \leftarrow i+1 \ / \ \text{W\"{a}hle Knoten mit Eingangsgrad 0} \\ \textbf{foreach } (v, w) \in E \ \textbf{do} \ / \ \text{Verringere Eingangsgrad der Nachfolger} \\ A[w] \leftarrow A[w] - 1 \\ \textbf{if } A[w] = 0 \ \textbf{then push}(S, w) \\ \end{array}
```

if i = |V| + 1 then return ord else return "Cycle Detected"

Algorithmus Korrektheit

Theorem

Sei G=(V,E) ein gerichteter, kreisfreier Graph. Der Algorithmus TopologicalSort(G) berechnet in Zeit $\Theta(|V|+|E|)$ eine topologische Sortierung ord für G.

Beweis: folgt im wesentlichen aus vorigem Theorem:

- **I** Eingangsgrad verringern entspricht Knotenentfernen.
- Im Algorithmus gilt für jeden Knoten v mit A[v] = 0 dass entweder der Knoten Eingangsgrad 0 hat oder dass zuvor alle Vorgänger einen Wert $\operatorname{ord}[u] \leftarrow i$ zugewiesen bekamen und somit $\operatorname{ord}[v] > \operatorname{ord}[u]$ für alle Vorgänger u von v. Knoten werden nur einmal auf den Stack gelegt.
- Laufzeit: Inspektion des Algorithmus (mit Argumenten wie beim Traversieren).

Algorithmus Korrektheit

Theorem

Sei G=(V,E) ein gerichteter, nicht kreisfreier Graph. Der Algorithmus TopologicalSort(G) terminiert in Zeit $\Theta(|V|+|E|)$ und detektiert Zyklus.

Beweis: Sei $\langle v_{i_1}, \dots, v_{i_k} \rangle$ ein Kreis in G. In jedem Schritt des Algorithmus bleibt $A[v_{i_j}] \geq 1$ für alle $j = 1, \dots, k$. Also werden k Knoten nie auf den Stack gelegt und somit ist zum Schluss $i \leq V + 1 - k$.

Die Laufzeit des zweiten Teils des Algorithmus kann kürzer werden, jedoch kostet die Berechnung der Eingangsgrade bereits $\Theta(|V|+|E|)$.

Alternative: Algorithmus DFS-Topsort(G, v)

Rufe Algorithmus für jeden noch nicht besuchten Knoten auf. Asymptotische Laufzeit $\Theta(|V|+|E|).$

Adjazenzmatrizen multipliziert

$$B := A_G^2 = \begin{pmatrix} 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix}^2 = \begin{pmatrix} 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 2 \end{pmatrix}$$

715

Interpretation

Theorem

Sei G=(V,E) ein Graph und $k\in\mathbb{N}$. Dann gibt das Element $a_{i,j}^{(k)}$ der Matrix $(a_{i,j}^{(k)})_{1\leq i,j\leq n}=(A_G)^k$ die Anzahl der Wege mit Länge k von v_i nach v_j an.

Beweis

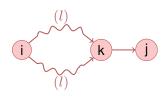
Per Induktion.

Anfang: Klar für k = 1. $a_{i,j} = a_{i,j}^{(1)}$.

Hypothese: Aussage wahr für alle $k \leq l$

Schritt ($l \rightarrow l+1$):

$$a_{i,j}^{(l+1)} = \sum_{k=1}^{n} a_{i,k}^{(l)} \cdot a_{k,j}$$



 $a_{k,j}=1$ g.d.w. Kante von k nach j, 0 sonst. Summe zählt die Anzahl Wege der Länge l vom Knoten v_i zu allen Knoten v_k welche direkte Verbindung zu Knoten v_j haben, also alle Wege der Länge l+1.

Beispiel: Kürzester Weg

Frage: existiert Weg von *i* nach *j*? Wie lang ist der kürzeste Weg? *Antwort:* Potenziere A_G bis für ein k < n gilt $a_{i,j}^{(k)} > 0$. k gibt die Weglänge des kürzesten Weges. Wenn $a_{i,j}^{(k)} = 0$ für alle $1 \le k < n$, so gibt es keinen Weg von i nach j.

Beispiel: Anzahl Dreiecke

Frage: Wie viele Dreieckswege enthält ein ungerichteter Graph?

Antwort: Entferne alle Zyklen (Diagonaleinträge). Berechne A_G^3 . $a_{ii}^{(3)}$ bestimmt die Anzahl Wege der Länge 3, die i enthalten. Es gibt 6 verschiedene Permutationen eines Dreicksweges. Damit Anzahl Dreiecke: $\sum_{i=1}^{n} a_{ii}^{(3)}/6$.

Relation

Gegeben: endliche Menge V

(Binäre) **Relation** R auf V: Teilmenge des kartesischen Produkts $V \times V = \{(a, b) | a \in V, b \in V\}$

Relation $R \subseteq V \times V$ heisst

- **reflexiv**, wenn $(v, v) \in R$ für alle $v \in V$
- **symmetrisch**, wenn $(v, w) \in R \Rightarrow (w, v) \in R$
- **transitiv**, wenn $(v, x) \in R$, $(x, w) \in R \Rightarrow (v, w) \in R$

Die (Reflexive) Transitive Hülle R^* von R ist die kleinste Erweiterung $R \subseteq R^* \subseteq V \times V$ von R, so dass R^* reflexiv und transitiv ist.

Graphen und Relationen

Graph G = (V, E)

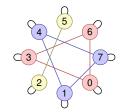
Adjazenzen $A_G \cong \text{Relation } E \subseteq V \times V \text{ auf } V$

- **reflexiv** $\Leftrightarrow a_{i,i} = 1$ für alle $i = 1, \dots, n$. (Schleifen)
- **symmetrisch** $\Leftrightarrow a_{i,j} = a_{j,i}$ für alle $i, j = 1, \dots, n$ (ungerichtet)
- **transitiv** \Leftrightarrow $(u,v) \in E$, $(v,w) \in E \Rightarrow (u,w) \in E$. (Erreichbarkeit)

Beispiel: Äquivalenzrelation

Äquivalenzrelation ⇔ symmetrische, transitive, reflexive Relation ⇔ Kollektion vollständiger, ungerichteter Graphen, für den jedes Element eine Schleife hat.

Beispiel: Äquivalenzklassen der Zahlen $\{0,...,7\}$ modulo 3



Reflexive Transitive Hülle

Reflexive transitive Hülle von $G\Leftrightarrow \textit{Erreichbarkeitsrelation }E^*$: $(v,w)\in E^*$ gdw. \exists Weg von Knoten v zu w.

723

Berechnung Reflexive Transitive Hülle

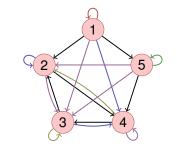
Ziel: Berechnung von $B = (b_{ij})_{1 \le i,j \le n}$ mit $b_{ij} = 1 \Leftrightarrow (v_i,v_j) \in E^*$ *Beobachtung:* $a_{ij} = 1$ bedeutet bereits $(v_i,v_j) \in E^*$.

Erste Idee:

- Starte mit $B \leftarrow A$ und setze $b_{ii} = 1$ für alle i (Reflexivität).
- Iteriere über i, j, k und setze $b_{ij} = 1$, wenn $b_{ik} = 1$ und $b_{kj} = 1$. Dann alle Wege der Länge 1 und 2 berücksichtigt
- Wiederhole Iteration \Rightarrow alle Wege der Länge $1 \dots 4$ berücksichtigt.
- $\lceil \log_2 n \rceil$ Wiederholungen nötig. \Rightarrow Laufzeit $n^3 \lceil \log_2 n \rceil$

Verbesserung: Algorithmus von Warshall (1962)

Induktiver Ansatz: Alle Wege bekannt über Knoten aus $\{v_i : i < k\}$. Hinzunahme des Knotens v_k .



 $\begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 \end{bmatrix}$

Algorithmus TransitiveClosure(A_G)

Input: Adjazenzmatrix $A_G = (a_{ij})_{i,j=1...n}$

Output: Reflexive Transitive Hülle $B = (b_{ij})_{i,i=1...n}$ von G

$$\begin{array}{c|c} B \leftarrow A_G \\ \textbf{for } k \leftarrow 1 \ \textbf{to} \ n \ \textbf{do} \\ \hline & a_{kk} \leftarrow 1 \\ \textbf{for } i \leftarrow 1 \ \textbf{to} \ n \ \textbf{do} \\ \hline & \textbf{for } j \leftarrow 1 \ \textbf{to} \ n \ \textbf{do} \\ \hline & b_{ij} \leftarrow \max\{b_{ij}, b_{ik} \cdot b_{kj}\} \end{array} & // \ \text{Alle Wege "uber } v_k \end{array}$$

return B

Laufzeit des Algorithmus $\Theta(n^3)$.

Korrektheit des Algorithmus (Induktion)

Invariante (k): alle Wege über Knoten mit maximalem Index < k berücksichtigt

- Anfang (k = 1): Alle direkten Wege (alle Kanten) in A_G berücksichtigt.
- **Hypothese**: Invariante (*k*) erfüllt.
- Schritt $(k \to k+1)$: Für jeden Weg von v_i nach v_j über Knoten mit maximalen Index k: nach Hypothese $b_{ik} = 1$ und $b_{kj} = 1$. Somit im k-ten Schleifendurchlauf: $b_{ij} \leftarrow 1$.

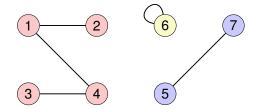


727

Zusammenhangskomponenten

Zusammenhangskomponenten eines ungerichteten Graphen G: Äquivalenzklassen der reflexiven, transitiven Hülle von G. Zusammenhangskomponente = Teilgraph G' = (V', E'), $E' = \{\{v, w\} \in E | v, w \in V'\}$ mit

$$E' = \{\{v, w\} \in E | v, w \in V'\} \text{ mit } \\ \{\{v, w\} \in E | v \in V' \lor w \in V'\} = E = \{\{v, w\} \in E | v \in V' \land w \in V'\}$$



Graph mit Zusammenhangskomponenten $\{1, 2, 3, 4\}, \{5, 7\}, \{6\}.$

Berechnung der Zusammenhangskomponenten

- Berechnung einer Partitionierung von V in paarweise disjunkte Teilmengen V_1, \ldots, V_k
- lacksquare so dass jedes V_i die Knoten einer Zusammenhangskomponente enhält.
- Algorithmus: Tiefen- oder Breitensuche. Bei jedem Neustart von DFSSearch(G,v) oder BFSSearch(G,v) neue leere Zusammenhangskomponte erstellen und alle traversierten Knoten einfügen.

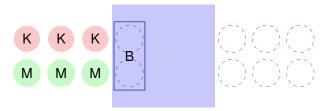
728

24. Kürzeste Wege

Motivation, Dijkstras Algorithmus auf Distanzgraphen, Algorithmus von Bellman-Ford, Algorithmus von Floyd-Warshall [Ottman/Widmayer, Kap. 9.5 Cormen et al, Kap. 24.1-24.3, 25.2-25.3]

Flussüberquerung (Missionare und Kannibalen)

Problem: Drei Kannibalen und drei Missionare stehen an einem Ufer eines Flusses. Ein dort bereitstehendes Boot fasst maximal zwei Personen. Zu keiner Zeit dürfen an einem Ort (Ufer oder Boot) mehr Kannibalen als Missionare sein. Wie kommen die Missionare und Kannibalen möglichst schnell über den Fluss? ⁴⁸



⁴⁸Es gibt leichte Variationen dieses Problems, es ist auch äguivalent zum Problem der eifersüchtigen Ehemänner

731

Formulierung als Graph

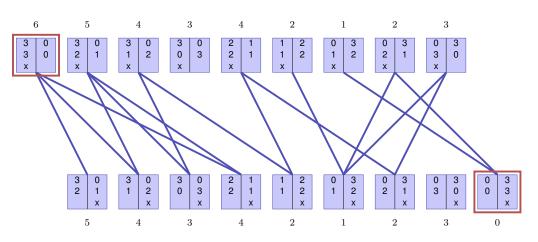
Zähle alle erlaubten Konfigurationen als Knoten auf und verbinde diese mit einer Kante, wenn Überfahrt möglich ist. Das Problem ist dann ein Problem des kürzesten Pfades

Beispiel

	links	rechts			links	rechts
Missionare	3	0	Uberfahrt möglich	Missionare	2	1
Kannibalen	3	0		Kannibalen	2	1
Boot	Х			Boot		х

6 Personen am linken Ufer

Das ganze Problem als Graph



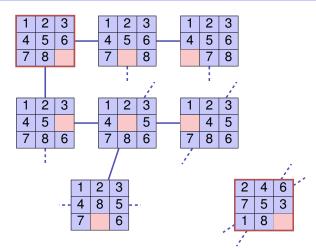
733

⁴ Personen am linken Ufer

Anderes Beispiel: Schiebepuzzle

Wollen die schnelleste Lösung finden für

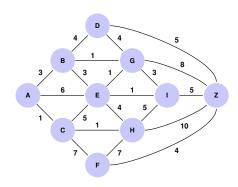
Problem als Graph



735

Routenfinder

Gegeben Städte A - Z und Distanzen zwischen den Städten.

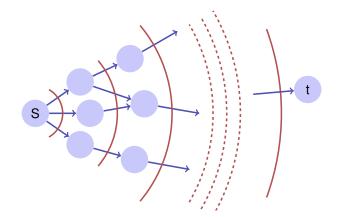


Was ist der kürzeste Weg von A nach Z?

Einfachster Fall

Konstantes Kantengewicht 1 (oBdA)

Lösung: Breitensuche



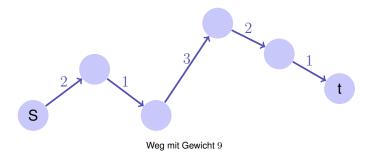
Gewichtete Graphen

Gegeben: $G = (V, E, c), c : E \to \mathbb{R}, s, t \in V.$

Gesucht: Länge (Gewicht) eines kürzesten Weges von s nach t.

Weg: $p = \langle s = v_0, v_1, \dots, v_k = t \rangle, (v_i, v_{i+1}) \in E \ (0 \le i < k)$

Gewicht: $c(p) := \sum_{i=0}^{k-1} c((v_i, v_{i+1})).$



Kürzeste Wege

Notation: Wir schreiben

$$u \stackrel{p}{\leadsto} v$$
 oder $p: u \leadsto v$

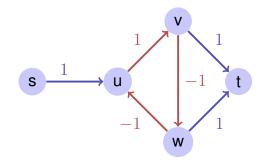
und meinen einen Weg p von u nach v

Notation: $\delta(u, v)$ = Gewicht eines kürzesten Weges von u nach v:

$$\delta(u,v) = \begin{cases} \infty & \text{kein Weg von } u \text{ nach } v \\ \min\{c(p) : u \overset{p}{\leadsto} v\} & \text{sonst} \end{cases}$$

Beobachtungen (1)

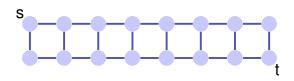
Es gibt Situationen, in denen kein kürzester Weg existiert: negative Zyklen könnten auftreten.



Beobachtungen (2)

739

Es kann exponentiell viele Wege geben.



(mindestens $2^{|V|/2}$ Wege von s nach t)

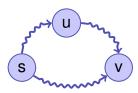
⇒ Alle Wege probieren ist zu ineffizient.

Beobachtungen (3)

Dreiecksungleichung

Für alle $s, u, v \in V$:

$$\delta(s, v) \le \delta(s, u) + \delta(u, v)$$

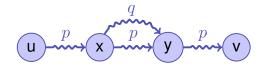


Ein kürzester Weg von s nach v (ohne weitere Einschränkungen) kann nicht länger sein als ein kürzester Weg von s nach v, der u enthalten muss.

Beobachtungen (4)

Optimale Substruktur

Teilpfade von kürzesten Pfaden sind kürzeste Pfade: Sei $p = \langle v_0, \dots, v_k \rangle$ ein kürzester Pfad von v_0 nach v_k . Dann ist jeder der Teilpfade $p_{ij} = \langle v_i, \dots, v_j \rangle$ ($0 \le i < j \le k$) ein kürzester Pfad von v_i nach v_j .



Wäre das nicht so, könnte man einen der Teilpfade kürzen, Widerspruch zur Voraussetzung.

Beobachtungen (5)

Kürzeste Wege enthalten keine Zyklen

- 1 Kürzester Weg enthält negativen Zyklus: es exisitiert kein kürzester Weg. Widerspruch.
- Weg enthält positiven Zyklus: Weglassen des positiven Zyklus kann den Weg verkürzen: Widerspruch
- Weg enthält Zyklus vom Gewicht 0: Weglassen des Zyklus verändert das Pfadgewicht nicht. Weglassen (Konvention).

Zutaten für einen Algorithmus

Gesucht: Kürzeste Wege von einem Startknoten s aus.

■ Gewicht des kürzesten bisher gefundenen Pfades

$$d_s:V\to\mathbb{R}$$

Zu Beginn: $d_s[v] = \infty$ für alle Knoten $v \in V$. *Ziel:* $d_s[v] = \delta(s,v)$ für alle $v \in V$.

Vorgänger eines Knotens

$$\pi_s: V \to V$$

Zu Beginn $\pi_s[v]$ undefiniert für jeden Knoten $v \in V$

.

Allgemeiner Algorithmus

- Initialisiere d_s und π_s : $d_s[v] = \infty$, $\pi_s[v] = \text{null für alle } v \in V$
- **2** Setze $d_s[s] \leftarrow 0$
- **3** Wähle eine Kante $(u, v) \in E$

Relaxiere (u, v): if $d_s[v] > d[u] + c(u, v)$ then $d_s[v] \leftarrow d_s[u] + c(u, v)$ $\pi_s[v] \leftarrow u$

Wiederhole 3 bis nichts mehr relaxiert werden kann. (bis $d_s[v] \le d_s[u] + c(u,v) \quad \forall (u,v) \in E$)

Relaxieren ist sicher

Zu jeder Zeit gilt in obigem Algorithmus

$$d_s[v] \ge \delta(s, v) \quad \forall v \in V$$

Im Relaxierschritt:

$$\begin{split} \delta(s,v) & \leq \delta(s,u) + \delta(u,v) & \text{[Dreiecksungleichung]}. \\ \delta(s,u) & \leq d_s[u] & \text{[Induktionsvorraussetzung]}. \\ \delta(u,v) & \leq c(u,v) & \text{[Minimalität von δ]} \\ \Rightarrow & d_s[u] + c(u,v) \geq \delta(s,v) \end{split}$$

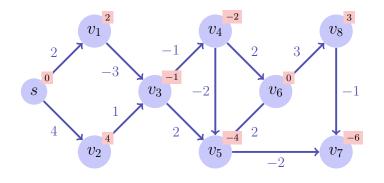
$$\Rightarrow \min\{d_s[v], d_s[u] + c(u, v)\} \ge \delta(s, v)$$

Zentrale Frage

Wie / in welcher Reihenfolge wählt man die Kanten in obigem Algorithmus?

Spezialfalfall: Gerichteter Azyklischer Graph (DAG)

DAG ⇒ Topologische Sortierung liefert optimale Besuchsreihenfolge

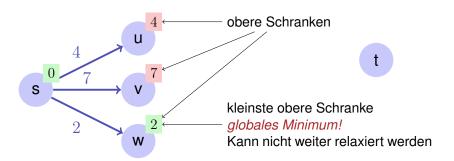


 $\mbox{Top. Sortieren:} \Rightarrow \mbox{Reihenfolge} \ s, v_1, v_2, v_3, v_4, v_6, v_5, v_8, v_7.$

Annahme (vorübergehend)

Alle Gewichte von *G* sind *positiv*.

Beobachtung (Dijkstra)

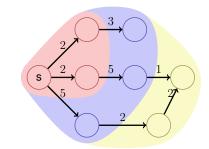


751

Grundidee

Menge V aller Knoten wird unterteilt in

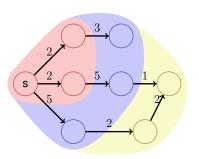
- die Menge M von Knoten, für die schon ein kürzester Weg von s bekannt ist
- die Menge $R = \bigcup_{v \in M} N^+(v) \setminus M$ von Knoten, für die kein kürzester Weg bekannt ist, die jedoch von M direkt erreichbar sind.
- die Menge $U = V \setminus (M \cup R)$ von Knoten, die noch nicht berücksichtigt wurden.



Induktion

Induktion über |M|: Wähle Knoten aus R mit kleinster oberer Schranke. Nimm r zu M hinzu, und update R und U.

Korrektheit: Ist innerhalb einer "Wellenfront" einmal ein Knoten mit minimalem Pfadgewicht w gefunden, kann kein Pfad über später gefundene Knoten (mit Gewicht $\geq w$) zu einer Verbesserung führen.



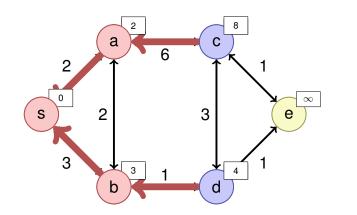
Algorithmus Dijkstra(G, s)

Input: Positiv gewichteter Graph G = (V, E, c), Startpunkt $s \in V$

Output: Minimale Gewichte d der kürzesten Pfade und Vorgängerknoten für jeden Knoten.

```
\begin{aligned} & \textbf{foreach} \ u \in V \ \textbf{do} \\ & \  \  \, \big\lfloor \  \  \, d_s[u] \leftarrow \infty; \ \pi_s[u] \leftarrow \textbf{null} \\ & d_s[s] \leftarrow 0; \ R \leftarrow \{s\} \\ & \textbf{while} \ R \neq \emptyset \ \textbf{do} \\ & \  \  \, u \leftarrow \text{ExtractMin}(R) \\ & \  \  \, \textbf{foreach} \ v \in N^+(u) \ \textbf{do} \\ & \  \  \, \big\lfloor \  \  \, \textbf{if} \ d_s[u] + c(u,v) < d_s[v] \ \textbf{then} \\ & \  \  \, \big\lfloor \  \  \, d_s[v] \leftarrow d_s[u] + c(u,v) \\ & \  \  \, \pi_s[v] \leftarrow u \\ & \  \  \, L \leftarrow R \cup \{v\} \end{aligned}
```

Beispiel



$$M = \{s, a, b\}$$
$$R = \{c, d\}$$
$$U = \{e\}$$

755

Zur Implementation: Datenstruktur für R?

Benötigte Operationen:

- Insert (Hinzunehmen zu R)
- ExtractMin (über R) und DecreaseKey (Update in R)

$$\begin{array}{c|c} \textbf{foreach } v \in N^+(u) \textbf{ do} \\ & \textbf{ if } d_s[u] + c(u,v) < d_s[v] \textbf{ then} \\ & d_s[v] \leftarrow d_s[u] + c(u,v) \\ & \pi_s[v] \leftarrow u \\ & \textbf{ if } v \in R \textbf{ then} \\ & | \textbf{ DecreaseKey}(R,v) & // \textbf{ Update eines } d(v) \textbf{ im Heap zu } R \\ & \textbf{ else} \\ & | L R \leftarrow R \cup \{v\} & // \textbf{ Einfügen eines neuen } d(v) \textbf{ im Heap zu } R \end{array}$$

DecreaseKey

- DecreaseKey: Aufsteigen im MinHeap in $\mathcal{O}(\log |V|)$
- Position im Heap?
 - Möglichkeit (a): Speichern am Knoten
 - Möglichkeit (b): Hashtabelle über Knoten
 - Möglichkeit (c): Knoten nach erfolgreichem Relaxieren erneut einfügen. Knoten beim Entnehmen als "deleted" kennzeichnen (Lazy Deletion).⁴⁹

MinHeap!

49Für die lazy deletion benötigt man ein Paar von Kante (oder Zielknoten) und Distanz

Laufzeit

 $|V| \times \text{ExtractMin: } \mathcal{O}(|V| \log |V|)$

 $|E| \times \text{Insert oder DecreaseKey: } \mathcal{O}(|E| \log |V|)$

■ $1 \times Init: \mathcal{O}(|V|)$

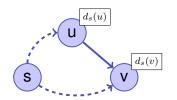
■ Insgesamt: $\mathcal{O}(|E|\log|V|)$.

Kann verbessert werden unter Verwendung einer für ExtractMin und DecreaseKey optimierten Datenstruktur (Fibonacci Heap), dann Laufzeit $\mathcal{O}(|E| + |V| \log |V|)$.

Allgemeine Bewertete Graphen

Verbesserungsschritt wie bisherwie bisher, aber mit Rückgabewert:

$$\begin{aligned} & \mathsf{Relax}(u,v) \ (u,v \in V, \ (u,v) \in E) \\ & \text{if} \ d_s[u] + c(u,v) < d_s[v] \ \text{then} \\ & \quad d_s[v] \leftarrow d_s[u] + c(u,v) \\ & \quad \pi_s[v] \leftarrow u \\ & \quad \text{return} \ \text{true} \end{aligned}$$



return false

759

Problem: Zyklen mit negativen Gewichten können Weg verkürzen: es muss keinen kürzesten Weg mehr geben

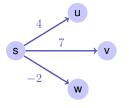
Dynamic Programming Ansatz (Bellman)

Induktion über Anzahl Kanten. $d_s[i, v]$: Kürzeste Weglänge von snach v über maximal i Kanten.

$$d_s[i, v] = \min\{d_s[i - 1, v], \min_{(u, v) \in E} (d_s[i - 1, u] + c(u, v))$$

$$d_s[0, s] = 0, d_s[0, v] = \infty \ \forall v \neq s.$$

Dynamic Programming Ansatz (Bellman)



Algorithmus: Iteriere über letzte Zeile bis die Relaxationsschritte keine Änderung mehr ergeben, maximal aber n-1 mal. Wenn dann

noch Änderungen, dann gibt es keinen kürzesten Pfad.

Algorithmus Bellman-Ford(G, s)

Input: Graph G = (V, E, c), Startpunkt $s \in V$

Output: Wenn Rückgabe true, Minimale Gewichte d der kürzesten Pfade zu jedem Knoten, sonst kein kürzester Pfad.

```
\begin{split} & \textbf{foreach} \ u \in V \ \textbf{do} \\ & \  \  \, \big\lfloor \  \  \, d_s[u] \leftarrow \infty; \ \pi_s[u] \leftarrow \textbf{null} \\ & \  \, d_s[s] \leftarrow 0; \\ & \textbf{for} \ i \leftarrow 1 \ \textbf{to} \ |V| \ \textbf{do} \\ & \  \  \, f \leftarrow \text{false} \\ & \  \  \, \textbf{foreach} \ (u,v) \in E \ \textbf{do} \\ & \  \  \, \big\lfloor \  \  \, f \leftarrow f \lor \text{Relax}(u,v) \\ & \  \  \, \textbf{if} \ f = \text{false} \ \textbf{then} \ \textbf{return} \ \textbf{true} \end{split}
```

return false:

Alle kürzesten Pfade

Ziel: Berechne das Gewicht eines kürzesten Pfades für jedes Knotenpaar.

- |V| × Anwendung von Dijkstras ShortestPath: $\mathcal{O}(|V| \cdot |E| \cdot \log |V|)$ (Mit Fibonacci-Heap:: $\mathcal{O}(|V|^2 \log |V| + |V| \cdot |E|)$)
- lacksquare $|V| \times$ Anwendung von Bellman-Ford: $\mathcal{O}(|E| \cdot |V|^2)$
- Es geht besser!

Induktion über Knotennummer.⁵⁰

Betrachte die Gewichte aller kürzesten Wege S^k mit Zwischenknoten in $V^k:=\{v_1,\ldots,v_k\}$, wenn Gewichte zu allen kürzesten Wegen S^{k-1} mit Zwischenknoten in V^{k-1} gegeben sind.

- v_k kein Zwischenknoten eines kürzesten Pfades von $v_i \leadsto v_j$ in V^k : Gewicht eines kürzesten Pfades $v_i \leadsto v_j$ in S^{k-1} dann auch das Gewicht eines kürzesten Pfades in S^k .
- v_k Zwischenknoten eines kürzesten Pfades $v_i \leadsto v_j$ in V^k : Teilpfade $v_i \leadsto v_k$ und $v_k \leadsto v_j$ enthalten nur Zwischenknoten aus S^{k-1} .

DP Induktion

 $d^k(u,v)$ = Minimales Gewicht eines Pfades $u\leadsto v$ mit Zwischenknoten aus V^k

Induktion

$$d^{k}(u,v) = \min\{d^{k-1}(u,v), d^{k-1}(u,k) + d^{k-1}(k,v)\}(k \ge 1)$$

$$d^{0}(u,v) = c(u,v)$$

⁵⁰wie beim Algorithmus für die reflexive transitive Hülle von Warshall

DP Algorithmus Floyd-Warshall(G)

Laufzeit: $\Theta(|V|^3)$

Bemerkung: Der Algorithmus kann auf einer einzigen Matrix d (in place) ausgeführt werden.

Umgewichtung

Idee: Anwendung von Dijkstras Algorithmus auf Graphen mit negativen Gewichten durch Umgewichtung

Das folgende geht *nicht*. Die Graphen sind nicht äquivalent im Sinne der kürzesten Pfade.

Umgewichtung

Andere Idee: "Potentialfunktion" (Höhe) auf den Knoten

- \blacksquare G = (V, E, c) ein gewichteter Graph.
- Funktion $h: V \to \mathbb{R}$.
- Neue Gewichte

$$\tilde{c}(u,v) = c(u,v) + h(u) - h(v), (u,v \in V)$$

Umgewichtung

767

Beobachtung: Ein Pfad p ist genau dann kürzester Pfad in G = (V, E, c), wenn er in $\tilde{G} = (V, E, \tilde{c})$ kürzester Pfad ist.

$$\tilde{c}(p) = \sum_{i=1}^{k} \tilde{c}(v_{i-1}, v_i) = \sum_{i=1}^{k} c(v_{i-1}, v_i) + h(v_{i-1}) - h(v_i)$$

$$= h(v_0) - h(v_k) + \sum_{i=1}^{k} c(v_{i-1}, v_i) = c(p) + h(v_0) - h(v_k)$$

Also $\tilde{c}(p)$ minimal unter allen $v_0 \leadsto v_k \Longleftrightarrow c(p)$ minimal unter allen $v_0 \leadsto v_k$.

Zyklengewichte sind invariant: $\tilde{c}(v_0,\ldots,v_k=v_0)=c(v_0,\ldots,v_k=v_0)$

Johnsons Algorithmus

Hinzunahme eines neuen Knotens $s \notin V$:

$$G' = (V', E', c')$$

$$V' = V \cup \{s\}$$

$$E' = E \cup \{(s, v) : v \in V\}$$

$$c'(u, v) = c(u, v), \ u \neq s$$

$$c'(s, v) = 0(v \in V)$$

Johnsons Algorithmus

Falls keine negativen Zyklen: wähle für Höhenfunktion Gewicht der kürzesten Pfade von s,

$$h(v) = d(s, v).$$

Für minimales Gewicht d eines Pfades gilt generell folgende Dreiecksungleichung:

$$d(s, v) \le d(s, u) + c(u, v).$$

Einsetzen ergibt $h(v) \leq h(u) + c(u, v)$. Damit

$$\tilde{c}(u,v) = c(u,v) + h(u) - h(v) \ge 0.$$

771

Algorithmus Johnson(G)

Input: Gewichteter Graph G = (V, E, c)**Output:** Minimale Gewichte aller Pfade D.

Neuer Knoten s. Berechne G' = (V', E', c')

if BellmanFord(G', s) = false then return "graph has negative cycles"

foreach $v \in V'$ do

 $h(v) \leftarrow d(s,v) \ // \ d$ aus BellmanFord Algorithmus

 $\text{for each } (u,v) \in E' \text{ do}$

$$\tilde{c}(u,v) \leftarrow c(u,v) + h(u) - h(v)$$

foreach $u \in V$ do

$$\tilde{d}(u,\cdot) \leftarrow \mathsf{Dijkstra}(\tilde{G}',u)$$

foreach $v \in V$ do

$$D(u,v) \leftarrow \tilde{d}(u,v) + h(v) - h(u)$$

Analyse

Laufzeiten

- Berechnung von G': $\mathcal{O}(|V|)$
- Bellman Ford G': $\mathcal{O}(|V| \cdot |E|)$
- $|V| \times \text{Dijkstra } \mathcal{O}(|V| \cdot |E| \cdot \log |V|)$ (Mit Fibonacci-Heap:: $\mathcal{O}(|V|^2 \log |V| + |V| \cdot |E|)$)

Insgesamt $\mathcal{O}(|V| \cdot |E| \cdot \log |V|)$ $(\mathcal{O}(|V|^2 \log |V| + |V| \cdot |E|))$

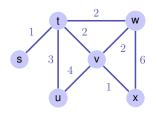
25. Minimale Spannbäume

Motivation, Greedy, Algorithmus von Kruskal, Allgemeine Regeln, Union-Find Struktur, Algorithmus von Jarnik, Prim, Dijkstra, ,Algorithmus von Jarnik, Prim, Dijkstra ,Fibonacci Heaps
[Ottman/Widmayer, Kap. 9.6, 6.2, 6.1, Cormen et al, Kap. 23, 19]

Problem

Gegeben: Ungerichteter, zusammenhängender, gewichteter Graph G = (V, E, c).

Gesucht: Minimaler Spannbaum T=(V,E'): zusammenhängender, zyklenfreier Teilgraph $E'\subset E$, so dass $\sum_{e\in E'}c(e)$ minimal.



775 7

Beispiele von Anwendungen

- Netzwerk-Design: finde das billigste / kürzeste Netz oder Leitungssystem, welches alle Knoten miteinander verbindet.
- Approximation einer Lösung des Travelling-Salesman Problems: finde einen möglichst kurzen Rundweg, welcher jeden Knoten einmal besucht.

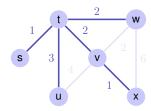
Greedy Verfahren

Zur Erinnerung:

- Gierige Verfahren berechnen eine Lösung schrittweise, indem lokal beste Lösungen gewählt werden.
- Die meisten Probleme sind nicht mit einer greedy Strategie lösbar.
- Das Problem des Minimalen Spannbaumes kann mit einem gierigen Verfahren effizient gelöst werden.

Greedy Idee (Kruskal, 1956)

Konstruiere T indem immer die billigste Kante hinzugefügt wird, welche keinen Zyklus erzeugt.



(Lösung ist nicht eindeutig.)

Algorithmus MST-Kruskal(*G*)

Input: Gewichteter Graph G = (V, E, c)Output: Minimaler Spannbaum mit Kanten A. Sortiere Kanten nach Gewicht $c(e_1) \leq ... \leq c(e_m)$ $A \leftarrow \emptyset$ for k = 1 to |E| do if $(V, A \cup \{e_k\})$ kreisfrei then $A \leftarrow A \cup \{e_k\}$ return (V, A, c)

779

Korrektheit

Zu jedem Zeitpunkt ist (V,A) ein Wald, eine Menge von Bäumen. MST-Kruskal betrachtet jede Kante e_k einmal und wählt e_k oder verwirft e_k

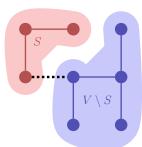
Notation (Momentaufnahme im Algorithmus)

- *A*: Menge gewählte Kanten
- *R*: Menge verworfener Kanten
- *U*: Menge der noch unentschiedenen Kanten

Schnitt

Ein Schnitt von G ist eine Partition $S, V \setminus S$ von V. $(S \subseteq V)$.

Eine Kante kreuzt einen Schnitt, wenn einer Ihrer Endpunkte in S und der andere in $V \setminus S$ liegt.



Regeln

Regeln

- Auswahlregel: Wähle einen Schnitt, den keine gewählte Kante kreuzt. Unter allen unentschiedenen Kanten, welche den Schnitt kreuzen, wähle die mit minimalem Gewicht.
- Verwerfregel: Wähle einen Kreis ohne verworfene Kanten. Unter allen unentschiedenen Kanten im Kreis verwerfe die mit maximalem Gewicht.

Kruskal wendet beide Regeln an:

- I Ein gewähltes e_k verbindet zwei Zusammenhangskomponenten, sonst würde ein Kreis erzeugt werden. e_k ist beim Verbinden minimal, man kann also einen Schnitt wählen, den e_k mit minimalem Gewicht kreuzt.
- ${f 2}$ Ein verworfenes e_k ist Teil eines Kreises. Innerhalb des Kreises hat e_k maximales Gewicht.

783

Korrektheit

Auswahlinvariante

Theorem

Jeder Algorithmus, welcher schrittweise obige Regeln anwendet bis $U=\emptyset$ ist korrekt.

Folgerung: MST-Kruskal ist korrekt.

Invariante: Es gibt stets einen minimalen Spannbaum, der alle gewählten und keine der verworfenen Kanten enthält.

Wenn die beiden Regeln die Invariante erhalten, dann ist der Algorithmus sicher korrekt. Induktion:

- Zu Beginn: U = E, $R = A = \emptyset$. Invariante gilt offensichtlich.
- Invariante bleibt nach jedem Schritt des Algorithmus erhalten.
- Am Ende: $U = \emptyset$, $R \cup A = E \Rightarrow (V, A)$ ist Spannbaum.

Beweis des Theorems: zeigen nun, dass die beiden Regeln die Invariante erhalten.

Auswahlregel erhält Invariante

Es gibt stets einen minimalen Spannbaum T, der alle gewählten und keine der verworfenen Kanten enthält.

Wähle einen Schnitt, den keine gewählte Kante kreuzt. Unter allen unentschiedenen Kanten, welche den Schnitt kreuzen, wähle eine Kante e mit minimalem Gewicht.

- Fall 1: $e \in T$ (fertig)
- Fall 2: $e \not\in T$. Dann hat $T \cup \{e\}$ einen Kreis, der e enthält. Kreis muss einen zweite Kante e' enthalten, welche den Schnitt auch kreuzt. Da $e' \not\in R$ ist $e' \in U$. Somit $c(e) \le c(e')$ und $T' = T \setminus \{e'\} \cup \{e\}$ ist auch minimaler Spannbaum (und c(e) = c(e')).

Verwerfregel erhält Invariante

Es gibt stets einen minimalen Spannbaum T, der alle gewählten und keine der verworfenen Kanten enthält.

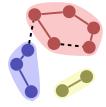
Wähle einen Kreis ohne verworfene Kanten. Unter allen unentschiedenen Kanten im Kreis verwerfe die Kante e mit maximalem Gewicht.

- Fall 1: $e \notin T$ (fertig)
- Fall 2: $e \in T$. Entferne e von T, Das ergibt einen Schnitt. Diesen Schnitt muss eine weitere Kante e' aus dem Kreis kreuzen. Da $c(e') \le c(e)$ ist $T' = T \setminus \{e\} \cup \{e'\}$ auch minimal (und c(e) = c(e')).

787

Zur Implementation

Gegeben eine Menge von Mengen $i \equiv A_i \subset V$. Zur Identifikation von Schnitten und Kreisen: Zugehörigkeit der beiden Endpunkte einer Kante zu einer der Mengen.



Zur Implementation

Allgemeines Problem: Partition (Menge von Teilmengen) z.B. $\{\{1,2,3,9\},\{7,6,4\},\{5,8\},\{10\}\}$

Benötigt: Abstrakter Datentyp "Union-Find" mit folgenden Operationen

- Make-Set(i): Hinzufügen einer neuen Menge i.
- Find(e): Name i der Menge, welche e enthält.
- Union(i, j): Vereingung der Mengen mit Namen i und j.

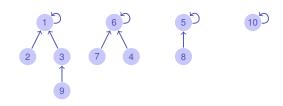
 $^{^{51}}$ Ein solcher Kreis enthält mindestens einen Knoten in S und einen in $V\setminus S$ und damit mindestens zwei Kanten zwischen S und $V\setminus S.$

Union-Find Algorithmus MST-Kruskal(*G*)

```
Input: Gewichteter Graph G = (V, E, c) Output: Minimaler Spannbaum mit Kanten A. Sortiere Kanten nach Gewicht c(e_1) \leq ... \leq c(e_m) A \leftarrow \emptyset for k = 1 to |V| do \  MakeSet(k) for k = 1 to m do \  if Find(u) \neq Find(v) then \  Union(Find(u), Find(v)) \  A \leftarrow A \cup e_k else // konzeptuell: R \leftarrow R \cup e_k return (V, A, c)
```

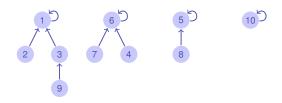
Implementation Union-Find

Idee: Baum für jede Teilmenge in der Partition, z.B. $\{\{1,2,3,9\},\{7,6,4\},\{5,8\},\{10\}\}$



Baumwurzeln = Namen (Stellvertreter) der Mengen, Bäume = Elemente der Mengen

Implementation Union-Find



Repräsentation als Array:

Implementation Union-Find

Index 1 2 3 4 5 6 7 8 9 10 Parent 1 1 1 6 5 6 5 5 3 10

Make-Set(i) $p[i] \leftarrow i$; return i

Find(i) while $(p[i] \neq i)$ do $i \leftarrow p[i]$ return i

Union(i, j) ⁵² $p[j] \leftarrow i$;

 $^{^{52}}i$ und j müssen Namen (Wurzeln) der Mengen sein. Andernfalls verwende Union(Find(i),Find(j))

Optimierung der Laufzeit für Find

Baum kann entarten: Beispiel Union(8,7), Union(7,6), Union(6,5), ...

Index 1 2 3 4 5 6 7 8 ... Parent 1 1 2 3 4 5 6 7 ...

Laufzeit von Find im schlechtesten Fall in $\Theta(n)$.

Optimierung der Laufzeit für Find

Idee: Immer kleineren Baum unter grösseren Baum hängen. Benötigt zusätzliche Grösseninformation (Array) q

$$\begin{aligned} & \mathsf{Make\text{-Set}}(i) \quad p[i] \leftarrow i; \ g[i] \leftarrow 1; \ \mathsf{return} \ i \\ & \mathsf{Union}(i,j) \quad \ \ & \mathsf{if} \ g[j] > g[i] \ \mathsf{then} \ \mathsf{swap}(i,j) \\ & p[j] \leftarrow i \\ & \mathsf{if} \ g[i] = g[j] \ \mathsf{then} \ g[i] \leftarrow g[i] + 1 \end{aligned}$$

 \Rightarrow Baumtiefe (und schlechteste Laufzeit für Find) in $\Theta(\log n)$

[Beobachtung]

Theorem

Obiges Verfahren Vereinigung nach Grösse konserviert die folgende Eigenschaft der Bäume: ein Baum mit Höhe h hat mindestens 2^h Knoten.

Unmittelbare Folgerung: Laufzeit Find = $O(\log n)$.

[Beweis]

795

Induktion: nach Vorraussetzung haben Teilbäume jeweils mindestens 2^{h_i} Knoten. ObdA: $h_2 \leq h_1$.

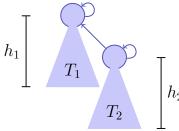
 $h_2 < h_1$:

$$h(T_1 \oplus T_2) = h_1 \Rightarrow g(T_1 \oplus T_2) \ge 2^h$$

 $h_2 = h_1$:

$$g(T_1) \ge g(T_2) \ge 2^{h_2}$$

$$\Rightarrow g(T_1 \oplus T_2) = g(T_1) + g(T_2) \ge 2 \cdot 2^{h_2} = 2^{h(T_1 \oplus T_2)}$$



Weitere Verbesserung

Bei jedem Find alle Knoten direkt an den Wurzelknoten hängen.

Find(i):

```
\begin{array}{l} j \leftarrow i \\ \textbf{while} \ (p[i] \neq i) \ \textbf{do} \ i \leftarrow p[i] \\ \textbf{while} \ (j \neq i) \ \textbf{do} \\ \mid \begin{array}{l} t \leftarrow j \\ j \leftarrow p[j] \\ p[t] \leftarrow i \end{array}
```

return i

Laufzeit: amortisiert *fast* konstant (Inverse der Ackermannfunktion).⁵³

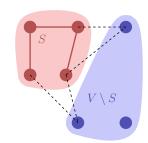
Laufzeit des Kruskal Algorithmus

- Sortieren der Kanten: $\Theta(|E|\log|E|) = \Theta(|E|\log|V|)$. ⁵⁴
- Initialisieren der Union-Find Datenstruktur $\Theta(|V|)$
- $|E| \times \text{Union(Find}(x), \text{Find}(y)): \mathcal{O}(|E| \log |E|) = \mathcal{O}(|E| \log |V|).$

Insgesamt $\Theta(|E|\log|V|)$.

Algorithmus von Jarnik (1930), Prim, Dijkstra (1959)

Idee: Starte mit einem $v \in V$ und lasse von dort unter Verwendung der Auswahlregel einen Spannbaum wachsen:



Anmerkung: man benötigt keine Union-Find Datenstruktur. Es genügt, Knoten zu färben, sobald sie zu S hinzugenommen werden.

Laufzeit

Trivial $\mathcal{O}(|V| \cdot |E|)$.

Verbesserung (wie bei Dijkstras Kürzeste Pfade):

- Mit Min-Heap, Kosten:
 - Initialisierung (Knotenfärbung) $\mathcal{O}(|V|)$
 - $|V| \times \text{ExtractMin} = \mathcal{O}(|V| \log |V|),$
 - $|E| \times \text{Insert oder DecreaseKey: } \mathcal{O}(|E| \log |V|),$

 $\mathcal{O}(|E| \cdot \log |V|)$

■ Mit Fibonacci-Heap: $\mathcal{O}(|E| + |V| \cdot \log |V|)$.

⁵³Wird hier nicht vertieft.

 $^{^{54}}$ da G zusammenhängend: $|V| \leq |E| \leq |V|^2$

Fibonacci Heaps

Datenstruktur zur Verwaltung von Elementen mit Schlüsseln. Operationen

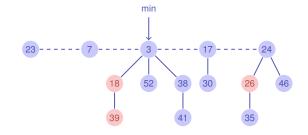
- MakeHeap(): Liefere neuen Heap ohne Elemente
- Insert(H, x): Füge x zu H hinzu
- Minimum(H): Liefere Zeiger auf das Element m mit minimalem Schlüssel
- **ExtractMin**(H): Liefere und entferne (von H) Zeiger auf das Element m
- Union (H_1, H_2) : Liefere Verschmelzung zweier Heaps H_1 und H_2
- **DecreaseKey**(H, x, k): Verkleinere Schlüssel von x in H zu k
- Delete (H, x): Entferne Element x von H

Vorteil gegenüber Binary Heap?

	Binary Heap (worst-Case)	Fibonacci Heap (amortisiert)
MakeHeap	$\Theta(1)$	$\Theta(1)$
Insert	$\Theta(\log n)$	$\Theta(1)$
Minimum	$\Theta(1)$	$\Theta(1)$
ExtractMin	$\Theta(\log n)$	$\Theta(\log n)$
Union	$\Theta(n)$	$\Theta(1)$
DecreaseKey	$\Theta(\log n)$	$\Theta(1)$
Delete	$\Theta(\log n)$	$\Theta(\log n)$

Struktur

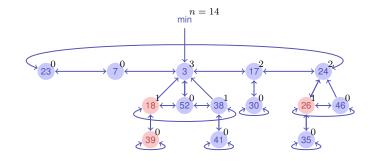
Menge von Bäumen, welche der Min-Heap Eigenschaft genügen. Markierbare Knoten.



Implementation

803

Doppelt verkettete Listen von Knoten mit marked-Flag und Anzahl Kinder. Zeiger auf das minimale Element und Anzahl Knoten.



Einfache Operationen

- MakeHeap (trivial)
- Minimum (trivial)
- Insert(H, e)
 - Füge neues Element in die Wurzelliste ein
 - Wenn Schlüssel kleiner als Minimum, min-pointer neu setzen.
- Union (H_1, H_2)
 - **11** Wurzellisten von H_1 und H_2 aneinander hängen
 - 2 Min-Pointer neu setzen.
- \blacksquare Delete(H, e)
 - **1** DecreaseKey $(H, e, -\infty)$
 - ExtractMin(H)

ExtractMin

- **I** Entferne Minimalknoten m aus der Wurzelliste
- \mathbf{Z} Hänge Liste der Kinder von m in die Wurzelliste
- Verschmelze solange heapgeordnete Bäume gleichen Ranges, bis alle Bäume unterschiedlichen Rang haben: Rangarray $a[0,\ldots,n]$ von Elementen, zu Beginn leer. Für jedes Element e der Wurzelliste:
 - Sei g der Grad von e.
 - $b \text{ Wenn } a[g] = nil \text{: } a[g] \leftarrow e.$
 - Wenn $e':=a[g] \neq nil$: Verschmelze e mit e' zu neuem e'' und setze $a[g] \leftarrow nil$. Setze e'' unmarkiert Iteriere erneut mit $e \leftarrow e''$ vom Grad q+1.

DecreaseKey (H, e, k)

- In Entferne e von seinem Vaterknoten p (falls vorhanden) und erniedrige den Rang von p um eins.
- 2 Insert(H, e)
- 3 Vermeide zu dünne Bäume:
 - Wenn p = nil, dann fertig
 - **b** Wenn p unmarkiert: markiere p, fertig.
 - Wenn p markiert: unmarkiere p, trenne p von seinem Vater pp ab und Insert(H,p). Iteriere mit $p \leftarrow pp$.

Abschätzung für den Rang

Theorem

Sei p Knoten eines F-Heaps H. Ordnet man die Söhne von p in der zeitlichen Reihenfolge, in der sie an p durch Zusammenfügen angehängt wurden, so gilt: der i-te Sohn hat mindestens Rang i-2

Beweis: p kann schon mehr Söhne gehabt haben und durch Abtrennung verloren haben. Als der ite Sohn p_i angehängt wurde, müssen p und p_i jeweils mindestens Rang i-1 gehabt haben. p_i kann maximal einen Sohn verloren haben (wegen Markierung), damit bleibt mindestens Rang i-2.

Abschätzung für den Rang

Theorem

Jeder Knoten p vom Rang k eines F-Heaps ist Wurzel eines Teilbaumes mit mindestens F_{k+1} Knoten. (F: Fibonacci-Folge)

Beweis: Sei S_k Minimalzahl Nachfolger eines Knotens vom Rang k in einem F-Heap plus 1 (der Knoten selbst). Klar: $S_0=1$, $S_1=2$. Nach vorigem Theorem $S_k \geq 2 + \sum_{i=0}^{k-2} S_i, k \geq 2$ (p und Knoten p_1 jeweils 1). Für Fibonacci-Zahlen gilt (Induktion) $F_k \geq 2 + \sum_{i=2}^k F_i, k \geq 2$ und somit (auch Induktion) $S_k \geq F_{k+2}$.

Fibonacci-Zahlen wachsen exponentiell $(\mathcal{O}(\varphi^k))$ Folgerung: Maximaler Grad eines beliebigen Knotens im Fibonacci-Heap mit n Knoten ist $\mathcal{O}(\log n)$.

Amortisierte Worst-case-Analyse Fibonacci Heap

t(H): Anzahl Bäume in der Wurzelliste von H, m(H): Anzahl markierte Knoten in H ausserhalb der Wurzelliste, Potentialfunktion $\Phi(H)=t(H)+2\cdot m(H)$. Zu Anfang $\Phi(H)=0$. Potential immer nichtnegativ.

Amortisierte Kosten:

811

- Insert(H, x): t'(H) = t(H) + 1, m'(H) = m(H), Potentialerhöhung 1, Amortisierte Kosten $\Theta(1) + 1 = \Theta(1)$
- Minimum(H): Amortisierte Kosten = tatsächliche Kosten = $\Theta(1)$
- Union(H_1, H_2): Amortisierte Kosten = tatsächliche Kosten = $\Theta(1)$

Amortisierte Kosten ExtractMin

- \blacksquare Anzahl der Bäume in der Wurzelliste t(H).
- Tatsächliche Kosten der ExtractMin Operation: $\mathcal{O}(\log n + t(H))$.
- Nach dem Verschmelzen noch $\mathcal{O}(\log n)$ Knoten.
- Anzahl der Markierungen kann beim Verschmelzen der Bäume maximal kleiner werden.
- Amortisierte Kosten von ExtractMin also maximal

$$\mathcal{O}(\log n + t(H)) + \mathcal{O}(\log n) - \mathcal{O}(t(H)) = \mathcal{O}(\log n).$$

Amortisierte Kosten DecreaseKey

- Annahme: DecreaseKey führt zu c Abtrennungen eines Knotens von seinem Vaterknoten, tatsächliche Kosten $\mathcal{O}(c)$
- c Knoten kommen zur Wurzelliste hinzu
- Löschen von (c-1) Markierungen, Hinzunahme maximal einer Markierung
- Amortisierte Kosten von DecreaseKey:

$$\mathcal{O}(c) + (t(H) + c) + 2 \cdot (m(H) - c + 2)) - (t(H) + 2m(H)) = \mathcal{O}(1)$$

81

Motivation

26. Flüsse in Netzen

Flussnetzwerk, Maximaler Fluss, Schnitt, Restnetzwerk, Max-flow Min-cut Theorem, Ford-Fulkerson Methode, Edmonds-Karp Algorithmus, Maximales Bipartites Matching [Ottman/Widmayer, Kap. 9.7, 9.8.1], [Cormen et al, Kap. 26.1-26.3]

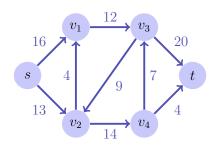
- Modelliere Fluss von Flüssigkeiten, Bauteile auf Fliessbändern, Strom in elektrischen Netwerken oder Information in Kommunikationsnetzwerken.
- Konnektivität von Kommunikationsnetzwerken, Bipartites Matching, Zirkulationen, Scheduling, Image Segmentation, Baseball Eliminination...

815

Flussnetzwerk

- Flussnetzwerk G = (V, E, c): gerichteter Graph mit Kapazitäten
- Antiparallele Kanten verboten: $(u, v) \in E \Rightarrow (v, u) \notin E$.
- Fehlen einer Kante (u, v) auch modelliert durch c(u, v) = 0.
- Quelle s und Senke t: spezielle Knoten. Jeder Knoten v liegt auf einem Pfad zwischen s und t:

$$s \leadsto v \leadsto t$$

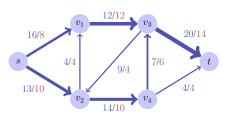


Fluss

Ein *Fluss* $f: V \times V \to \mathbb{R}$ erfüllt folgende Bedingungen:

- Kapazitätsbeschränkung: Für alle $u, v \in V$: $f(u, v) \leq c(u, v)$.
- Schiefsymmetrie: Für alle $u, v \in V$: f(u, v) = -f(v, u).
- Flusserhaltung: Für alle $u \in V \setminus \{s, t\}$:

$$\sum_{v \in V} f(u, v) = 0.$$



 $\begin{array}{l} \textit{Wert} \ w \ \text{des Flusses:} \\ |f| = \sum_{v \in V} f(s,v). \\ \textit{Hier} \ |f| = 18. \end{array}$

Wie gross kann ein Fluss sein?

Begrenzende Faktoren: Schnitte

■ s von t trennender Schnitt: Partitionierung von V in S und T mit $s \in S, t \in T$.

■ *Kapazität* eines Schnittes: $c(S,T) = \sum_{v \in S, v' \in T} c(v,v')$

■ Minimaler Schnitt: Schnitt mit minimaler Kapazität.

■ Fluss über Schnitt: $f(S,T) = \sum_{v \in S, v' \in T} f(v,v')$

Implizites Summieren

Notation: Seien $U, U' \subseteq V$

$$f(U, U') := \sum_{\substack{u \in U \\ u' \in U'}} f(u, u'), \qquad f(u, U') := f(\{u\}, U')$$

Somit

|f| = f(s, V)

f(U,U) = 0

f(U, U') = -f(U', U)

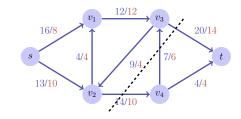
 $f(X \cup Y, Z) = f(X, Z) + f(Y, Z), \text{ wenn } X \cap Y = \emptyset.$

■ f(R,V) = 0 wenn $R \cap \{s,t\} = \emptyset$. [Flusserhaltung!]

Wie gross kann ein Fluss sein?

Es gilt für jeden Fluss und jeden Schnitt, dass f(S,T) = |f|:

$$f(S,T) = f(S,V) - \underbrace{f(S,S)}_{0} = f(S,V)$$
$$= f(s,V) + \underbrace{f(S-\{s\},V)}_{\not\ni t,\not\ni s} = |f|.$$

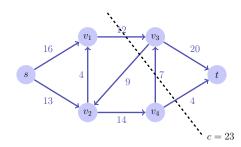


Maximaler Fluss?

Es gilt insbesondere für alle Schnitte (S,T) von V.

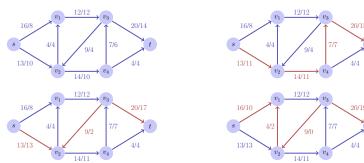
$$|f| \le \sum_{v \in S, v' \in T} c(v, v') = c(S, T)$$

Werden sehen, dass Gleicheit gilt für $\min_{S,T} c(S,T)$.



Maximaler Fluss?

Naives Vorgehen:



Folgerung: Greedy Flusserhöhung löst das Problem nicht.

Die Ford-Fulkerson Methode

- Starte mit f(u,v) = 0 für alle $u,v \in V$
- Bestimme Restnetzwerk* G_f und Erweiterungspfad in G_f
- Erhöhe Fluss über den Erweiterungspfad*
- Wiederholung bis kein Erweiterungspfad mehr vorhanden.

$$G_f := (V, E_f, c_f)$$

 $c_f(u, v) := c(u, v) - f(u, v) \quad \forall u, v \in V$
 $E_f := \{(u, v) \in V \times V | c_f(u, v) > 0\}$

*Wird im Folgenden erklärt

Flusserhöhung, negativ

Sei ein Fluss f im Netzwerk gegeben.

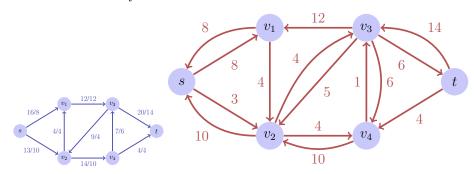
Erkenntnis:

- Flusserhöhung in Richtung einer Kante möglich, wenn Fluss entlang der Kante erhöht werden kann, also wenn f(u,v) < c(u,v).
 - Restkapazität $c_f(u, v) = c(u, v) f(u, v) > 0$.
- Flusserhöhung *entgegen* der Kantenrichtung möglich, wenn Fluss entlang der Kante verringert werden kann, also wenn f(u,v)>0. Restkapazität $c_f(v,u)=f(u,v)>0$.

Restnetzwerk

823

Restnetzwerk G_f gegeben durch alle Kanten mit Restkapazität:



Restnetzwerke haben dieselben Eigenschaften wie Flussnetzwerke, ausser dass antiparallele Kapazitäten-Kanten zugelassen sind.

Beobachtung

Theorem

Sei G = (V, E, c) ein Flussnetzwerk mit Quelle s und Senke t und f ein Fluss in G. Sei G_f das dazugehörige Restnetzwerk und sei f' ein Fluss in G_f . Dann definiert $f \oplus f'$ mit

$$(f \oplus f')(u,v) = f(u,v) + f'(u,v)$$

einen Fluss in G mit Wert |f| + |f'|.

Beweis

 $f \oplus f'$ ist ein Fluss in G:

Kapazitätsbeschränkung

$$(f \oplus f')(u,v) = f(u,v) + \underbrace{f'(u,v)}_{\leq c(u,v) - f(u,v)} \leq c(u,v)$$

Schiefsymmetrie

$$(f \oplus f')(u,v) = -f(v,u) + -f'(v,u) = -(f \oplus f')(v,u)$$

■ Flusserhaltung $u \in V - \{s, t\}$:

$$\sum_{v \in V} (f \oplus f')(u, v) = \sum_{v \in V} f(u, v) + \sum_{v \in V} f'(u, v) = 0$$

Beweis

Wert von $f \oplus f'$

$$|f \oplus f'| = (f \oplus f')(s, V)$$

$$= \sum_{u \in V} f(s, u) + f'(s, u)$$

$$= f(s, V) + f'(s, V)$$

$$= |f| + |f'|$$

Erweiterungspfade

Erweiterungspfad p: einfacher Pfad von s nach t im Restnetzwerk G_f .

Restkapazität $c_f(p) = \min\{c_f(u, v) : (u, v) \text{ Kante in } p\}$

Fluss in G_f

Theorem

Die Funktion $f_p: V \times V \to \mathbb{R}$,

$$f_p(u,v) = \begin{cases} c_f(p) & \textit{wenn}\ (u,v) \ \textit{Kante in}\ p \\ -c_f(p) & \textit{wenn}\ (v,u) \ \textit{Kante in}\ p \\ 0 & \textit{sonst} \end{cases}$$

ist ein Fluss in G_f mit dem Wert $|f_p| = c_f(p) > 0$.

 f_p ist ein Fluss (leicht nachprüfbar). Es gibt genau einen Knoten $u \in V$ mit $(s,u) \in p$. Somit $|f_p| = \sum_{v \in V} f_p(s,v) = f_p(s,u) = c_f(p)$.

Folgerung

Strategie für den Algorithmus:

Mit einem Erweiterungspfad p in G_f definiert $f \oplus f_p$ einen neuen Fluss mit Wert $|f \oplus f_p| = |f| + |f_p| > |f|$.

Max-Flow Min-Cut Theorem

Theorem

Wenn f ein Fluss in einem Flussnetzwerk G = (V, E, c) mit Quelle s und Senke t is, dann sind folgende Aussagen äquivalent:

- f ist ein maximaler Fluss in G
- $oldsymbol{2}$ Das Restnetzwerk G_f enthält keine Erweiterungspfade
- $\textbf{ 3} \ \textit{ Es gilt } |f| = c(S,T) \ \textit{für einen Schnitt } (S,T) \ \textit{von } G.$

Beweis

- (1) \Rightarrow (2): f maximaler Fluss in G. Annahme: G_f habe einen Erweiterungsfad. Dann gilt $|f \oplus f_p| = |f| + |f_p| > |f|$. Widerspruch.

83

83

Beweis $(2) \Rightarrow (3)$

Annahme: G_f habe keinen Erweiterungsfad

Definiere $S = \{v \in V : \text{ es existiert Pfad } s \leadsto v \text{ in } G_f\}.$

 $(S,T):=(S,V\setminus S)$ ist ein Schnitt: $s\in S,t\in T.$

Sei $u \in S$ und $v \in T$. Dann $c_f(u, v) = 0$, also

 $c_f(u, v) = c(u, v) - f(u, v) = 0$. Somit f(u, v) = c(u, v).

Somit

$$|f| = f(S,T) = \sum_{u \in S} \sum_{v \in T} f(u,v) = \sum_{u \in S} \sum_{v \in T} c(u,v) = C(S,T).$$

Algorithmus Ford-Fulkerson(G, s, t)

Input: Flussnetzwerk G = (V, E, c)**Output:** Maximaler Fluss f.

for $(u,v) \in E$ do $f(u,v) \leftarrow 0$

while Existiert Pfad $p: s \leadsto t$ im Restnetzwerk G_f do

 $c_f(p) \leftarrow \min\{c_f(u,v) : (u,v) \in p\}$

foreach $(u,v) \in p$ do

 $f(u,v) \leftarrow f(u,v) + c_f(p)$ $f(v,u) \leftarrow f(v,u) - c_f(p)$

Praktische Anmerkung

In einer Implementation des Ford-Fulkerson Algorithmus werden die negativen Flusskanten normalerweise nicht gespeichert, da ihr Wert sich stets als der negierter Wert der Gegenkante ergibt.

$$f(u,v) \leftarrow f(u,v) + c_f(p)$$

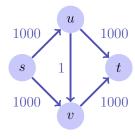
 $f(v,u) \leftarrow f(v,u) - c_f(p)$

wird dann zu

$$\begin{array}{l} \textbf{if } (u,v) \in E \textbf{ then} \\ \mid f(u,v) \leftarrow f(u,v) + c_f(p) \\ \textbf{else} \\ \mid f(v,u) \leftarrow f(v,u) - c_f(p) \end{array}$$

Analyse

- Der Ford-Fulkerson Algorithmus muss für irrationale Kapazitäten nicht einmal terminieren! Für ganze oder rationale Zahlen terminiert der Algorithmus.
- Für ganzzahligen Fluss benötigt der Algorithmus maximal $|f_{\max}|$ Durchläufe der While-Schleife (denn der Fluss erhöht sich mindestens um 1). Suche einzelner zunehmender Weg (z.B. Tiefensuche oder Breitensuche) $\mathcal{O}(|E|)$. Also $\mathcal{O}(f_{\max}|E|)$.



Bei schlecht gewählter Strategie benötigt der Algorithmus hier bis zu 2000 Iterationen.

Edmonds-Karp Algorithmus

Edmonds-Karp Algorithmus

Wähle in der Ford-Fulkerson-Methode zum Finden eines Pfades in G_f jeweils einen Erweiterungspfad kürzester Länge (z.B. durch Breitensuche).

Theorem

Wenn der Edmonds-Karp Algorithmus auf ein ganzzahliges Flussnetzwerk G=(V,E) mit Quelle s und Senke t angewendet wird, dann ist die Gesamtanzahl der durch den Algorithmus angewendete Flusserhöhungen in $\mathcal{O}(|V|\cdot|E|)$.

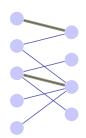
 \Rightarrow Gesamte asymptotische Laufzeit: $\mathcal{O}(|V| \cdot |E|^2)$

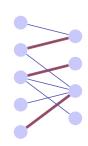
[Ohne Beweis]

Anwendung: Maximales bipartites Matching

Gegeben: bipartiter ungerichteter Graph G = (V, E).

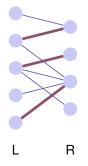
Matching $M\colon M\subseteq E$ so dass $|\{m\in M:v\in m\}|\leq 1$ für alle $v\in V$. Maximales Matching M: Matching M, so dass $|M|\geq |M'|$ für jedes Matching M'.

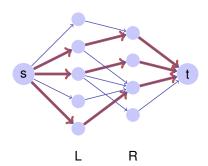




Korrespondierendes Flussnetzwerk

Konstruiere zur einer Partition L,R eines bipartiten Graphen ein korrespondierendes Flussnetzwerk mit Quelle s und Senke t, mit gerichteten Kanten von s nach L, von L nach R und von R nach t. Jede Kante bekommt Kapazität 1.





841

Ganzzahligkeitstheorem

Theorem

Wenn die Kapazitäten eines Flussnetzwerks nur ganzzahlige Werte anehmen, dann hat der durch Ford-Fulkerson erzeugte maximale Fluss die Eigenschaft, dass der Wert von f(u,v) für alle $u,v\in V$ eine ganze Zahl ist.

[ohne Beweis]

Folgerung: Ford Fulkerson erzeugt beim zum bipartiten Graph gehörenden Flussnetzwerk ein maximales Matching $M = \{(u, v) : f(u, v) = 1\}.$

27. Parallel Programming I

Moore's Law und The Free Lunch, Hardware Architekturen, Parallele Ausführung, Klassifikation nach Flynn, Multi-Threading, Parallelität und Nebenläufigkeit, C++ Threads, Skalierbarkeit: Amdahl und Gustafson, Daten- und Taskparallelität, Scheduling

[Task-Scheduling: Cormen et al, Kap. 27] [Concurrency, Scheduling: Williams, Kap. 1.1 – 1.2]

843

The Free Lunch

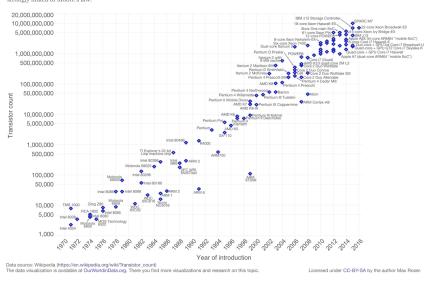
The free lunch is over 55

Moore's Law

Beobachtung von Gordon E. Moore:

Die Anzahl Transistoren in integrierten Schaltkreisen verdoppelt sich ungefähr alle zwei Jahre.

⁵⁵"The Free Lunch is Over", a fundamental turn toward concurrency in software, Herb Sutter, Dr. Dobb's Journal, 2005



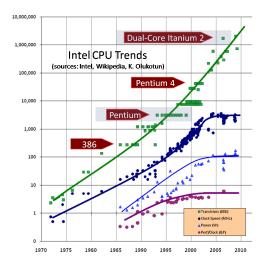
Für eine lange Zeit...

- wurde die sequentielle Ausführung schneller ("Instruction Level Parallelism", "Pipelining", Höhere Frequenzen)
- mehr und kleinere Transistoren = mehr Performance
- Programmierer warteten auf die nächste schnellere Generation

Heute

- steigt die Frequenz der Prozessoren kaum mehr an (Kühlproblematik)
- steigt die Instruction-Level Parallelität kaum mehr an
- ist die Ausführungsgeschwindigkeit in vielen Fällen dominiert von Speicherzugriffszeiten (Caches werden aber immer noch grösser und schneller)

Trends



84

Ohttp://www.gotw.ca/publications/concurrency-ddj

Multicore

Formen der Parallelen Ausführung

- Verwende die Transistoren f
 ür mehr Rechenkerne
- Parallelität in der Software
- Implikation: Programmierer müssen parallele Programme schreiben, um die neue Hardware vollständig ausnutzen zu können

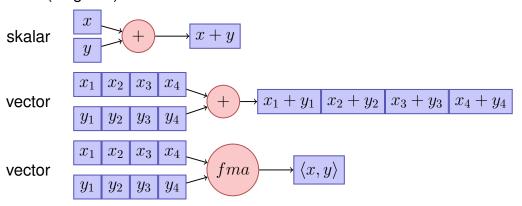
- Vektorisierung
- Pipelining
- Instruction Level Parallelism
- Multicore / Multiprocessing
- Verteiltes Rechnen

851

050

Vektorisierung

Parallele Ausführung derselben Operation auf Elementen eines Vektor(Register)s



Pipelining in CPUs

Fetch

Decode

Execute

Data Fetch

Writeback

Mehrere Stufen

- Jede Instruktion dauert 5 Zeiteinheiten (Zyklen)
- Im besten Fall: 1 Instruktion pro Zyklus, nicht immer möglich ("stalls")

Parallelität (mehrere funktionale Einheiten) führt zu schnellerer Ausführung.

ILP - Instruction Level Parallelism

Moderne CPUs führen unabhängige Instruktionen intern auf mehreren Einheiten parallel aus

- Pipelining
- Superskalare CPUs (Mehrere Instruktionen pro Zyklus)
- Out-Of-Order Execution (Programmierer sieht die sequentielle Ausführung)
- Speculative Execution (Instruktionen werden spekulativ ausgeführt und unterbrochen, wenn die Bedingung zu deren Ausführung nicht erfüllt ist.)

27.2 Hardware Architekturen

855

Gemeinsamer vs. verteilter Speicher

Gemeinsamer Speicher

CPU CPU CPU

Mem

Verteilter Speicher

CPU CPU CPU

Mem Mem Mem

Interconnect

Shared vs. Distributed Memory Programming

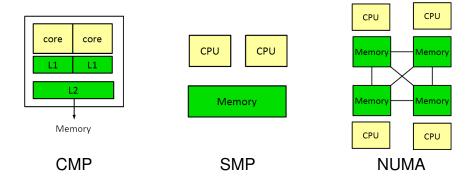
- Kategorien des Programmierinterfaces
 - Kommunikation via Message Passing
 - Kommunikation via geteiltem Speicher
- Es ist möglich:
 - Systeme mit gemeinsamen Speicher als verteilte Systeme zu programmieren (z.B. mit Message Passing Interface MPI)
 - Systeme mit verteiltem Speicher als System mit gemeinsamen Speicher zu programmieren (z.B. Partitioned Global Address Space PGAS)

Architekturen mit gemeinsamen Speicher

- Multicore (Chip Multiprocessor CMP)
- Symmetric Multiprocessor Systems (SMP)
- Simultaneous Multithreading (SMT = Hyperthreading)
 - nur ein physischer Kern, Mehrere Instruktionsströme/Threads: mehrere virtuelle Kerne
 - Zwischen ILP (mehrere Units für einen Strom) und Multicore (mehrere Units für mehrere Ströme). Limitierte parallele Performance
- Non-Uniform Memory Access (NUMA)

Gleiches Programmierinterface!

Übersicht

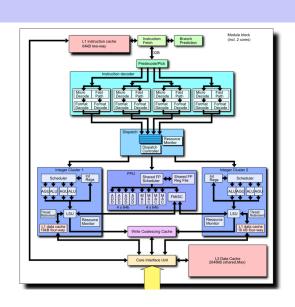


859

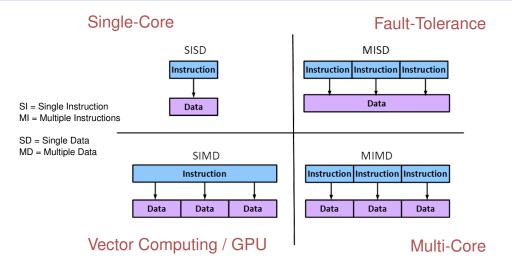
Ein Beispiel

AMD Bulldozer: Zwischen CMP und SMT

- 2x integer core
- 1x floating point core



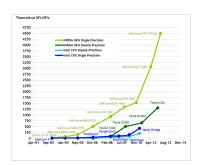
Klassifikation nach Flynn



Massiv Parallele Hardware

[General Purpose] Graphical Processing Units ([GP]GPUs)

- Revolution im High Performance Computing
 - Calculation 4.5 TFlops vs. 500 GFlops
 - Memory Bandwidth 170 GB/s vs. 40 GB/s
- SIMD
 - Hohe Datenparallelität
 - Benötigt eigenes Programmiermodell.
 Z.B. CUDA / OpenCL



27.3 Multi-Threading, Parallelität und Nebenläufigkeit

863

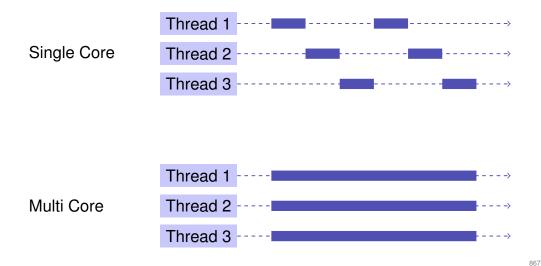
Prozesse und Threads

- Prozess: Instanz eines Programmes
 - jeder Prozess hat seinen eigenen Kontext, sogar eigenen Addresraum
 - OS verwaltet Prozesse (Resourcenkontrolle, Scheduling, Synchronisierung)
- Threads: Ausführungsfäden eines Programmes
 - Threads teilen sich einen Addressraum
 - Schneller Kontextwechsel zwischen Threads

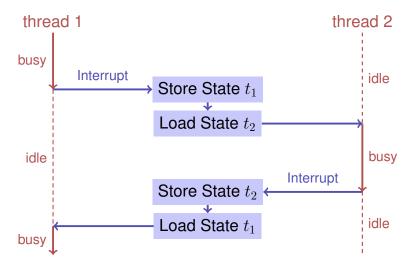
Warum Multithreading?

- Verhinderung vom "Polling" auf Resourcen (Files, Netwerkzugriff, Tastatur)
- Interaktivität (z.B. Responsivität von GUI Programmen)
- Mehrere Applikationen / Clients gleichzeitig instanzierbar
- Parallelität (Performanz!)

Multithreading konzeptuell

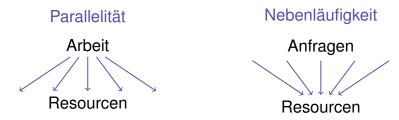


Threadwechsel auf einem Core (Preemption)



Parallelität vs. Nebenläufigkeit (Concurrency)

- Parallelität: Verwende zusätzliche Resourcen (z.B. CPUs), um ein Problem schneller zu lösen
- Nebenläufigkeit: Vewalte gemeinsam genutzte Resourcen (z.B. Speicher) korrekt und effizient
- Begriffe überlappen offensichtlich. Bei parallelen Berechnungen besteht fast immer Synchronisierungsbedarf.



Thread-Sicherheit

Thread-Sicherheit bedeutet, dass in der nebenläufigen Anwendung eines Programmes dieses sich immer wie gefordert verhält.

Viele Optimierungen (Hardware, Compiler) sind darauf ausgerichtet, dass sich ein *sequentielles* Programm korrekt verhält.

Nebenläufige Programme benötigen für ihre Synchronisierungen auch eine Annotation, welche gewisse Optimierungen selektiv abschaltet

Beispiel: Caches

- Speicherzugriff auf Register schneller als auf den gemeinsamen Speicher
- Prinzip der Lokalität
- Verwendung von Caches (transparent für den Programmierer)

Ob und wie weit die Cache-Kohärenz sichergestellt wird ist vom eingesetzen System abhängig.

27.4 C++ Threads

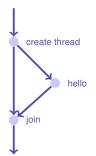
871

C++11 Threads

```
#include <iostream>
#include <thread>

void hello(){
   std::cout << "hello\n";
}

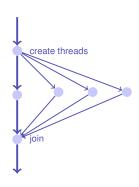
int main(){
   // create and launch thread t
   std::thread t(hello);
   // wait for termination of t
   t.join();
   return 0;
}</pre>
```



C++11 Threads

```
void hello(int id){
  std::cout << "hello from " << id << "\n";
}

int main(){
  std::vector<std::thread> tv(3);
  int id = 0;
  for (auto & t:tv)
    t = std::thread(hello, ++id);
  std::cout << "hello from main \n";
  for (auto & t:tv)
    t.join();
  return 0;
}</pre>
```



8/3

Nichtdeterministische Ausführung!

Technisches Detail

Eine Ausführung:

hello from main hello from 2 hello from 1 hello from 0

Andere Ausführung:

hello from 1 hello from main hello from 0 hello from 2

Andere Ausführung:

hello from main hello from 0 hello from hello from 1 Um einen Thread als Hintergrundthread weiterlaufen zu lassen:

```
void background();

void someFunction(){
    ...
    std::thread t(background);
    t.detach();
    ...
} // no problem here, thread is detached
```

875

Mehr Technische Details

- Beim Erstellen von Threads werden auch Referenzparameter kopiert, ausser man gibt explizit std::ref bei der Konstruktion an.
- Funktoren oder Lambda-Expressions k\u00f6nnen auch auf einem Thread ausgef\u00fchrt werden
- In einem Kontext mit Exceptions sollte das join auf einem Thread im catch-Block ausgeführt werden

Noch mehr Hintergründe im Kapitel 2 des Buches *C++ Concurrency in Action*, Anthony Williams, Manning 2012. Auch online bei der ETH Bibliothek erhältlich.

27.5 Skalierbarkeit: Amdahl und Gustafson

Skalierbarkeit

Parallele Performanz

In der parallelen Programmierung:

- Geschwindigkeitssteigerung bei wachsender Anzahl p Prozessoren
- Was passiert, wenn $p \to \infty$?
- Linear skalierendes Programm: Linearer Speedup

Gegeben fixierte Rechenarbeit W (Anzahl Rechenschritte)

Sequentielle Ausführungszeit sei T_1

Parallele Ausführungszeit T_p auf p CPUs

- Perfektion: $T_p = T_1/p$
- Performanzverlust: $T_p > T_1/p$ (üblicher Fall)
- Hexerei: $T_p < T_1/p$

Paralleler Speedup

Paralleler Speedup S_p auf p CPUs:

$$S_p = \frac{W/T_p}{W/T_1} = \frac{T_1}{T_p}.$$

- Perfektion: Linearer Speedup $S_p = p$
- Verlust: sublinearer Speedup $S_p < p$ (der übliche Fall)
- Hexerei: superlinearer Speedup $S_p > p$

Effizienz: $E_p = S_p/p$

Erreichbarer Speedup?

Paralleles Programm

Paralleler Teil	Seq. Teil
80%	20%

$$T_1 = 10$$

$$T_8 = \frac{10 \cdot 0.8}{8} + 10 \cdot 0.2 = 1 + 2 = 3$$

$$S_8 = \frac{T_1}{T_2} = \frac{10}{3} \approx 3.3 < 8 \quad (!)$$

Amdahl's Law: Zutaten

Amdahl's Law

Zu leistende Rechenarbeit W fällt in zwei Kategorien

- \blacksquare Parallelisierbarer Teil W_p
- lacktriangle Nicht paralleliserbarer, sequentieller Teil W_s

Annahme: W kann mit *einem* Prozessor in W Zeiteinheiten sequentiell erledigt werden $(T_1 = W)$:

$$T_1 = W_s + W_p$$
$$T_p \ge W_s + W_p/p$$

 $S_p = \frac{T_1}{T_p} \le \frac{W_s + W_p}{W_s + \frac{W_p}{p}}$

883

Amdahl's Law

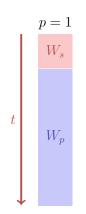
Illustration Amdahl's Law

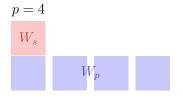
Mit seriellem, nicht parallelisierbaren Anteil λ : $W_s=\lambda W$, $W_p=(1-\lambda)W$:

$$S_p \le \frac{1}{\lambda + \frac{1-\lambda}{p}}$$

Somit

$$S_{\infty} \le \frac{1}{\lambda}$$





 T_1

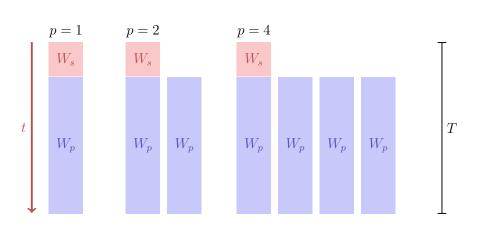
Amdahl's Law ist keine gute Nachricht

Gustafson's Law

Alle nicht parallelisierbaren Teile können Problem bereiten und stehen der Skalierbarkeit entgegen.

- Halte die Ausführungszeit fest.
- Variiere die Problemgrösse.
- Annahme: Der sequentielle Teil bleibt konstant, der parallele Teil wird grösser.

Illustration Gustafson's Law



Gustafson's Law

Arbeit, die mit einem Prozessor in der Zeit T erledigt werden kann:

$$W_s + W_p = T$$

Arbeit, die mit p Prozessoren in der Zeit T erledigt werden kann:

$$W_s + p \cdot W_p = \lambda \cdot T + p \cdot (1 - \lambda) \cdot T$$

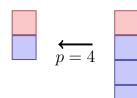
Speedup:

$$S_p = \frac{W_s + p \cdot W_p}{W_s + W_p} = p \cdot (1 - \lambda) + \lambda$$
$$= p - \lambda(p - 1)$$

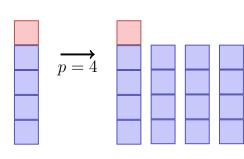
Amdahl vs. Gustafson

Amdahl vs. Gustafson

Amdahl



Gustafson



Die Gesetze von Amdahl und Gustafson sind Modelle der Laufzeitverbesserung bei Parallelisierung.

Amdahl geht von einem festen *relativen* sequentiellen Anteil der Arbeit aus, während Gustafson von einem festen *absoluten* sequentiellen Teil ausgeht (der als Bruchteil der Arbeit W_1 ausgedrückt wird und bei Zunahme der Arbeit nicht wächst).

Die beiden Modelle widersprechen sich nicht, sondern beschreiben die Laufzeitverbesserung verschiedener Probleme und Algorithmen.

Paradigmen der Parallelen Programmierung

27.6 Task- und Datenparallelität

- *Task Parallel:* Programmierer legt parallele Tasks explizit fest.
- Daten-Parallel: Operationen gleichzeitig auf einer Menge von individuellen Datenobjekten.

Beispiel Data Parallel (OMP)

```
double sum = 0, A[MAX];
#pragma omp parallel for reduction (+:ave)
for (int i = 0; i < MAX; ++i)
    sum += A[i];
return sum;</pre>
```

Beispiel Task Parallel (C++11 Threads/Futures)

```
double sum(Iterator from, Iterator to)
{
  auto len = from - to;
  if (len > threshold){
   auto future = std::async(sum, from, from + len / 2);
   return sumS(from + len / 2, to) + future.get();
  }
  else
   return sumS(from, to);
}
```

Partitionierung und Scheduling

- Aufteilung der Arbeit in parallele Tasks (Programmierer oder System)
 - Ein Task ist eine Arbeitseinheit
 - Frage: welche Granularität?
- Scheduling (Laufzeitsystem)
 - Zuweisung der Tasks zu Prozessoren
 - Ziel: volle Resourcennutzung bei wenig Overhead

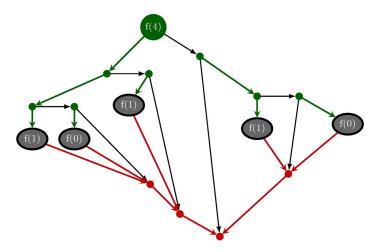
Beispiel: Fibonacci P-Fib

```
\begin{array}{l} \textbf{if} \ n \leq 1 \ \textbf{then} \\ \quad | \ \textbf{return} \ n \\ \textbf{else} \\ \quad x \leftarrow \textbf{spawn} \ \text{P-Fib}(n-1) \\ \quad y \leftarrow \textbf{spawn} \ \text{P-Fib}(n-2) \\ \quad \text{sync} \\ \quad | \ \textbf{return} \ x + y; \end{array}
```

P-Fib Task Graph

f(2) f(3) f(2) f(1) f(0) f(0)

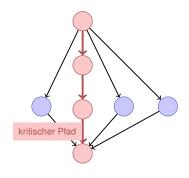
P-Fib Task Graph



9

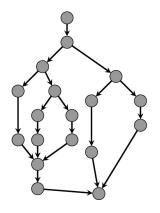
Frage

- Jeder Knoten (Task) benötigt 1 Zeiteinheit.
- Pfeile bezeichnen Abhängigkeiten.
- Minimale Ausführungseinheit wenn Anzahl Prozessoren = ∞ ?



Performanzmodell

- p Prozessoren
- Dynamische Zuteilung
- T_p : Ausführungszeit auf p Prozessoren

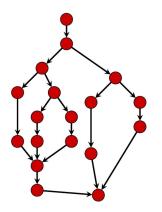


Performanzmodell

 \blacksquare T_p : Ausführungszeit auf p Prozessoren

■ *T*₁: *Arbeit:* Zeit für die gesamte Berechnung auf einem Prozessor

 $\blacksquare T_1/T_p$: Speedup



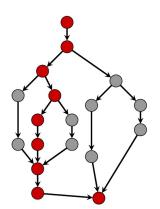
Performanzmodell

■ T_{∞} : Zeitspanne: Kritischer Pfad. Ausführungszeit auf ∞ Prozessoren. Längster Pfad von der Wurzel zur Senke.

■ T_1/T_∞ : *Parallelität:* breiter ist besser

Untere Grenzen

 $T_p \geq T_1/p$ Arbeitsgesetz $T_p \geq T_\infty$ Zeitspannengesetz



903

Greedy Scheduler

Greedy Scheduler: teilt zu jeder Zeit so viele Tasks zu Prozessoren zu wie möglich.

Theorem

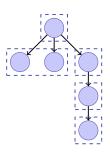
Auf einem idealen Parallelrechner mit p Prozessoren führt ein Greedy-Scheduler eine mehrfädige Berechnung mit Arbeit T_1 und Zeitspanne T_∞ in Zeit

$$T_p \le T_1/p + T_\infty$$

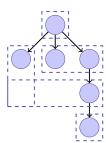
aus.

Beispiel

Annahme p=2.



$$T_p = 5$$



$$T_p = 4$$

Beweis des Theorems

Annahme, dass alle Tasks gleich viel Arbeit aufweisen.

- Vollständiger Schritt: p Tasks stehen zur Berechnung bereit
- Unvollständiger Schritt: weniger als p Tasks bereit.

Annahme: Anzahl vollständige Schritte grösser als $\lfloor T_1/p \rfloor$. Ausgeführte Arbeit $\geq \lfloor T_1/p \rfloor \cdot p + p = T_1 - T_1 \mod p + p > T_1$. Widerspruch. Also maximal $\lfloor T_1/p \rfloor$ vollständige Schritte.

Betrachten nun den Graphen der ausstehenden Tasks. Jeder maximale (kritische) Pfad beginnt mit einem Knoten t mit $\deg^-(t)=0$. Jeder unvollständige Schritt führt zu jedem Zeitpunkt alle vorhandenen Tasks t mit $\deg^-(t)=0$ aus und verringert also die Länge der Zeitspanne. Anzahl unvollständige Schritte also begrenzt durch T_∞ .

Konsequenz

Wenn $p \ll T_1/T_{\infty}$, also $T_{\infty} \ll T_1/p$, dann $T_p \approx T_1/p$.

Beispiel Fibonacci

907

 $T_1(n)/T_\infty(n) = \Theta(\phi^n/n)$. Für moderate Grössen von n können schon viele Prozessoren mit linearem Speedup eingesetzt werden.

Granularität: Wie viele Tasks?

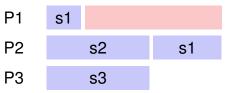
- #Tasks = #Cores?
- Problem: wenn ein Core nicht voll ausgelastet werden kann
- Beispiel: 9 Einheiten Arbeit. 3 Cores. Scheduling von 3 sequentiellen Tasks.

Exklusive Auslastung:

	•
P1	s1
P2	s2
P3	s3

Ausführungszeit: 3 Einheiten

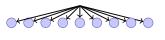
Fremder Thread "stört":



Ausführungszeit: 5 Einheiten

Granularität: Wie viele Tasks?

- #Tasks = Maximum?
- Beispiel: 9 Einheiten Arbeit. 3 Cores. Scheduling von 9 seguentiellen Tasks.

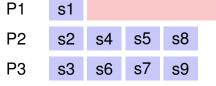


Exklusive Auslastung:

P1	s1	s4	s7
P2	s2	s5	s8
P3	s3	s6	s9

Ausführungszeit: $3+\varepsilon$ Einheiten

Fremder Thread "stört":



Ausführungszeit: 4 Einheiten. Volle Auslastung.

Granularität: Wie viele Tasks?

Granularität: Wie viele Tasks?

#Tasks = Maximum?

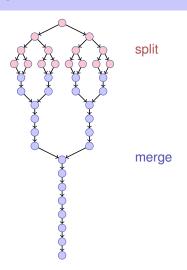
■ Beispiel: 10⁶ kleine Einheiten Arbeit.

Ausführungszeit: dominiert vom Overhead.

Antwort: so viele Tasks wie möglich mit sequentiellem Cut-off, welcher den Overhead vernachlässigen lässt.

Beispiel: Parallelität von Mergesort

- Arbeit (sequentielle Laufzeit) von Mergesort $T_1(n) = \Theta(n \log n)$.
- Span $T_{\infty}(n) = \Theta(n)$
- Parallelität $T_1(n)/T_\infty(n) = \Theta(\log n)$ (Maximal erreichbarer Speedup mit $p = \infty$ Prozessoren)



28. Parallel Programming II

Gemeinsamer Speicher, Nebenläufigkeit, Exkurs: Lock Algorithmus (Peterson), Gegenseitiger Ausschluss Race Conditions [C++ Threads: Williams, Kap. 2.1-2.2], [C++ Race Conditions: Williams, Kap. 3.1] [C++ Mutexes: Williams, Kap. 3.2.1, 3.3.3]

9

28.1 Gemeinsamer Speicher, Nebenläufigkeit

Gemeinsam genutzte Resourcen (Speicher)

- Bis hier: fork-join Algorithmen: Datenparallel oder Divide und Conquer
- Einfache Struktur (Datenunabhängigkeit der Threads) zum Vermeiden von Wettlaufsituationen (race conditions)
- Funktioniert nicht mehr, wenn Threads gemeinsamen Speicher nutzen müssen.

915

Konsistenz des Zustands

Gemeinsamer Zustand: Hauptschwierigkeit beim nebenläufigen Programmieren.

Ansätze:

- Unveränderbarkeit, z.B. Konstanten
- Isolierte Veränderlichkeit, z.B. Thread-lokale Variablen, Stack.
- Gemeinsame veränderliche Daten, z.B. Referenzen auf gemeinsamen Speicher, globale Variablen

Schütze den gemeinsamen Zustand

- Methode 1: Locks, Garantiere exklusiven Zugriff auf gemeinsame Daten.
- Methode 2: lock-freie Datenstrukturen, garantiert exklusiven Zugriff mit sehr viel feinerer Granularität.
- Methode 3: Transaktionsspeicher (hier nicht behandelt)

Kanonisches Beispiel

```
class BankAccount {
  int balance = 0;
public:
  int getBalance(){ return balance; }
  void setBalance(int x) { balance = x; }
  void withdraw(int amount) {
    int b = getBalance();
    setBalance(b - amount);
  }
  // deposit etc.
};
(korrekt bei Einzelthreadausführung)
```

Ungünstige Verschachtelung (Bad Interleaving)

Paralleler Aufruf von withdraw (100) auf demselben Konto

```
Thread 1
    int b = getBalance();

t
    int b = getBalance();
    setBalance(b-amount);
```

919

Verlockende Fallen

FALSCH:

```
void withdraw(int amount) {
  int b = getBalance();
  if (b==getBalance())
      setBalance(b - amount);
}
```

Bad interleavings lassen sich fast **nie mit wiederholtem Lesen** lösen

Verlockende Fallen

Auch FALSCH:

```
void withdraw(int amount) {
     setBalance(getBalance() - amount);
}
```

Annahmen über Atomizität von Operationen sind fast immer falsch

Gegenseitiger Ausschluss (Mutual Exclusion)

Wir benötigen ein Konzept für den gegenseitigen Ausschluss Nur ein Thread darf zu einer Zeit die Operation withdraw auf demselben Konto ausführen.

Der Programmierer muss den gegenseitigen Ausschlus sicherstellen.

Mehr verlockende Fallen

```
class BankAccount {
  int balance = 0;
  bool busy = false;
public:
  void withdraw(int amount) {
    while (busy); // spin wait
    busy = true;
    int b = getBalance();
    setBalance(b - amount);
    busy = false;
}

// deposit would spin on the same boolean
};
```

Das Problem nur verschoben!

Thread 1

```
while (busy); //spin

busy = true;

busy = true;

int b = getBalance();

int b = getBalance();

setBalance(b - amount);

setBalance(b - amount);
```

Thread 2

Wie macht man das richtig?

923

- Wir benutzen ein *Lock* (eine Mutex) aus Bibliotheken
- Eine Mutex verwendet ihrerseits Hardwareprimitiven, Read-Modify-Write (RMW) Operationen, welche atomar lesen und abhängig vom Leseergebis schreiben können.
- Ohne RMW Operationen ist der Algorithmus nichttrivial und benötigt zumindest atomaren Zugriff auf Variablen von primitivem Typ.

Alice Katze und Bobs Dog

28.2 Exkurs: Lock Algorithmus

927

Gefordert: Gegenseitiger Ausschluss

Gefordert: Kein grundloses Aussperren

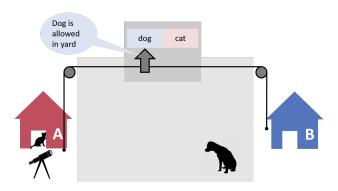
Arten der Kommunikation

Erste Idee

■ Transient: Parteien kommunizieren zur selben Zeit

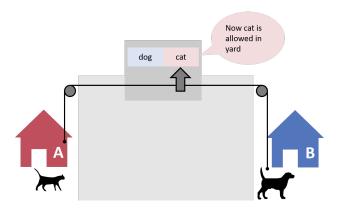
Persistent: Parteien kommunizieren zu verschiedenen Zeiten

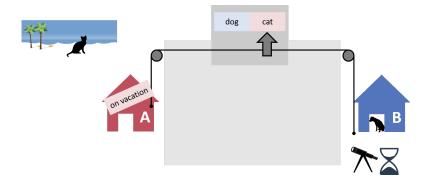
Gegenseitiger Ausschluss: Persistente Kommunikation



931

Zugriffsprotokoll





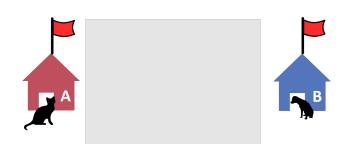
Zweite Idee

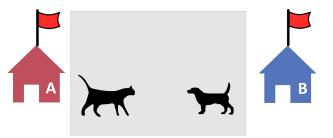
Zugriffsprotokoll 2.1

935

Anderes Szenario

Problem: Kein gegenseitiger Ausschluss





Die Fahnen zweimal prüfen: Deadlock

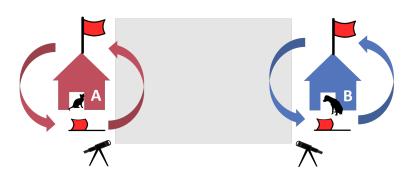
Zugriffsprotokoll 2.2

939

Zugriffsprotokoll 2.2: beweisbar korrekt

Minor Problem: Starvation





Lösung

Next time cat goes first

Das generelles Problem mit Locking bleibt

943

Der Algorithmus von Peterson⁵⁶

für zwei Prozesse ist beweisbar korrekt und frei von Starvation.

```
flag[me] = true // I am interested
victim = me // but you go first
```

 $\ensuremath{//}$ spin while we are both interested and you go first:

while (flag[you] && victim == me) {};

critical section

non-critical section

flag[me] = false

Der Code setzt voraus, dass der Zugriff auf flag / victim atomar, linearisiert oder sequentiell konsistent ist, eine Anforderung, welche – wie wir weiter unten sehen – für normale Variablen nicht unbedingt gegeben ist. Das Peterson-Lock wird auf moderner Hardware nicht eingesetzt.

28.3 Gegenseitiger Ausschluss

⁵⁶nicht prüfungsrelevant 945

Kritische Abschnitte und Gegenseitiger Ausschluss

Kritischer Abschnitt (Critical Section)

Codestück, welches nur durch einen einzigen Thread zu einer Zeit ausgeführt werden darf.

Gegenseitiger Ausschluss (Mutual Exclusion)

Algorithmus zur Implementation eines kritischen Abschnitts

```
acquire_mutex();  // entry algorithm\\
...  // critical section
release mutex();  // exit algorithm
```

Anforderung an eine Mutex.

Korrektheit (Safety)

 Maximal ein Prozess in der kritischen Region

Fortschritt (Liveness)

Das Betreten der kritischen Region darf nur endliche Zeit dauern, wenn kein Thread in der kritischen Region verweilt.

947

Fast Korrekt

class BankAccount { int balance = 0; std::mutex m; // requires #include <mutex> public: ... void withdraw(int amount) { m.lock(); int b = getBalance(); setBalance(b - amount); m.unlock(); } };

Was, wenn eine Exception auftritt?

RAII Ansatz

```
class BankAccount {
  int balance = 0;
  std::mutex m;
public:
    ...
  void withdraw(int amount) {
    std::lock_guard<std::mutex> guard(m);
    int b = getBalance();
    setBalance(b - amount);
  } // Destruction of guard leads to unlocking m
};
```

Was ist mit getBalance / setBalance?

Reentrante Locks

Reentrantes Lock (rekursives Lock)

- merkt sich den betroffenen Thread;
- hat einen Zähler
 - Aufruf von lock: Zähler wird inkrementiert
 - Aufruf von unlock: Zähler wird dekrementiert. Wenn Zähler = 0, wird das Lock freigeben

28.4 Race Conditions

Konto mit reentrantem Lock

```
class BankAccount {
  int balance = 0;
  std::recursive_mutex m;
  using guard = std::lock_guard<std::recursive_mutex>;
public:
  int getBalance(){ guard g(m); return balance;
  }
  void setBalance(int x) { guard g(m); balance = x;
  }
  void withdraw(int amount) { guard g(m);
  int b = getBalance();
   setBalance(b - amount);
  }
};
```

951

Wettlaufsituation (Race Condition)

- Eine *Wettlaufsituation* (Race Condition) tritt auf, wenn das Resultat einer Berechnung vom Scheduling abhängt.
- Wir unterscheiden *bad interleavings* und *data races*
- Bad Interleavings können auch unter Verwendung einer Mutex noch auftreten.

Beispiel: Stack

Stack mit korrekt synchronisiertem Zugriff:

```
template <typename T>
class stack{
    ...
    std::recursive_mutex m;
    using guard = std::lock_guard<std::recursive_mutex>;
public:
    bool isEmpty(){ guard g(m); ... }
    void push(T value){ guard g(m); ... }
    T pop(){ guard g(m); ...}
};
```

Peek

Peek Funktion vergessen. Dann so?

```
template <typename T>
T peek (stack<T> &s){
  T value = s.pop();
  s.push(value);
  return value;
}
```

Code trotz fragwürdigem Stil in sequentieller Welt korrekt. Nicht so in nebenläufiger Programmierung!

Bad Interleaving!

Initial leerer Stack s, nur von Threads 1 und 2 gemeinsam genutzt.

Thread 1 legt einen Wert auf den Stack und prüft, dass der Stack nichtleer ist. Thread 2 liest mit peek() den obersten Wert.

```
Thread 1 Thread 2

s.push(5);

int value = s.pop();

assert(!s.isEmpty());

s.push(value);

return value;
```

Die Lösung

955

Peek muss mit demselben Lock geschützt werden, wie die anderen Zugriffsmethoden.

Bad Interleavings

Race Conditions in Form eines Bad Interleavings können also auch auf hoher Abstraktionsstufe noch auftreten.

Betrachten nachfolgend andere Form der Wettlaufsitation: Data Race.

Wie ist es damit?

```
class counter{
  int count = 0;
  std::recursive_mutex m;
  using guard = std::lock_guard<std::recursive_mutex>;
public:
  int increase(){
    guard g(m); return ++count;
  }
  int get(){
    return count;
  }
}
```

959

Warum falsch?

Es sieht so aus, als könne hier nichts schiefgehen, da der Update von count in einem "winzigen Schritt" geschieht.

Der Code ist trotzdem falsch und von Implementationsdetails der Programmiersprache und unterliegenden Hardware abhängig.

Das vorliegende Problem nennt man Data-Race

Moral: Vermeide Data-Races, selbst wenn jede denkbare Form von Verschachtelung richtig aussieht. Mache keine Annahmen über die Anordnung von Speicheroperationen.

Etwas formaler

Data Race (low-level Race-Conditions) Fehlerhaftes
Programmverhalten verursacht durch ungenügend synchronisierten
Zugriff zu einer gemeinsam genutzten Resource, z.B. gleichzeitiges
Lesen/Schreiben oder Schreiben/Schreiben zum gleichen
Speicherbereich.

Bad Interleaving (High Level Race Condition) Fehlerhaftes
Programmverhalten verursacht durch eine unglückliche
Ausführungsreihenfolge eines Algorithmus mit mehreren Threads,
selbst dann wenn die gemeinsam genutzten Resourcen anderweitig
gut synchronisiert sind.

96

Genau hingeschaut

Es gibt keine Verschachtelung zweier f und g aufrufender Threads die die Bedingung in der Assertion falsch macht:

- ABCD ✓
- ACBD ✓
- ACDB√
- CABD ✓
- CCDB√
- CDAB ✓

Es kann trotzdem schiefgehen!

Ein Grund: Memory Reordering

Daumenregel: Compiler und Hardware dürfen die Ausführung des Codes so ändern, dass die Semantik einer sequentiellen Ausführung nicht geändert wird.

963

Die Software-Perspektive

Moderne Compiler geben keine Garantie, dass die globale Anordnung aller Speicherzugriffe der Ordnung im Quellcode entsprechen

- Manche Speicherzugriffe werden sogar komplett wegoptimiert
- Grosses Potential für Optimierungen und Fehler in der nebenläufigen Welt, wenn man falsche Annahmen macht

Beispiel: Selbstgemachtes Rendevouz

```
int x; // shared

void wait(){
    x = 1;
    while(x == 1);
}

void arrive(){
    x = 2;
}
```

Angenommen Thread 1 ruft wait auf, später ruft Thread 2 arrive auf. Was passiert?

```
thread 1 — wait — arrive — arrive
```

Kompilation

Source

```
int x; // shared
void wait(){
  x = 1;
 while(x == 1);
```

void arrive(){

x = 2:

Ohne Optimierung

```
wait:
movl $0x1, x
test: ←
mov x, %eax
                 if equal
cmp $0x1, %eax
je test -
```

arrive:

movl \$0x2, x

Mit Optimierung

```
wait:
movl $0x1, x
test: ←
jmp test
arrive
movl $0x2, x
```

Hardware Perspektive

Moderne Prozessoren erzwingen nicht die globale Anordnung aller Instruktionen aus Gründen der Performanz:

- Die meisten Prozessoren haben einen Pipeline und können Teile von Instruktionen simultan oder in anderer Reihenfolge ausführen.
- Jeder Prozessor(kern) hat einen lokalen Cache, der Effekt des Speicherns im gemeinsamen Speicher kann bei anderen Prozessoren u.U. erst zu einem späteren Zeitpunkt sichtbar werden.

967

Speicherhierarchie

Registers

schnell,kleine Latenz,hohe Kosten, geringe Kapazität

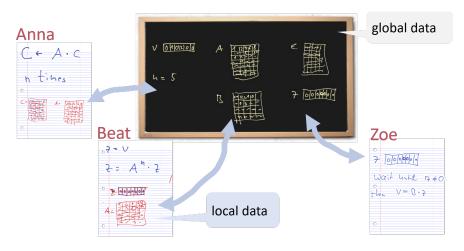
L1 Cache

L2 Cache

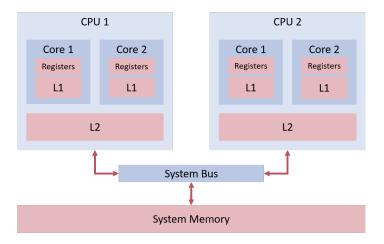
System Memory

langsam, hohe Latenz, geringe Kosten,hohe Kapazität

Eine Analogie



Schematisch



Speichermodelle

Wann und ob Effekte von Speicheroperationen für Threads sichtbar werden, hängt also von Hardware, Laufzeitsystem und der Programmiersprache ab.

Ein *Speichermodell* (z.B. das von C++) gibt Minimalgarantien für den Effekt von Speicheroperationen.

- Lässt Möglichkeiten zur Optimierung offen
- Enthält Anleitungen zum Schreiben Thread-sicherer Programme

C++ gibt zum Beispiel *Garantien, wenn Synchronisation mit einer Mutex verwendet* wird.

Repariert

```
class C {
  int x = 0;
  int y = 0;
  std::mutex m;
public:
  void f() {
    m.lock(); x = 1; m.unlock();
    m.lock(); y = 1; m.unlock();
  }
  void g() {
    m.lock(); int a = y; m.unlock();
    m.lock(); int b = x; m.unlock();
    assert(b >= a); // cannot fail
  }
};
```

Atomic

971

Hier auch möglich:

```
class C {
   std::atomic_int x{0}; // requires #include <atomic>
   std::atomic_int y{0};
public:
   void f() {
       x = 1;
       y = 1;
   }
   void g() {
       int a = y;
       int b = x;
       assert(b >= a); // cannot fail
   }
};
```

29. Parallel Programming III

Verklemmung (Deadlock) und Verhungern (Starvation) Producer-Consumer, Konzept des Monitors, Condition Variables [Deadlocks: Williams, Kap. 3.2.4-3.2.5] [Condition Variables: Williams, Kap. 4.1]

Verklemmung (Deadlock) Motivation

```
class BankAccount {
  int balance = 0;
  std::recursive_mutex m;
  using guard = std::lock_guard<std::recursive_mutex>;
public:
    ...
  void withdraw(int amount) { guard g(m); ... }
  void deposit(int amount){ guard g(m); ... }

  void transfer(int amount, BankAccount& to){
      guard g(m);
      withdraw(amount);
      to.deposit(amount);
  }
}
```

};

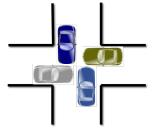
Deadlock

Verklemmung (Deadlock) Motivation

Betrachte BankAccount Instanzen x und y

```
Thread 1: x.transfer(1,y); Thread 2: y.transfer(1,x); acquire lock for x \leftarrow \boxed{x} withdraw from x acquire lock for y withdraw from y acquire lock for x
```

Deadlock: zwei oder mehr Prozesse sind gegenseitig blockiert, weil jeder Prozess auf einen anderen Prozess warten muss, um fortzufahren.

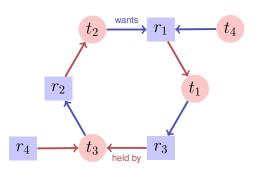


Threads und Resourcen

- Grafisch: Threads t und Resourcen (Locks) r
- Thread t versucht Resource a zu bekommen: $t \longrightarrow a$
- Resource b wird von Thread q gehalten:

Deadlock - Erkennung

Ein Deadlock für Threads t_1, \ldots, t_n tritt auf, wenn der gerichtete Graph, der die Beziehung der n threads und Resourcen r_1, \ldots, r_m beschreibt, einen Kreis enthält.



979

Techniken

- **Deadlock Erkennung** findet die Zyklen im Abhängigkeitsgraph. Deadlock kann normalerweise nicht geheilt werden: Freigeben von Locks resultiert in inkonsistentem Zustand.
- Deadlock Vermeidung impliziert, dass Zyklen nicht auftreten können
 - Grobere Granularität "one lock for all"
 - Zwei-Phasen-Locking mit Retry-Mechanismus
 - Lock-Hierarchien
 - ...
 - Anordnen der Resourcen

Zurück zum Beispiel

```
class BankAccount {
  int id; // account number, also used for locking order
  std::recursive_mutex m; ...
public:
  ...
  void transfer(int amount, BankAccount& to){
    if (id < to.id){
       guard g(m); guard h(to.m);
       withdraw(amount); to.deposit(amount);
    } else {
       guard g(to.m); guard h(m);
       withdraw(amount); to.deposit(amount);
    }
}
};</pre>
```

C++11 Stil

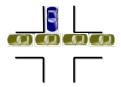
```
class BankAccount {
    ...
    std::recursive_mutex m;
    using guard = std::lock_guard<std::recursive_mutex>;
public:
    ...
    void transfer(int amount, BankAccount& to){
        std::lock(m,to.m); // lock order done by C++
        // tell the guards that the lock is already taken:
        guard g(m,std::adopt_lock); guard h(to.m,std::adopt_lock);
        withdraw(amount);
        to.deposit(amount);
}
```

Übrigens...

```
class BankAccount {
  int balance = 0;
  std::recursive_mutex m;
  using guard = std::lock guard<std::recursive mutex>;
public:
  . . .
 void withdraw(int amount) { guard g(m); ... }
 void deposit(int amount){ guard g(m); ... }
  void transfer(int amount, BankAccount& to){
      withdraw(amount):
                              Das hätte auch funktioniert. Allerdings
     to.deposit(amount);
                              verschwindet dann kurz das Geld, was
 }
                              inakzeptabel ist (kurzzeitige Inkonsis-
};
                              tenz!)
```

Starvation und Livelock

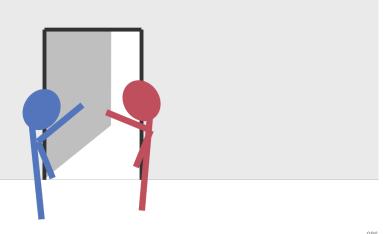
Starvation: der wiederholte, erfolglose Versuch eine zwischenzeitlich freigegebene Resource zu erhalten, um die Ausführung fortzusetzen.



Livelock: konkurrierende Prozesse erkennen einen potentiellen Deadlock, machen aber keinen Fortschritt beim Auflösen des Problems.

Politelock

983



Produzenten-Konsumenten Problem

Zwei (oder mehr) Prozesse, Produzenten und Konsumenten von Daten, sollen mit Hilfe einer Datenstruktur entkoppelt werden.

Fundamentale Datenstruktur für den Bau von Software-Pipelines!

Sequentielle Implementation (unbeschränkter Buffer)

```
class BufferS {
  std::queue<int> buf;
public:
    void put(int x) {
       buf.push(x);
    }
    int get() {
       while (buf.empty()) {} // wait until data arrive int x = buf.front();
       buf.pop();
       return x;
    }
};
```

Wie wärs damit?

```
class Buffer {
  std::recursive_mutex m;
  using guard = std::lock_guard<std::recursive_mutex>;
  std::queue<int> buf;
public:
    void put(int x){ guard g(m);
        buf.push(x);
    }
    int get(){ guard g(m);
        while (buf.empty()){}
        int x = buf.front();
        buf.pop();
        return x;
    }
};
```

Ok, so?

987

```
void put(int x){
    guard g(m);
    buf.push(x);
}
int get(){
    m.lock();
    while (buf.empty()){
        m.unlock();
        m.lock();
    }
    int x = buf.front();
    buf.pop();
    m.unlock();
    return x;
}
```

Ok, das geht, verschwendet aber CPU Zeit!

Besser?

```
void put(int x){
  guard g(m);
  buf.push(x);
}
int get(){
  m.lock();
  while (buf.empty()){
    m.unlock();
    std::this_thread::sleep_for(std::chrono::milliseconds(10));
    m.lock();
}
int x = buf.front(); buf.pop();
  m.unlock();
  return x;
}
```

Moral

Wir wollen das Warten auf eine Bedingung nicht selbst implementieren müssen.

Dafür gibt es bereits einen Mechanismus: *Bedingungsvariablen* (condition variables).

Das zugrunde liegende Konzept nennt man *Monitor*.

Monitor

Monitor Abstrakte Datenstruktur, die mit einer Menge Operationen ausgestattet ist, die im gegenseitigen Ausschluss arbeiten und synchronisiert werden können.

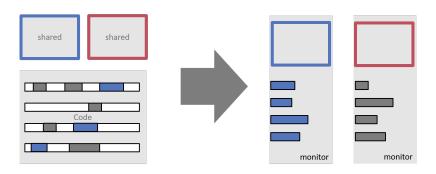
Erfunden von C.A.R. Hoare und Per Brinch Hansen (cf. Monitors – An Operating System Structuring Concept, C.A.R. Hoare 1974)

C.A.R. Hoare, *1934

991

Per Brinch Hansen (1938-2007)

Monitors vs. Locks



Monitor und Bedingungen

Ein Monitor stellt, zusätzlich zum gegenseitigen Ausschluss, folgenden Mechanismus bereit:

Warten auf Bedingungen: Ist eine Bedingung nicht erfüllt, dann

- Gib das Lock auf
- Warte auf die Erfüllung der Bedingung
- Prüfe die Erfüllung der Bedingung wenn ein Signal gesendet wird

Signalisieren: Thread, der die Bedingung wahr machen könnte:

Sende Signal zu potentiell wartenden Threads

Bedingungsvariablen

995

00

Bedingungsvariablen

```
class Buffer {
...
public:
    void put(int x){
        guard g(m);
        buf.push(x);
        cond.notify_one();
}
    int get(){
        guard g(m);
        cond.wait(g, [&]{return !buf.empty();});
        int x = buf.front(); buf.pop();
        return x;
    }
};
```

Technische Details

- Ein Thread, der mit cond.wait wartet, läuft höchstens sehr kurz auf einem Core. Danach belastet er das System nicht mehr und "schläft".
- Der Notify (oder Signal-) Mechanismus weckt schlafende Threads auf, welche nachfolgend ihre Bedingung prüfen.
 - cond.notify_one signalisiert einen wartenden Threads.
 - cond.notify_all signalisiert *alle* wartende Threads. Benötigt, wenn wartende Threads potentiell auf *verschiedene* Bedingungen warten.

Technische Details

In vielen anderen Sprachen gibt es denselben Mechanismus. Das Prüfen von Bedingungen (in einem Loop!) muss der Programmierer dort oft noch selbst implementieren.

Java Beispiel

```
synchronized long get() {
  long x;
  while (isEmpty())
    try {
      wait ();
    } catch (InterruptedException e) { }
  x = doGet();
  return x;
}
synchronized put(long x){
  doPut(x);
  notify ();
}
```

Übrigens: mit bounded Buffer..

```
class Buffer {
    ...
    CircularBuffer<int,128> buf; // from lecture 6
public:
    void put(int x){ guard g(m);
        cond.wait(g, [&]{return !buf.full();});
        buf.put(x);
        cond.notify_all();
}
int get(){ guard g(m);
        cond.wait(g, [&]{return !buf.empty();});
        cond.notify_all();
        return buf.get();
};
```

30. Parallel Programming IV

Futures, Read-Modify-Write Instruktionen, Atomare Variablen, Idee der lockfreien Programmierung

```
[C++ Futures: Williams, Kap. 4.2.1-4.2.3] [C++ Atomic: Williams, Kap. 5.2.1-5.2.4, 5.2.7] [C++ Lockfree: Williams, Kap. 7.1.-7.2.1]
```

Futures: Motivation

Threads waren bisher Funktionen ohne Resultat:

```
void action(some parameters){
    ...
}
std::thread t(action, parameters);
...
t.join();
// potentially read result written via ref-parameters
```

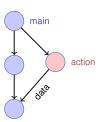
Futures: Motivation

Wir können das schon!

Wir wollen nun etwas in dieser Art:

```
T action(some parameters){
    ...
    return value;
}

std::thread t(action, parameters);
...
value = get_value_from_thread();
```



- Wir verwenden das Producer/Consumer Pattern (implementiert mit Bedingungsvariablen)
- Starten einen Thread mit Referenz auf den Buffer
- Wenn wir das Resultat brauchen, holen wir es vom Buffer
- Synchronisation ist ja bereits implementiert

1003

Zur Erinnerung

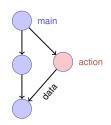
```
template <typename T>
class Buffer {
  std::queue<T> buf;
  std::mutex m;
  std::condition_variable cond;
public:
  void put(T x){ std::unique_lock<std::mutex> g(m);
    buf.push(x);
    cond.notify_one();
}
T get(){ std::unique_lock<std::mutex> g(m);
    cond.wait(g, [&]{return (!buf.empty());});
    T x = buf.front(); buf.pop(); return x;
}
};
```

Anwendung

```
void action(Buffer<int>& c){
    // some long lasting operation ...
    c.put(42);
}
int main(){
    Buffer<int> c;
    std::thread t(action, std::ref(c));
    t.detach(); // no join required for free running thread
    // can do some more work here in parallel
    int val = c.get();
    // use result
    return 0;
}
```

Mit C++11 Bordmitteln

```
int action(){
    // some long lasting operation
    return 42;
}
int main(){
    std::future<int> f = std::async(action);
    // can do some work here in parallel
    int val = f.get();
    // use result
    return 0;
}
```



30.2 Read-Modify-Write

1007

Beispiel: Atomare Operationen in Hardware

Read-Modify-Write

Konzept von Read-Modify-Write: Der Effekt von Lesen, Verändern und Zurückschreiben, wird zu einem Zeitpunkt sichtbar (geschieht atomar).

Pseudo-Code für CAS – Compare-And-Swap

```
bool CAS(int& variable, int& expected, int desired){
   if (variable == expected){
     variable = desired;
     return true;
   }
   else{
     expected = variable;
     return false;
   }
}
```

30.3 Lock-Freie Programmierung

Ideen

Verwendungsbeispiel CAS in C++11

Wir bauen unser eigenes (Spin-)Lock:

```
class Spinlock{
  std::atomic<bool> taken {false};
public:
  void lock(){
    bool old = false;
    while (!taken.compare_exchange_strong(old=false, true)){}
}
void unlock(){
  bool old = true;
  assert(taken.compare_exchange_strong(old, false));
}
};
```

1011

Lock-freie Programmierung

Datenstruktur heisst

- *lock-frei*: zu jeder Zeit macht mindestens ein Thread in beschränkter Zeit Fortschritt, selbst dann, wenn viele Algorithmen nebenläufig ausgeführt werden. Impliziert systemweiten Fortschritt aber nicht Starvationfreiheit.
- wait-free: jeder Thread macht zu jeder Zeit in beschränkter Zeit Fortschritt, selbst dann wenn andere Algorithmen nebenläufig ausgeführt werden.

Fortschrittsbedingungen

	Lock-frei	Blockierend
Jeder macht Fortschritt	Wait-frei	Starvation-frei
Mindestens einer macht Fortschritt	Lock-frei	Deadlock-frei

Implikation

- Programmieren mit Locks: jeder Thread kann andere Threads beliebig blockieren.
- Lockfreie Programmierung: der Ausfall oder das Aufhängen eines Threads kann nicht bewirken, dass andere Threads blockiert werden

1015

Wie funktioniert lock-freie Programmierung?

Beobachtung:

- RMW-Operationen sind in Hardware *Wait-Free* implementiert.
- Jeder Thread sieht das Resultat eines CAS oder TAS in begrenzter Zeit.

Idee der lock-freien Programmierung: lese Zustand der Datenstruktur und verändere die Datenstruktur *atomar* dann und nur dann, wenn der gelesene Zustand unverändert bleibt.

Beispiel: lock-freier Stack

Nachfolgend vereinfachte Variante eines Stacks

- pop prüft nicht, ob der Stack leer ist
- pop gibt nichts zurück

(Node)

```
Nodes:
struct Node {
  T value;
  Node<T>* next;
  Node(T v, Node<T>* nxt): value(v), next(nxt) {}
};

value
next

value
next

value
next

value
next
```

(Blockierende Version)

```
template <typename T>
class Stack {
                                                         value
                                                   top →
   Node<T> *top=nullptr;
                                                          next
    std::mutex m;
public:
                                                          value
    void push(T val){ guard g(m);
                                                          next
       top = new Node<T>(val, top);
   }
                                                          value
   void pop(){ guard g(m);
                                                          next
       Node<T>* old_top = top;
       top = top->next;
                                                         value
       delete old_top;
                                                          next
   }
};
```

1019

1020

Lock-Frei

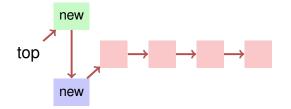
```
template <typename T>
class Stack {
   std::atomic<Node<T>*> top {nullptr};
public:
   void push(T val){
     Node<T>* new_node = new Node<T> (val, top);
     while (!top.compare_exchange_weak(new_node->next, new_node));
}

void pop(){
   Node<T>* old_top = top;
   while (!top.compare_exchange_weak(old_top, old_top->next));
   delete old_top;
}
};
```

Push

```
void push(T val){
  Node<T>* new_node = new Node<T> (val, top);
  while (!top.compare_exchange_weak(new_node->next, new_node));
}
```

2 Threads:



Pop

```
void pop(){
  Node<T>* old_top = top;
  while (!top.compare_exchange_weak(old_top, old_top->next));
  delete old_top;
}
```

2 Threads:



Lockfreie Programmierung – Grenzen

- Lockfreie Programmierung ist kompliziert.
- Wenn mehr als ein Wert nebenläufig angepasst werden muss (Beispiel: Queue), wird es schwieriger. Damit Algorithmen lock-frei bleiben, müssen Threads sich "gegenseitig helfen".
- Bei Speicherwiederverwendung kann das *ABA Problem* auftreten. Die Lösung dieses Problems ist aufwändig.