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It is so simple!

For the exercises we use an online development environment that
requires only a browser, internet connection and your ETH login.

If you do not have access to a computer: there are a a lot of computers publicly
accessible at ETH.
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literature

Algorithmen und Datenstrukturen, T. Ottmann, P. Widmayer,
Spektrum-Verlag, 5. Auflage, 2011

Algorithmen - Eine Einführung, T. Cormen, C. Leiserson, R.
Rivest, C. Stein, Oldenbourg, 2010

Introduction to Algorithms, T. Cormen, C. Leiserson, R. Rivest, C.
Stein , 3rd ed., MIT Press, 2009

The C++ Programming Language, B. Stroustrup, 4th ed.,
Addison-Wesley, 2013.

The Art of Multiprocessor Programming, M. Herlihy, N. Shavit,
Elsevier, 2012.
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Relevant for the exam

Material for the exam comprises

Course content (lectures, handout)
Exercises content (exercise sheets, recitation hours)
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Relevant for the exam

Written exam (120 min). Examination aids: four A4 pages (or two
sheets of 2 A4 pages double sided) either hand written or with font
size minimally 11 pt.
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Offer

Doing the weekly exercise series→ bonus of maximally 0.25 of a
grade points for the exam.
The bonus is proportional to the achieved points of specially
marked bonus-task. The full number of points corresponds to a
bonus of 0.25 of a grade point.
The admission to the specially marked bonus tasks can depend
on the successul completion of other exercise tasks. The achieved
grade bonus expires as soon as the course has been given again.
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Offer (Concretely)

4 bonus exercises in total; 3/4 of the points suffice for the exam
bonus of 0.25 marks
You can, e.g. fully solve 3 bonus exercises, or solve 4 bonus
exercises to 75% each, or ...
Bonus exercises must be unlocked (→ experience points) by
successfully completing the weekly exercises
It is again not necessary to solve all weekly exercises completely
in order to unlock a bonus exercise
Details: exercise sessions, online exercise system (Code Expert)
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Academic integrity

Rule: You submit solutions that you have written yourself and that
you have understood.

We check this (partially automatically) and reserve our rights to
adopt disciplinary measures.
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Exercise group registration I
Visit http://expert.ethz.ch/enroll/SS19/da
Log in with your nethz account.
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Exercise group registration II
Register with the subsequent dialog for an exercise group.
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Overview
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Programming Exercise
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Programming Exercise

A: compile
B: run
C: test
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Programming Exercise

D: description
E: History
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Test and Submit
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Test and Submit

Test
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Test and Submit

Test

Submission
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Where is the Save Button?

The file system is transaction based and is saved permanently
(“autosave”). When opening a project it is found in the most recent
observed state.
The current state can be saved as (named) snaphot. It is always
possible to return to saved snapshot.
The current state can be submitted (as snapshot). Additionally,
each saved named snapshot can be submitted.
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Snapshots
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Snapshots

Look at snapshot
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Snapshots

Look at snapshot

Submission

Go Back
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Should there be any Problems ...

with the course content

definitely attend all recitation sessions
ask questions there
and/or contact the assistant

further problems

Email to lecturer (Felix Friedrich)

We are willing to help.
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1. Introduction

Overview, Algorithms and Data Structures, Correctness, First
Example
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Goals of the course

Understand the design and analysis of fundamental algorithms
and data structures.
An advanced insight into a modern programming model (with
C++).
Knowledge about chances, problems and limits of the parallel and
concurrent computing.
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Contents
data structures / algorithms
The notion invariant, cost model, Landau notation

algorithms design, induction
searching, selection and sorting

amortized analysis
dynamic programming

dictionaries: hashing and search trees
Fundamental algorithms on graphs,

shortest paths, Max-Flow

van-Emde Boas Trees, Splay-Trees

Minimum Spanning Trees, Fibonacci Heaps

prorgamming with C++
RAII, Move Konstruktion, Smart Pointers,

Templates and generic programming
Exceptions functors and lambdas

threads, mutex and monitors
promises and futures

parallel programming
parallelism vs. concurrency, speedup (Amdahl/-
Gustavson), races, memory reordering, atomir reg-
isters, RMW (CAS,TAS), deadlock/starvation
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1.2 Algorithms

[Cormen et al, Kap. 1;Ottman/Widmayer, Kap. 1.1]
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Algorithm

Algorithm: well defined computing procedure to compute output data
from input data
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example problem

Input: A sequence of n numbers (a1, a2, . . . , an)

Output: Permutation (a′1, a
′
2, . . . , a

′
n) of the sequence (ai)1≤i≤n, such that

a′1 ≤ a′2 ≤ · · · ≤ a′n

Possible input
(1, 7, 3), (15, 13, 12,−0.5), (1) . . .

Every example represents a problem instance

The performance (speed) of an algorithm usually depends on the
problem instance. Often there are “good” and “bad” instances.
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Examples for algorithmic problems

Tables and statistis: sorting, selection and searching

routing: shortest path algorithm, heap data structure
DNA matching: Dynamic Programming
evaluation order: Topological Sorting
autocomletion and spell-checking: Dictionaries / Trees
Fast Lookup : Hash-Tables
The travelling Salesman: Dynamic Programming, Minimum
Spanning Tree, Simulated Annealing

26



Examples for algorithmic problems

Tables and statistis: sorting, selection and searching
routing: shortest path algorithm, heap data structure

DNA matching: Dynamic Programming
evaluation order: Topological Sorting
autocomletion and spell-checking: Dictionaries / Trees
Fast Lookup : Hash-Tables
The travelling Salesman: Dynamic Programming, Minimum
Spanning Tree, Simulated Annealing

26



Examples for algorithmic problems

Tables and statistis: sorting, selection and searching
routing: shortest path algorithm, heap data structure
DNA matching: Dynamic Programming

evaluation order: Topological Sorting
autocomletion and spell-checking: Dictionaries / Trees
Fast Lookup : Hash-Tables
The travelling Salesman: Dynamic Programming, Minimum
Spanning Tree, Simulated Annealing

26



Examples for algorithmic problems

Tables and statistis: sorting, selection and searching
routing: shortest path algorithm, heap data structure
DNA matching: Dynamic Programming
evaluation order: Topological Sorting

autocomletion and spell-checking: Dictionaries / Trees
Fast Lookup : Hash-Tables
The travelling Salesman: Dynamic Programming, Minimum
Spanning Tree, Simulated Annealing

26



Examples for algorithmic problems

Tables and statistis: sorting, selection and searching
routing: shortest path algorithm, heap data structure
DNA matching: Dynamic Programming
evaluation order: Topological Sorting
autocomletion and spell-checking: Dictionaries / Trees

Fast Lookup : Hash-Tables
The travelling Salesman: Dynamic Programming, Minimum
Spanning Tree, Simulated Annealing

26



Examples for algorithmic problems

Tables and statistis: sorting, selection and searching
routing: shortest path algorithm, heap data structure
DNA matching: Dynamic Programming
evaluation order: Topological Sorting
autocomletion and spell-checking: Dictionaries / Trees
Fast Lookup : Hash-Tables

The travelling Salesman: Dynamic Programming, Minimum
Spanning Tree, Simulated Annealing

26



Examples for algorithmic problems

Tables and statistis: sorting, selection and searching
routing: shortest path algorithm, heap data structure
DNA matching: Dynamic Programming
evaluation order: Topological Sorting
autocomletion and spell-checking: Dictionaries / Trees
Fast Lookup : Hash-Tables
The travelling Salesman: Dynamic Programming, Minimum
Spanning Tree, Simulated Annealing

26



Characteristics

Extremely large number of potential solutions
Practical applicability
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Data Structures

A data structure is a particular way of
organizing data in a computer so that
they can be used efficiently (in the
algorithms operating on them).
Programs = algorithms + data
structures.
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Efficiency

Illusion:

If computers were infinitely fast and had an infinite amount of
memory ...
... then we would still need the theory of algorithms (only) for
statements about correctness (and termination).

Reality: resources are bounded and not free:

Computing time→ Efficiency
Storage space→ Efficiency

Actually, this course is nearly only about efficiency.
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Hard problems.

NP-complete problems: no known efficient solution (the existence
of such a solution is very improbable – but it has not yet been
proven that there is none!)
Example: travelling salesman problem

This course is mostly about problems that can be solved
efficiently (in polynomial time).
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2. Efficiency of algorithms

Efficiency of Algorithms, Random Access Machine Model, Function
Growth, Asymptotics [Cormen et al, Kap. 2.2,3,4.2-4.4 |
Ottman/Widmayer, Kap. 1.1]
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Efficiency of Algorithms

Goals

Quantify the runtime behavior of an algorithm independent of the
machine.
Compare efficiency of algorithms.
Understand dependece on the input size.
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Programs and Algorithms

program

programming language

computer

algorithm

pseudo-code

computation model

implemented in

specified for

specified in

based on

Technology Abstraction

33



Technology Model

Random Access Machine (RAM)

Execution model: instructions are executed one after the other (on
one processor core).

Memory model: constant access time (big array)
Fundamental operations: computations (+,−,·,...) comparisons,
assignment / copy on machine words (registers), flow control
(jumps)
Unit cost model: fundamental operations provide a cost of 1.
Data types: fundamental types like size-limited integer or floating
point number.
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Size of the Input Data

Typical: number of input objects (of fundamental type).

Sometimes: number bits for a reasonable / cost-effective
representation of the data.

fundamental types fit into word of size : w ≥ log(sizeof(mem)) bits.
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Pointer Machine Model

We assume

Objects bounded in size can be dynamically allocated in constant
time
Fields (with word-size) of the objects can be accessed in constant
time 1.

top xn xn−1 x1 null
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Asymptotic behavior

An exact running time of an algorithm can normally not be predicted
even for small input data.

We consider the asymptotic behavior of the algorithm.
And ignore all constant factors.

Example
An operation with cost 20 is no worse than one with cost 1
Linear growth with gradient 5 is as good as linear growth with
gradient 1.
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2.2 Function growth

O, Θ, Ω [Cormen et al, Kap. 3; Ottman/Widmayer, Kap. 1.1]
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Superficially

Use the asymptotic notation to specify the execution time of
algorithms.

We write Θ(n2) and mean that the algorithm behaves for large n like
n2: when the problem size is doubled, the execution time multiplies
by four.
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More precise: asymptotic upper bound

provided: a function g : N→ R.

Definition:1

O(g) = {f : N→ R|
∃ c > 0,∃n0 ∈ N :

∀ n ≥ n0 : 0 ≤ f(n) ≤ c · g(n)}

Notation:
O(g(n)) := O(g(·)) = O(g).

1Ausgesprochen: Set of all functions f : N→ R that satisfy: there is some (real valued) c > 0 and some n0 ∈ N such
that 0 ≤ f(n) ≤ n · g(n) for all n ≥ n0.
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Graphic

g(n) = n2

f ∈ O(g)

n0 n
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Graphic

g(n) = n2

f ∈ O(g)

h ∈ O(g)

n0

n
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Examples

O(g) = {f : N→ R| ∃c > 0,∃n0 ∈ N : ∀n ≥ n0 : 0 ≤ f(n) ≤ c · g(n)}

f(n) f ∈ O(?) Example
3n+ 4

O(n) c = 4, n0 = 4

2n

O(n) c = 2, n0 = 0

n2 + 100n

O(n2) c = 2, n0 = 100

n+
√
n

O(n) c = 2, n0 = 1
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Property

f1 ∈ O(g), f2 ∈ O(g)⇒ f1 + f2 ∈ O(g)
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Converse: asymptotic lower bound

Given: a function g : N→ R.

Definition:

Ω(g) = {f : N→ R|
∃ c > 0,∃n0 ∈ N :

∀ n ≥ n0 : 0 ≤ c · g(n) ≤ f(n)}
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Example

g(n) = n

f ∈ Ω(g)

n0 n
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Example

g(n) = n

f ∈ Ω(g)h ∈ Ω(g)

n0 n
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Asymptotic tight bound

Given: function g : N→ R.

Definition:

Θ(g) := Ω(g) ∩ O(g).

Simple, closed form: exercise.
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Example

g(n) = n2

f ∈ Θ(n2)

h(n) = 0.5 · n2

n
48



Notions of Growth

O(1) bounded array access
O(log log n) double logarithmic interpolated binary sorted sort
O(log n) logarithmic binary sorted search
O(
√
n) like the square root naive prime number test

O(n) linear unsorted naive search
O(n log n) superlinear / loglinear good sorting algorithms
O(n2) quadratic simple sort algorithms
O(nc) polynomial matrix multiply
O(2n) exponential Travelling Salesman Dynamic Programming
O(n!) factorial Travelling Salesman naively
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Small n

2 3 4 5 6

20

40

60

lnn
n

n2

n4
2n
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Larger n

5 10 15 20

0.2

0.4

0.6

0.8

1
·106

log n
n
n2

n4

2n
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“Large” n

20 40 60 80 100

0.2

0.4

0.6

0.8

1
·1020

log n
n
n2n4

2n
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Logarithms

10 20 30 40 50

200

400

600

800

1,000

n

n2

n3/2

log n

n log n
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Time Consumption

Assumption 1 Operation = 1µs.

problem size 1 100 10000 106 109

log2 n 1µs

7µs 13µs 20µs 30µs

n 1µs

100µs 1/100s 1s 17 minutes

n log2 n 1µs

700µs 13/100µs 20s 8.5 hours

n2 1µs

1/100s 1.7 minutes 11.5 days 317 centuries

2n 1µs

1014 centuries ≈ ∞ ≈ ∞ ≈ ∞
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About the Notation
Common casual notation

f = O(g)

should be read as f ∈ O(g).

Clearly it holds that

f1 = O(g), f2 = O(g) 6⇒ f1 = f2!

Beispiel
n = O(n2), n2 = O(n2) but naturally n 6= n2.

We avoid this notation where it could lead to ambiguities.
56



Reminder: Efficiency: Arrays vs. Linked Lists

Memory: our avec requires roughly n int s (vector size n), our
llvec roughly 3n int s (a pointer typically requires 8 byte)

Runtime (with avec = std::vector, llvec = std::list):
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Asymptotic Runtimes

With our new language (Ω,O,Θ), we can now state the behavior of
the data structures and their algorithms more precisely

Typical asymptotic running times (Anticipation!)
Data structure Random

Access
Insert Next Insert

After
Element

Search

std::vector Θ(1) Θ(1)A Θ(1) Θ(n) Θ(n)
std::list Θ(n) Θ(1) Θ(1) Θ(1) Θ(n)
std::set – Θ(log n) Θ(log n) – Θ(log n)
std::unordered_set – Θ(1)P – – Θ(1)P

A = amortized, P=expected, otherwise worst case
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Complexity

Complexity of a problem P : minimal (asymptotic) costs over all
algorithms A that solve P .

Complexity of the single-digit multiplication of two numbers with n
digits is Ω(n) and O(nlog3 2) (Karatsuba Ofman).
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Complexity

Example:

Problem Complexity O(n) O(n) O(n2)
↑ ↑ ↑

Algorithm Costs2 3n− 4 O(n) Θ(n2)
↓ l l

Program Execution
time

Θ(n) O(n) Θ(n2)

2Number funamental operations
59



3. Examples

Show Correctness, Recursion and Recurrences
[References to literatur at the examples]
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3.1 Ancient Egyptian Multiplication

Ancient Egyptian Multiplication– Example on how to show correctness of
algorithms.
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Ancient Egyptian Multiplication3

Compute 11 · 9

11 9

22 4
44 2
88 1
99 −

9 11

18 5
36 2
72 1
99

1 Double left, integer division
by 2 on the right

2 Even number on the right⇒
eliminate row.

3 Add remaining rows on the
left.

3Also known as russian multiplication
62
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Advantages

Short description, easy to grasp
Efficient to implement on a computer: double = left shift, divide by
2 = right shift

Beispiel

left shift 9 = 010012 → 100102 = 18
right shift 9 = 010012 → 001002 = 4
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Questions

For which kind of inputs does the algorithm deliver a correct
result (in finite time)?
How do you prove its correctness?
What is a good measure for Efficiency?
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The Essentials

If b > 1, a ∈ Z, then:

a · b =

{
2a · b2 falls b gerade,
a+ 2a · b−12 falls b ungerade.
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Termination

a · b =


a falls b = 1,
2a · b2 falls b gerade,
a+ 2a · b−12 falls b ungerade.
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Recursively, Functional

f(a, b) =


a falls b = 1,
f(2a, b2) falls b gerade,
a+ f(2a, b−12 ) falls b ungerade.

67



Implemented as a function

// pre: b>0
// post: return a∗b
int f(int a, int b){

if(b==1)
return a;

else if (b%2 == 0)
return f(2∗a, b/2);

else
return a + f(2∗a, (b−1)/2);

}
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Correctnes: Mathematical Proof

f(a, b) =


a if b = 1,
f(2a, b2) if b even,
a+ f(2a · b−12 ) if b odd.

Remaining to show: f(a, b) = a · b for a ∈ Z, b ∈ N+.
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Correctnes: Mathematical Proof by Induction
Let a ∈ Z, to show f(a, b) = a · b ∀ b ∈ N+.

Base clause: f(a, 1) = a = a · 1
Hypothesis: f(a, b′) = a · b′ ∀ 0 < b′ ≤ b

Step: f(a, b′) = a · b′ ∀ 0 < b′ ≤ b
!⇒ f(a, b+ 1) = a · (b+ 1)

f(a, b+ 1) =


f(2a,

0<·≤b︷ ︸︸ ︷
b+ 1

2
)
i.H.
= a · (b+ 1) if b > 0 odd,

a+ f(2a,
b

2︸︷︷︸
0<·<b

)
i.H.
= a+ a · b if b > 0 even.

�
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[Code Transformations: End Recursion]
The recursion can be writen as end recursion

// pre: b>0
// post: return a∗b
int f( int a, int b){

if (b==1)
return a;

else if (b%2 == 0)
return f(2∗a, b/2);

else
return a + f(2∗a, (b−1)/2);

}

// pre: b>0
// post: return a∗b
int f( int a, int b){

if (b==1)
return a;

int z=0;
if (b%2 != 0){
−−b;
z=a;

}
return z + f(2∗a, b/2);

}
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[Code-Transformation: End-Recursion⇒ Iteration]

// pre: b>0
// post: return a∗b
int f( int a, int b){

if (b==1)
return a;

int z=0;
if (b%2 != 0){
−−b;
z=a;

}
return z + f(2∗a, b/2);

}

int f( int a, int b) {
int res = 0;
while (b != 1) {

int z = 0;
if (b % 2 != 0){
−−b;
z = a;

}
res += z;
a ∗= 2; // neues a
b /= 2; // neues b

}
res += a; // Basisfall b=1
return res ;

} 72



[Code-Transformation: Simplify]

int f( int a, int b) {
int res = 0;
while (b != 1) {

int z = 0;
if (b % 2 != 0){
−−b;
z = a;

}
res += z;
a ∗= 2;
b /= 2;

}
res += a;
return res ;

}

Direkt in res
Teil der Division

in den Loop

// pre: b>0
// post: return a∗b
int f( int a, int b) {

int res = 0;
while (b > 0) {

if (b % 2 != 0)
res += a;

a ∗= 2;
b /= 2;

}
return res ;

}

73



Correctness: Reasoning using Invariants!
// pre: b>0
// post: return a∗b
int f(int a, int b) {

int res = 0;
while (b > 0) {

if (b % 2 != 0){
res += a;
−−b;

}
a ∗= 2;
b /= 2;

}
return res;

}

Sei x := a · b.

here: x = a · b+ res

if here x = a · b+ res ...

... then also here x = a · b+ res

b even

here: x = a · b+ res

here: x = a · b+ res und b = 0

Also res = x.
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Conclusion

The expression a · b+ res is an invariant

Values of a, b, res change but the invariant remains basically
unchanged: The invariant is only temporarily discarded by
some statement but then re-established. If such short
statement sequences are considered atomiv, the value remains
indeed invariant
In particular the loop contains an invariant, called loop invariant
and it operates there like the induction step in induction proofs.
Invariants are obviously powerful tools for proofs!
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3.2 Fast Integer Multiplication

[Ottman/Widmayer, Kap. 1.2.3]
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Example 2: Multiplication of large Numbers

Primary school:
a b c d
6 2 · 3 7

1 4 d · b

4 2 d · a
6 c · b

1 8 c · a
= 2 2 9 4

2 · 2 = 4 single-digit multiplications. ⇒ Multiplication of two n-digit
numbers: n2 single-digit multiplications
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Observation

ab · cd = (10 · a+ b) · (10 · c+ d)

= 100 · a · c+ 10 · a · c
+ 10 · b · d+ b · d
+ 10 · (a− b) · (d− c)
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Improvement?

a b c d
6 2 · 3 7

1 4 d · b

1 4 d · b
1 6 (a− b) · (d− c)
1 8 c · a

1 8 c · a
= 2 2 9 4

→ 3 single-digit multiplications.
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Large Numbers

6237 · 5898 = 62︸︷︷︸
a′

37︸︷︷︸
b′

· 58︸︷︷︸
c′

98︸︷︷︸
d′

Recursive / inductive application: compute a′ · c′, a′ · d′, b′ · c′ and
c′ · d′ as shown above.

→ 3 · 3 = 9 instead of 16 single-digit multiplications.
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Generalization

Assumption: two numbers with n digits each, n = 2k for some k.

(10n/2a+ b) · (10n/2c+ d) = 10n · a · c+ 10n/2 · a · c
+ 10n/2 · b · d+ b · d
+ 10n/2 · (a− b) · (d− c)

Recursive application of this formula: algorithm by Karatsuba and Ofman (1962).
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Analysis

M(n): Number of single-digit multiplications.

Recursive application of the algorithm from above⇒ recursion
equality:

M(2k) =

{
1 if k = 0,

3 ·M(2k−1) if k > 0.
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Iterative Substition

Iterative substition of the recursion formula in order to guess a
solution of the recursion formula:

M(2k) = 3 ·M(2k−1)

= 3 · 3 ·M(2k−2) = 32 ·M(2k−2)

= . . .
!

= 3k ·M(20) = 3k.
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Proof: induction
Hypothesis H:

M(2k) = 3k.

Base clause (k = 0):

M(20) = 30 = 1. X

Induction step (k → k + 1):

M(2k+1)
def
= 3 ·M(2k)

H
= 3 · 3k = 3k+1.

�
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Comparison

Traditionally n2 single-digit multiplications.

Karatsuba/Ofman:

M(n) = 3log2 n = (2log2 3)log2 n = 2log2 3 log2 n = nlog2 3 ≈ n1.58.

Example: number with 1000 digits: 10002/10001.58 ≈ 18.
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Best possible algorithm?

We only know the upper bound nlog2 3.

There are (for large n) practically relevant algorithms that are faster.
Example: Schönhage-Strassen algorithm (1971) based on fast
Fouriertransformation with running time O(n log n · log log n). The
best upper bound is not known.

Lower bound: n. Each digit has to be considered at least once.
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3.3 Maximum Subarray Problem

Algorithm Design – Maximum Subarray Problem [Ottman/Widmayer, Kap. 1.3]
Divide and Conquer [Ottman/Widmayer, Kap. 1.2.2. S.9; Cormen et al, Kap. 4-4.1]
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Algorithm Design

Inductive development of an algorithm: partition into subproblems,
use solutions for the subproblems to find the overal solution.

Goal: development of the asymptotically most efficient (correct)
algorithm.

Efficiency towards run time costs (# fundamental operations) or /and
memory consumption.
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Maximum Subarray Problem
Given: an array of n real numbers (a1, . . . , an).

Wanted: interval [i, j], 1 ≤ i ≤ j ≤ n with maximal positive sum∑j
k=i ak.

Example: a = (7,−11, 15, 110,−23,−3, 127,−12, 1)

1 2 3 4 5 6 7 8 9
0

50

100

∑
k ak = max
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Naive Maximum Subarray Algorithm

Input: A sequence of n numbers (a1, a2, . . . , an)

Output: I, J such that
∑J

k=I ak maximal.

M ← 0; I ← 1; J ← 0
for i ∈ {1, . . . , n} do

for j ∈ {i, . . . , n} do
m =

∑j
k=i ak

if m > M then
M ← m; I ← i; J ← j

return I, J
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Analysis
Theorem
The naive algorithm for the Maximum Subarray problem executes
Θ(n3) additions.

Beweis:
n∑
i=1

n∑
j=i

(j − i+ 1) =
n∑
i=1

n−i∑
j=0

(j + 1) =
n∑
i=1

n−i+1∑
j=1

j =
n∑
i=1

(n− i+ 1)(n− i+ 2)

2

=
n∑
i=0

i · (i+ 1)

2
=

1

2

(
n∑
i=1

i2 +
n∑
i=1

i

)

=
1

2

(
n(2n+ 1)(n+ 1)

6
+
n(n+ 1)

2

)
=
n3 + 3n2 + 2n

6
= Θ(n3).

�
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Observation

j∑
k=i

ak =

(
j∑

k=1

ak

)
︸ ︷︷ ︸

Sj

−

(
i−1∑
k=1

ak

)
︸ ︷︷ ︸

Si−1

Prefix sums

Si :=
i∑

k=1

ak.
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Maximum Subarray Algorithm with Prefix Sums

Input: A sequence of n numbers (a1, a2, . . . , an)

Output: I, J such that
∑J

k=J ak maximal.

S0 ← 0
for i ∈ {1, . . . , n} do // prefix sum
Si ← Si−1 + ai

M ← 0; I ← 1; J ← 0
for i ∈ {1, . . . , n} do

for j ∈ {i, . . . , n} do
m = Sj − Si−1

if m > M then
M ← m; I ← i; J ← j
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Analysis

Theorem
The prefix sum algorithm for the Maximum Subarray problem
conducts Θ(n2) additions and subtractions.

Beweis:
n∑
i=1

1 +
n∑
i=1

n∑
j=i

1 = n+
n∑
i=1

(n− i+ 1) = n+
n∑
i=1

i = Θ(n2)

�
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divide et impera

Divide and Conquer
Divide the problem into subproblems that contribute to the simplified
computation of the overal problem.
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divide et impera

Solution

S2

S22

S21

S1

S12

S11

Problem P

P1

P11

P12

P2

P21

P22
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Maximum Subarray – Divide

Divide: Divide the problem into two (roughly) equally sized halves:
(a1, . . . , an) = (a1, . . . , abn/2c, abn/2c+1, . . . , a1)

Simplifying assumption: n = 2k for some k ∈ N.

102



Maximum Subarray – Divide

Divide: Divide the problem into two (roughly) equally sized halves:
(a1, . . . , an) = (a1, . . . , abn/2c, abn/2c+1, . . . , a1)

Simplifying assumption: n = 2k for some k ∈ N.

102



Maximum Subarray – Conquer

If i and j are indices of a solution⇒ case by case analysis:

1 Solution in left half 1 ≤ i ≤ j ≤ n/2

⇒ Recursion (left half)

2 Solution in right half n/2 < i ≤ j ≤ n

⇒ Recursion (right half)

3 Solution in the middle 1 ≤ i ≤ n/2 < j ≤ n

⇒ Subsequent observation

(1) (2)(3)

1 n/2 n/2 + 1 n
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Maximum Subarray – Observation
Assumption: solution in the middle 1 ≤ i ≤ n/2 < j ≤ n

Smax = max
1≤i≤n/2
n/2<j≤n

j∑
k=i

ak

= max
1≤i≤n/2
n/2<j≤n

 n/2∑
k=i

ak +

j∑
k=n/2+1

ak


= max

1≤i≤n/2

n/2∑
k=i

ak + max
n/2<j≤n

j∑
k=n/2+1

ak

= max
1≤i≤n/2

Sn/2 − Si−1︸ ︷︷ ︸
suffix sum

+ max
n/2<j≤n

Sj − Sn/2︸ ︷︷ ︸
prefix sum
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Maximum Subarray Divide and Conquer Algorithm

Input: A sequence of n numbers (a1, a2, . . . , an)

Output: Maximal
∑j′

k=i′ ak.
if n = 1 then

return max{a1, 0}
else

Divide a = (a1, . . . , an) in A1 = (a1, . . . , an/2) und A2 = (an/2+1, . . . , an)
Recursively compute best solution W1 in A1

Recursively compute best solution W2 in A2

Compute greatest suffix sum S in A1

Compute greatest prefix sum P in A2

Let W3 ← S + P
return max{W1,W2,W3}
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Analysis

Theorem
The divide and conquer algorithm for the maximum subarray sum
problem conducts a number of Θ(n log n) additions and
comparisons.

106



Analysis

Input: A sequence of n numbers (a1, a2, . . . , an)

Output: Maximal
∑j′

k=i′ ak.
if n = 1 then

return max{a1, 0}
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Compute greatest prefix sum P in A2

Let W3 ← S + P
return max{W1,W2,W3}

Θ(1)

Θ(1)

Θ(1)
Θ(1)

Θ(n)
Θ(n)

T (n/2)
T (n/2)
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Analysis

Recursion equation

T (n) =

{
c if n = 1

2T (n2 ) + a · n if n > 1
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Analysis
Mit n = 2k:

T (k) =

{
c if k = 0

2T (k − 1) + a · 2k if k > 0

Solution:

T (k) = 2k · c+
k−1∑
i=0

2i · a · 2k−i = c · 2k + a · k · 2k = Θ(k · 2k)

also
T (n) = Θ(n log n)

�
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Maximum Subarray Sum Problem – Inductively
Assumption: maximal value Mi−1 of the subarray sum is known for
(a1, . . . , ai−1) (1 < i ≤ n).

Mi−1 Ri−1

1 i− 1 i n

scan

ai: generates at most a better interval at the right bound (prefix sum).

Ri−1⇒ Ri = max{Ri−1 + ai, 0}
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Inductive Maximum Subarray Algorithm

Input: A sequence of n numbers (a1, a2, . . . , an).
Output: max{0,maxi,j

∑j
k=i ak}.

M ← 0
R← 0
for i = 1 . . . n do

R← R + ai
if R < 0 then

R← 0

if R > M then
M ← R

return M ;
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Analysis

Theorem
The inductive algorithm for the Maximum Subarray problem
conducts a number of Θ(n) additions and comparisons.
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Complexity of the problem?

Can we improve over Θ(n)?

Every correct algorithm for the Maximum Subarray Sum problem
must consider each element in the algorithm.

Assumption: the algorithm does not consider ai.

1 The algorithm provides a solution including ai. Repeat the
algorithm with ai so small that the solution must not have
contained the point in the first place.

2 The algorithm provides a solution not including ai. Repeat the
algorithm with ai so large that the solution must have contained
the point in the first place.
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Complexity of the maximum Subarray Sum Problem

Theorem
The Maximum Subarray Sum Problem has Complexity Θ(n).

Beweis: Inductive algorithm with asymptotic execution time O(n).
Every algorithm has execution time Ω(n).
Thus the complexity of the problem is Ω(n) ∩ O(n) = Θ(n). �
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3.4 Appendix

Derivation of some mathemmatical formulas
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Sums

n∑
i=0

i2 =
n · (n+ 1) · (2n+ 1)

6

Trick:
n∑
i=1

i3 − (i− 1)3 =
n∑
i=0

i3 −
n−1∑
i=0

i3 = n3

n∑
i=1

i3 − (i− 1)3 =
n∑
i=1

i3 − i3 + 3i2 − 3i+ 1 = n− 3

2
n · (n+ 1) + 3

n∑
i=0

i2

⇒
n∑
i=0

i2 =
1

6
(2n3 + 3n2 + n) ∈ Θ(n3)

Can easily be generalized:
∑n

i=1 i
k ∈ Θ(nk+1).
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Geometric Series

n∑
i=0

ρi
!

=
1− ρn+1

1− ρ

n∑
i=0

ρi · (1− %) =
n∑
i=0

ρi −
n∑
i=0

ρi+1 =
n∑
i=0

ρi −
n+1∑
i=1

ρi

= ρ0 − ρn+1 = 1− ρn+1.

For 0 ≤ ρ < 1:
∞∑
i=0

ρi =
1

1− ρ
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4. Searching

Linear Search, Binary Search, (Interpolation Search,) Lower Bounds
[Ottman/Widmayer, Kap. 3.2, Cormen et al, Kap. 2: Problems
2.1-3,2.2-3,2.3-5]
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The Search Problem

Provided

A set of data sets
examples
telephone book, dictionary, symbol table

Each dataset has a key k.
Keys are comparable: unique answer to the question k1 ≤ k2 for
keys k1, k2.

Task: find data set by key k.
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Search in Array

Provided

Array A with n elements (A[1], . . . , A[n]).
Key b

Wanted: index k, 1 ≤ k ≤ n with A[k] = b or ”not found”.

10

4

20

2

22

1

24

6

28

9

32

3

35

5

38

8

41

10

42

7
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Linear Search

Traverse the array from A[1] to A[n].

Best case: 1 comparison.
Worst case: n comparisons.
Assumption: each permutation of the n keys with same probability.
Expected number of comparisons for the successful search:

1

n

n∑
i=1

i =
n+ 1

2
.
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Search in a Sorted Array

Provided

Sorted array A with n elements (A[1], . . . , A[n]) with
A[1] ≤ A[2] ≤ · · · ≤ A[n].
Key b

Wanted: index k, 1 ≤ k ≤ n with A[k] = b or ”not found”.

10

1

20

2

22

3

24

4

28

5

32

6

35

7

38

8

41

9

42

10
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Divide and Conquer!
Search b = 23.

10
1

20
2

22
3

24
4

28
5

32
6

35
7

38
8

41
9

42
10

b < 28

10
1

20
2

22
3

24
4

28
5

32
6

35
7

38
8

41
9

42
10

b > 20

22
3

24
4

28
5

10
1

20
2

32
6

35
7

38
8

41
9

42
10

b > 22

24
4

10
1

20
2

22
3

28
5

32
6

35
7

38
8

41
9

42
10

b < 24

24
4

10
1

22
3

20
2

28
5

32
6

35
7

38
8

41
9

42
10

erfolglos

123



Divide and Conquer!
Search b = 23.

10
1

20
2

22
3

24
4

28
5

32
6

35
7

38
8

41
9

42
10

b < 28

10
1

20
2

22
3

24
4

28
5

32
6

35
7

38
8

41
9

42
10

b > 20

22
3

24
4

28
5

10
1

20
2

32
6

35
7

38
8

41
9

42
10

b > 22

24
4

10
1

20
2

22
3

28
5

32
6

35
7

38
8

41
9

42
10

b < 24

24
4

10
1

22
3

20
2

28
5

32
6

35
7

38
8

41
9

42
10

erfolglos

123



Divide and Conquer!
Search b = 23.

10
1

20
2

22
3

24
4

28
5

32
6

35
7

38
8

41
9

42
10

b < 28

10
1

20
2

22
3

24
4

28
5

32
6

35
7

38
8

41
9

42
10

b > 20

22
3

24
4

28
5

10
1

20
2

32
6

35
7

38
8

41
9

42
10

b > 22

24
4

10
1

20
2

22
3

28
5

32
6

35
7

38
8

41
9

42
10

b < 24

24
4

10
1

22
3

20
2

28
5

32
6

35
7

38
8

41
9

42
10

erfolglos

123



Divide and Conquer!
Search b = 23.

10
1

20
2

22
3

24
4

28
5

32
6

35
7

38
8

41
9

42
10

b < 28

10
1

20
2

22
3

24
4

28
5

32
6

35
7

38
8

41
9

42
10

b > 20

22
3

24
4

28
5

10
1

20
2

32
6

35
7

38
8

41
9

42
10

b > 22

24
4

10
1

20
2

22
3

28
5

32
6

35
7

38
8

41
9

42
10

b < 24

24
4

10
1

22
3

20
2

28
5

32
6

35
7

38
8

41
9

42
10

erfolglos

123



Divide and Conquer!
Search b = 23.

10
1

20
2

22
3

24
4

28
5

32
6

35
7

38
8

41
9

42
10

b < 28

10
1

20
2

22
3

24
4

28
5

32
6

35
7

38
8

41
9

42
10

b > 20

22
3

24
4

28
5

10
1

20
2

32
6

35
7

38
8

41
9

42
10

b > 22

24
4

10
1

20
2

22
3

28
5

32
6

35
7

38
8

41
9

42
10

b < 24

24
4

10
1

22
3

20
2

28
5

32
6

35
7

38
8

41
9

42
10

erfolglos

123



Divide and Conquer!
Search b = 23.

10
1

20
2

22
3

24
4

28
5

32
6

35
7

38
8

41
9

42
10

b < 28

10
1

20
2

22
3

24
4

28
5

32
6

35
7

38
8

41
9

42
10

b > 20

22
3

24
4

28
5

10
1

20
2

32
6

35
7

38
8

41
9

42
10

b > 22

24
4

10
1

20
2

22
3

28
5

32
6

35
7

38
8

41
9

42
10

b < 24

24
4

10
1

22
3

20
2

28
5

32
6

35
7

38
8

41
9

42
10

erfolglos

123



Divide and Conquer!
Search b = 23.

10
1

20
2

22
3

24
4

28
5

32
6

35
7

38
8

41
9

42
10

b < 28

10
1

20
2

22
3

24
4

28
5

32
6

35
7

38
8

41
9

42
10

b > 20

22
3

24
4

28
5

10
1

20
2

32
6

35
7

38
8

41
9

42
10

b > 22

24
4

10
1

20
2

22
3

28
5

32
6

35
7

38
8

41
9

42
10

b < 24

24
4

10
1

22
3

20
2

28
5

32
6

35
7

38
8

41
9

42
10

erfolglos

123



Binary Search Algorithm BSearch(A[l..r], b)

Input: Sorted array A of n keys. Key b. Bounds 1 ≤ l ≤ r ≤ n or l > r
beliebig.

Output: Index of the found element. 0, if not found.
m← b(l + r)/2c
if l > r then // Unsuccessful search

return NotFound
else if b = A[m] then// found

return m
else if b < A[m] then// element to the left

return BSearch(A[l..m− 1], b)
else // b > A[m]: element to the right

return BSearch(A[m+ 1..r], b)
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Analysis (worst case)
Recurrence (n = 2k)

T (n) =

{
d falls n = 1,
T (n/2) + c falls n > 1.

Compute:

T (n) = T
(n

2

)
+ c

= T
(n

4

)
+ 2c = ...

= T
( n

2i

)
+ i · c

= T
(n
n

)
+ log2 n · c = d+ c · log2 n ∈ Θ(log n)
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Analysis (worst case)

T (n) =

{
d if n = 1,
T (n/2) + c if n > 1.

Guess : T (n) = d+ c · log2 n

Proof by induction:

Base clause: T (1) = d.
Hypothesis: T (n/2) = d+ c · log2 n/2

Step: (n/2→ n)

T (n) = T (n/2) + c = d+ c · (log2 n− 1) + c = d+ c log2 n.
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Result

Theorem
The binary sorted search algorithm requires Θ(log n) fundamental
operations.
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Iterative Binary Search Algorithm

Input: Sorted array A of n keys. Key b.
Output: Index of the found element. 0, if unsuccessful.
l← 1; r ← n
while l ≤ r do

m← b(l + r)/2c
if A[m] = b then

return m
else if A[m] < b then

l← m+ 1
else

r ← m− 1

return NotFound ;
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Correctness

Algorithm terminates only if A is empty or b is found.

Invariant: If b is in A then b is in domain A[l..r]

Proof by induction

Base clause b ∈ A[1..n] (oder nicht)
Hypothesis: invariant holds after i steps.
Step:
b < A[m]⇒ b ∈ A[l..m− 1]
b > A[m]⇒ b ∈ A[m+ 1..r]
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Lower Bounds

Binary Search (worst case): Θ(log n) comparisons.

Does for any search algorithm in a sorted array (worst case) hold
that number comparisons = Ω(log n)?
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Decision tree

3

1

2

5

4 6

b < A[3]

b < A[5]

b > A[3]

b > A[1] b > A[5]

For any input b = A[i] the
algorithm must succeed⇒
decision tree comprises at
least n nodes.

Number comparisons in
worst case = height of the
tree = maximum number
nodes from root to leaf.
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Decision Tree

Binary tree with height h has at most
20 + 21 + · · ·+ 2h−1 = 2h − 1 < 2h nodes.

2h > n⇒ h > log2 n

Decision tree with n node has at least height log2 n.

Number decisions = Ω(log n).

Theorem
Any comparison-based search algorithm on sorted data with length
n requires in the worst case Ω(log n) comparisons.
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Lower bound for Search in Unsorted Array

Theorem
Any comparison-based search algorithm with unsorted data of
length n requires in the worst case Ω(n) comparisons.
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Attempt

? Correct?
”Proof”: to find b in A, b must be compared with each of the n
elements A[i] (1 ≤ i ≤ n).

! Wrong argument! It is still possible to compare elements within A.
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Better Argument

b

Different comparisons: Number comparisons with b: e Number
comparisons without b: i
Comparisons induce g groups. Initially g = n.

To connect two groups at least one comparison is needed:
n− g ≤ i.
At least one element per group must be compared with b.
Number comparisons i+ e ≥ n− g + g = n. �
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5. Selection

The Selection Problem, Randomised Selection, Linear Worst-Case
Selection [Ottman/Widmayer, Kap. 3.1, Cormen et al, Kap. 9]
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The Problem of Selection

Input

unsorted array A = (A1, . . . , An) with pairwise different values
Number 1 ≤ k ≤ n.

Output A[i] with |{j : A[j] < A[i]}| = k − 1

Special cases
k = 1: Minimum: Algorithm with n comparison operations trivial.
k = n: Maximum: Algorithm with n comparison operations trivial.
k = bn/2c: Median.
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Naive Algorithm

Repeatedly find and remove the minimum Θ(k · n).
→ Median in Θ(n2)
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Better Approaches

Sorting (covered soon): Θ(n log n)

Use a pivot: Θ(n) !
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Use a pivot

1 Choose a (an arbitrary) pivot p
2 Partition A in two parts, and determine the rank of p by counting

the indices i with A[i] ≤ p.
3 Recursion on the relevant part. If k = r then found.
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Algorithmus Partition(A[l..r], p)

Input: Array A, that contains the pivot p in the interval [l, r] at least once.
Output: Array A partitioned in [l..r] around p. Returns position of p.
while l ≤ r do

while A[l] < p do
l← l + 1

while A[r] > p do
r ← r − 1

swap(A[l], A[r])
if A[l] = A[r] then

l← l + 1

return l-1
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Correctness: Invariant

Invariant I: Ai ≤ p ∀i ∈ [0, l), Ai ≥ p ∀i ∈ (r, n], ∃k ∈ [l, r] : Ak = p.
while l ≤ r do

while A[l] < p do
l← l + 1

while A[r] > p do
r ← r − 1

swap(A[l], A[r])
if A[l] = A[r] then

l← l + 1

return l-1

I

I und A[l] ≥ p

I und A[r] ≤ p
I und A[l] ≤ p ≤ A[r]

I
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Correctness: progress

while l ≤ r do
while A[l] < p do

l← l + 1

while A[r] > p do
r ← r − 1

swap(A[l], A[r])
if A[l] = A[r] then

l← l + 1

return l-1

progress if A[l] < p

progress if A[r] > p

progress if A[l] > p oder A[r] < p

progress if A[l] = A[r] = p
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Choice of the pivot.

The minimum is a bad pivot: worst case Θ(?)

p1

A good pivot has a linear number of elements on both sides.

p

≥ ε · n ≥ ε · n
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Analysis
Partitioning with factor q (0 < q < 1): two groups with q · n and
(1− q) · n elements (without loss of generality g ≥ 1− q).

T (n) ≤ T (q · n) + c · n

= c · n+ q · c · n+ T (q2 · n) = ... = c · n
logq(n)−1∑

i=0

qi + T (1)

≤ c · n
∞∑
i=0

qi︸ ︷︷ ︸
geom. Reihe

+d = c · n · 1

1− q
+ d = O(n)
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How can we achieve this?
Randomness to our rescue (Tony Hoare, 1961). In each step
choose a random pivot.

1
4

1
4

1
2

schlecht schlechtgute Pivots

Probability for a good pivot in one trial: 1
2 =: ρ.

Probability for a good pivot after k trials: (1− ρ)k−1 · ρ.

Expected number of trials: 1/ρ = 2 (Expected value of the geometric
distribution:)
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Algorithm Quickselect (A[l..r], k)
Input: Array A with length n. Indices 1 ≤ l ≤ k ≤ r ≤ n, such that for all

x ∈ A[l..r] : |{j|A[j] ≤ x}| ≥ l and |{j|A[j] ≤ x}| ≤ r.
Output: Value x ∈ A[l..r] with |{j|A[j] ≤ x}| ≥ k and

|{j|x ≤ A[j]}| ≥ n− k + 1
if l=r then

return A[l];

x← RandomPivot(A[l..r])
m← Partition(A[l..r], x)
if k < m then

return QuickSelect(A[l..m− 1], k)
else if k > m then

return QuickSelect(A[m+ 1..r], k)
else

return A[k]
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Algorithm RandomPivot (A[l..r])

Input: Array A with length n. Indices 1 ≤ l ≤ i ≤ r ≤ n
Output: Random “good” pivot x ∈ A[l..r]
repeat

choose a random pivot x ∈ A[l..r]
p← l
for j = l to r do

if A[j] ≤ x then p← p+ 1

until
⌊

3l+r
4

⌋
≤ p ≤

⌈
l+3r

4

⌉
return x

This algorithm is only of theoretical interest and delivers a good pivot in 2 expected
iterations. Practically, in algorithm QuickSelect a uniformly chosen random pivot
can be chosen or a deterministic one such as the median of three elements.
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Median of medians

Goal: find an algorithm that even in worst case requires only linearly
many steps.

Algorithm Select (k-smallest)

Consider groups of five elements.
Compute the median of each group (straighforward)
Apply Select recursively on the group medians.
Partition the array around the found median of medians. Result: i
If i = k then result. Otherwise: select recursively on the proper
side.

152



Median of medians

1 groups of five

2 medians

3 recursion for pivot

4 base case

5 pivot (level 1)

6 partition (level 1)

7 median = pivot level 0

8 2. recursion starts

. . .

. . . . . . . . .
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How good is this?

m
< m

> m

Number points left / right of the median of medians (without median
group and the rest group) ≥ 3 · (d12d

n
5ee − 2) ≥ 3n

10 − 6

Second call with maximally d7n10 + 6e elements.
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Analysis

Recursion inequality:

T (n) ≤ T
(⌈n

5

⌉)
+ T

(⌈
7n

10
+ 6

⌉)
+ d · n.

with some constant d.

Claim:
T (n) = O(n).
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Proof
Base clause: choose c large enough such that

T (n) ≤ c · n für alle n ≤ n0.

Induction hypothesis:

T (i) ≤ c · i für alle i < n.

Induction step:

T (n) ≤ T
(⌈n

5

⌉)
+ T

(⌈
7n

10
+ 6

⌉)
+ d · n

= c ·
⌈n

5

⌉
+ c ·

⌈
7n

10
+ 6

⌉
+ d · n.
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Proof
Induction step:

T (n) ≤ c ·
⌈n

5

⌉
+ c ·

⌈
7n

10
+ 6

⌉
+ d · n

≤ c · n
5

+ c+ c · 7n
10

+ 6c+ c+ d · n =
9

10
· c · n+ 8c+ d · n.

Choose c ≥ 80 · d and n0 = 91.

T (n) ≤ 72

80
· c · n+ 8c+

1

80
· c · n = c ·

(
73

80
n+ 8

)
︸ ︷︷ ︸
≤n für n > n0

≤ c · n.
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Result

Theorem
The k-th element of a sequence of n elements can, in the worst
case, be found in Θ(n) steps.
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Overview

1. Repeatedly find minimum O(n2)

2. Sorting and choosing A[i] O(n log n)

3. Quickselect with random pivot O(n) expected

4. Median of Medians (Blum) O(n) worst case

1
4

1
4

1
2

schlecht schlechtgute Pivots
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5.1 Appendix

Derivation of some mathemmatical formulas

160



[Expected value of the Geometric Distribution]
Random variable X ∈ N+ with P(X = k) = (1− p)k−1 · p.

Expected value

E(X) =
∞∑
k=1

k · (1− p)k−1 · p =
∞∑
k=1

k · qk−1 · (1− q)

=
∞∑
k=1

k · qk−1 − k · qk =
∞∑
k=0

(k + 1) · qk − k · qk

=
∞∑
k=0

qk =
1

1− q
=

1

p
.
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6. C++ advanced (I)

Repetition: vectors, pointers and iterators, range for, keyword auto, a
class for vectors, subscript-operator, move-construction, iterators
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What do we learn today?

Keyword auto
Ranged for
Short recap of the Rule of Three
Subscript operator
Move Semantics, X-Values and the Rule of Five
Custom Iterators
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We look back...
#include <iostream>
#include <vector>
using iterator = std::vector<int>::iterator;

int main(){
// Vector of length 10
std::vector<int> v(10);
// Input
for (int i = 0; i < v.size(); ++i)

std::cin >> v[i];
// Output
for (iterator it = v.begin(); it != v.end(); ++it)

std::cout << ∗it << " ";
}

We want to understand this in depth!

This looks too pedestrian
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Useful tools (1): auto (C++11)

The keyword auto:

The type of a variable is inferred from the initializer.

Examples

int x = 10;
auto y = x; // int
auto z = 3; // int
std::vector<double> v(5);
auto i = v[3]; // double
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Slightly better...

#include <iostream>
#include <vector>

int main(){
std::vector<int> v(10); // Vector of length 10

for (int i = 0; i < v.size(); ++i)
std::cin >> v[i];

for (auto it = v.begin(); it != v.end(); ++it){
std::cout << ∗it << " ";

}
}
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Useful tools (2): range for (C++11)
for (range-declaration : range-expression)

statement;

range-declaration: named variable of element type specified via the sequence
in range-expression
range-expression: Expression that represents a sequence of elements via
iterator pair begin(), end() or in the form of an intializer list.

Examples

std::vector<double> v(5);
for (double x: v) std::cout << x; // 00000
for (int x: {1,2,5}) std::cout << x; // 125
for (double& x: v) x=5;
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That is indeed cool!

#include <iostream>
#include <vector>

int main(){
std::vector<int> v(10); // Vector of length 10

for (auto& x: v)
std::cin >> x;

for (const auto x: v)
std::cout << x << " ";

}
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For our detailed understanding

We build a vector class with the same capabilities ourselves!

On the way we learn about

RAII (Resource Acquisition is Initialization) and move construction
Subscript operators and other utilities
Templates
Exception Handling
Functors and lambda expressions

today
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A class for (double) vectors
class Vector{
public:

// constructors
Vector(): sz{0}, elem{nullptr} {};
Vector(std::size_t s): sz{s}, elem{new double[s]} {}
// destructor
~Vector(){

delete[] elem;
}
// (something is missing here)

private:
std::size_t sz;
double∗ elem;

}
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Element access
class Vector{

...
// getter. pre: 0 <= i < sz;
double get(std::size_t i) const{

return elem[i];
}
// setter. pre: 0 <= i < sz;
void set(std::size_t i, double d){

elem[i] = d;
}
// size property
std::size_t size() const {

return sz;
}

}

class Vector{
public :

Vector ();
Vector(std :: size_t s );
~Vector();
double get(std :: size_t i ) const;
void set(std :: size_t i , double d);
std :: size_t size () const;

}

(Vector Interface)
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What’s the problem here?
int main(){

Vector v(32);
for (std::size_t i = 0; i!=v.size(); ++i)

v.set(i, i);
Vector w = v;
for (std::size_t i = 0; i!=w.size(); ++i)

w.set(i, i∗i);
return 0;

}

*** Error in ‘vector1’: double free or corruption
(!prev): 0x0000000000d23c20 ***
======= Backtrace: =========
/lib/x86_64-linux-gnu/libc.so.6(+0x777e5)[0x7fe5a5ac97e5]
...

class Vector{
public :

Vector ();
Vector(std :: size_t s );
~Vector();
double get(std :: size_t i ) const;
void set(std :: size_t i , double d);
std :: size_t size () const;

}

(Vector Interface)
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Rule of Three!

class Vector{
...

public:
// copy constructor
Vector(const Vector &v)

: sz{v.sz}, elem{new double[v.sz]} {
std::copy(v.elem, v.elem + v.sz, elem);

}
}

class Vector{
public :

Vector ();
Vector(std :: size_t s );
~Vector();
Vector(const Vector &v);
double get(std :: size_t i ) const;
void set(std :: size_t i , double d);
std :: size_t size () const;

}

(Vector Interface)
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Rule of Three!
class Vector{
...

// assignment operator
Vector& operator=(const Vector& v){

if (v.elem == elem) return ∗this;
if (elem != nullptr) delete[] elem;
sz = v.sz;
elem = new double[sz];
std::copy(v.elem, v.elem+v.sz, elem);
return ∗this;

}
}

Now it is correct, but cumbersome.

class Vector{
public :

Vector ();
Vector(std :: size_t s );
~Vector();
Vector(const Vector &v);
Vector& operator=(const Vector&v);
double get(std :: size_t i ) const;
void set(std :: size_t i , double d);
std :: size_t size () const;

}

(Vector Interface)
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More elegant this way (part 1):

public:
// copy constructor
// (with constructor delegation)
Vector(const Vector &v): Vector(v.sz)
{

std::copy(v.elem, v.elem + v.sz, elem);
}
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More elegant this way (part 2):
class Vector{
...

// Assignment operator
Vector& operator= (const Vector&v){

Vector cpy(v);
swap(cpy);
return ∗this;

}
private:

// helper function
void swap(Vector& v){

std::swap(sz, v.sz);
std::swap(elem, v.elem);

}
}

copy-and-swap idiom: all members of
∗this are exchanged with members of
cpy. When leaving operator=, cpy is
cleaned up (deconstructed), while the copy
of the data of v stay in ∗this.
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Syntactic sugar.
Getters and setters are poor. We want a subscript (index) operator.

Overloading! So?
class Vector{
...

double operator[] (std::size_t pos) const{
return elem[pos];

}

void operator[] (std::size_t pos, double value){
elem[pos] = value;

}
}

No!
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Reference types!

class Vector{
...

// for non−const objects
double& operator[] (std::size_t pos){

return elem[pos]; // return by reference!
}
// for const objects
const double& operator[] (std::size_t pos) const{

return elem[pos];
}

}
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So far so good.
int main(){

Vector v(32); // constructor
for (int i = 0; i<v.size(); ++i)

v[i] = i; // subscript operator

Vector w = v; // copy constructor
for (int i = 0; i<w.size(); ++i)

w[i] = i∗i;

const auto u = w;
for (int i = 0; i<u.size(); ++i)

std::cout << v[i] << ":" << u[i] << " "; // 0:0 1:1 2:4 ...
return 0;

}

class Vector{
public :

Vector ();
Vector(std :: size_t s );
~Vector();
Vector(const Vector &v);
Vector& operator=(const Vector&v);
const double& operator[] (std :: size_t pos) const;
double& operator[] (std :: size_t pos);
std :: size_t size () const;

}
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Number copies
How often is v being copied?
Vector operator+ (const Vector& l, double r){

Vector result (l);

// copy of l to result

for (std::size_t i = 0; i < l.size(); ++i)
result[i] = l[i] + r;

return result;

// deconstruction of result after assignment

}
int main(){

Vector v(16);

// allocation of elems[16]

v = v + 1;

// copy when assigned!

return 0;

// deconstruction of v

}

v is copied (at least) twice
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Move construction and move assignment

class Vector{
...

// move constructor
Vector (Vector&& v): Vector() {

swap(v);
};
// move assignment
Vector& operator=(Vector&& v){

swap(v);
return ∗this;

};
}

class Vector{
public :

Vector ();
Vector(std :: size_t s );
~Vector();
Vector(const Vector &v);
Vector& operator=(const Vector&v);
Vector (Vector&& v);
Vector& operator=(Vector&& v);
const double& operator[] (std :: size_t pos) const;
double& operator[] (std :: size_t pos);
std :: size_t size () const;

}
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Move construction and move assignment

class Vector{
...

// move constructor
Vector (Vector&& v): Vector() {

swap(v);
};
// move assignment
Vector& operator=(Vector&& v){

swap(v);
return ∗this;

};
}

class Vector{
public :

Vector ();
Vector(std :: size_t s );
~Vector();
Vector(const Vector &v);
Vector& operator=(const Vector&v);
Vector (Vector&& v);
Vector& operator=(Vector&& v);
const double& operator[] (std :: size_t pos) const;
double& operator[] (std :: size_t pos);
std :: size_t size () const;

}
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Explanation

When the source object of an assignment will not continue existing
after an assignment the compiler can use the move assignment
instead of the assignment operator.5 Expensive copy operations are
then avoided.

Number of copies in the previous example goes down to 1.

5Analogously so for the copy-constructor and the move constructor
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Illustration of the Move-Semantics

// nonsense implementation of a "vector" for demonstration purposes
class Vec{
public:

Vec () {
std::cout << "default constructor\n";}

Vec (const Vec&) {
std::cout << "copy constructor\n";}

Vec& operator = (const Vec&) {
std::cout << "copy assignment\n"; return ∗this;}

~Vec() {}
};
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How many Copy Operations?

Vec operator + (const Vec& a, const Vec& b){
Vec tmp = a;
// add b to tmp
return tmp;

}

int main (){
Vec f;
f = f + f + f + f;

}

Output
default constructor
copy constructor
copy constructor
copy constructor
copy assignment

4 copies of the vector
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Illustration of the Move-Semantics
// nonsense implementation of a "vector" for demonstration purposes
class Vec{
public:

Vec () { std::cout << "default constructor\n";}
Vec (const Vec&) { std::cout << "copy constructor\n";}
Vec& operator = (const Vec&) {

std::cout << "copy assignment\n"; return ∗this;}
~Vec() {}
// new: move constructor and assignment
Vec (Vec&&) {

std::cout << "move constructor\n";}
Vec& operator = (Vec&&) {

std::cout << "move assignment\n"; return ∗this;}
};
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How many Copy Operations?

Vec operator + (const Vec& a, const Vec& b){
Vec tmp = a;
// add b to tmp
return tmp;

}

int main (){
Vec f;
f = f + f + f + f;

}

Output
default constructor
copy constructor
copy constructor
copy constructor
move assignment

3 copies of the vector
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How many Copy Operations?
Vec operator + (Vec a, const Vec& b){

// add b to a
return a;

}

int main (){
Vec f;
f = f + f + f + f;

}

Output
default constructor
copy constructor
move constructor
move constructor
move constructor
move assignment

1 copy of the vector

Explanation: move semantics are applied when an x-value (expired value) is
assigned. R-value return values of a function are examples of x-values.
http://en.cppreference.com/w/cpp/language/value_category
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How many Copy Operations?

void swap(Vec& a, Vec& b){
Vec tmp = a;
a=b;
b=tmp;

}

int main (){
Vec f;
Vec g;
swap(f,g);

}

Output
default constructor
default constructor
copy constructor
copy assignment
copy assignment

3 copies of the vector
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Forcing x-values

void swap(Vec& a, Vec& b){
Vec tmp = std::move(a);
a=std::move(b);
b=std::move(tmp);

}
int main (){

Vec f;
Vec g;
swap(f,g);

}

Output
default constructor
default constructor
move constructor
move assignment
move assignment

0 copies of the vector

Explanation: With std::move an l-value expression can be forced into an x-value.
Then move-semantics are applied. http://en.cppreference.com/w/cpp/utility/move
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std::swap & std::move

std::swap is implemented as above (using templates)

std::move can be used to move the elements of a container into
another

std::move(va.begin(),va.end(),vb.begin())
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Range for

We wanted this:

Vector v = ...;
for (auto x: v)

std::cout << x << " ";

In order to support this, an iterator must be provided via begin and
end .
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Iterator for the vector

class Vector{
...

// Iterator
double∗ begin(){

return elem;
}
double∗ end(){

return elem+sz;
}

}

class Vector{
public :

Vector ();
Vector(std :: size_t s );
~Vector();
Vector(const Vector &v);
Vector& operator=(const Vector&v);
Vector (Vector&& v);
Vector& operator=(Vector&& v);
const double& operator[] (std :: size_t pos) const;
double& operator[] (std :: size_t pos);
std :: size_t size () const;
double∗ begin();
double∗ end();

}

(Pointers support iteration)
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double& operator[] (std :: size_t pos);
std :: size_t size () const;
double∗ begin();
double∗ end();

}

(Pointers support iteration)
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Const Iterator for the vector

class Vector{
...

// Const−Iterator
const double∗ begin() const{

return elem;
}
const double∗ end() const{

return elem+sz;
}

}
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public :

Vector ();
Vector(std :: size_t s );
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Vector (Vector&& v);
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const double& operator[] (std :: size_t pos) const;
double& operator[] (std :: size_t pos);
std :: size_t size () const;
double∗ begin();
double∗ end();
const double∗ begin() const;
const double∗ end() const;

}
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Intermediate result
Vector Natural(int from, int to){

Vector v(to−from+1);
for (auto& x: v) x = from++;
return v;

}

int main(){
auto v = Natural(5,12);
for (auto x: v)

std::cout << x << " "; // 5 6 7 8 9 10 11 12
std::cout << std::endl;

<< "sum = "
<< std::accumulate(v.begin(), v.end(),0); // sum = 68

return 0;
}
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Today’s Conclusion
Use auto to infer a type from the initializer.
X-values are values where the compiler can determine that they
go out of scope.
Use move constructors in order to move X-values instead of
copying.
When you know what you are doing then you can enforce the
use of X-Values.
Subscript operators can be overloaded. In order to write,
references are used.
Behind a ranged for there is an iterator working.
Iteration is supported by implementing an iterator following the
syntactic convention of the standard library.
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7. Sorting I

Simple Sorting
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7.1 Simple Sorting

Selection Sort, Insertion Sort, Bubblesort [Ottman/Widmayer, Kap. 2.1, Cormen et
al, Kap. 2.1, 2.2, Exercise 2.2-2, Problem 2-2
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Problem

Input: An array A = (A[1], ..., A[n]) with length n.

Output: a permutation A′ of A, that is sorted: A′[i] ≤ A′[j] for all
1 ≤ i ≤ j ≤ n.

198



Algorithm: IsSorted(A)

Input: Array A = (A[1], ..., A[n]) with length n.
Output: Boolean decision “sorted” or “not sorted”
for i← 1 to n− 1 do

if A[i] > A[i+ 1] then
return “not sorted”;

return “sorted”;
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Observation

IsSorted(A):“not sorted”, if A[i] > A[i+ 1] for any i.

⇒ idea:
for j ← 1 to n− 1 do

if A[j] > A[j + 1] then
swap(A[j], A[j + 1]);
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Give it a try

5 6 2 8 4 1 (j = 1)

5 6 2 8 4 1 (j = 2)

5 2 6 8 4 1 (j = 3)

5 2 6 8 4 1 (j = 4)

5 2 6 4 8 1 (j = 5)

5 2 6 4 1 8

Not sorted! .
But the greatest
element moves to the
right
⇒ new idea!
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Try it out

5 6 2 8 4 1 (j = 1, i = 1)
5 6 2 8 4 1 (j = 2)
5 2 6 8 4 1 (j = 3)
5 2 6 8 4 1 (j = 4)
5 2 6 4 8 1 (j = 5)
5 2 6 4 1 8 (j = 1, i = 2)
2 5 6 4 1 8 (j = 2)
2 5 6 4 1 8 (j = 3)
2 5 4 6 1 8 (j = 4)
2 5 4 1 6 8 (j = 1, i = 3)
2 5 4 1 6 8 (j = 2)
2 4 5 1 6 8 (j = 3)
2 4 1 5 6 8 (j = 1, i = 4)
2 4 1 5 6 8 (j = 2)
2 1 4 5 6 8 (i = 1, j = 5)
1 2 4 5 6 8

Apply the procedure
iteratively.

For A[1, . . . , n],

then A[1, . . . , n− 1],
then A[1, . . . , n− 2],
etc.
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Algorithm: Bubblesort

Input: Array A = (A[1], . . . , A[n]), n ≥ 0.
Output: Sorted Array A
for i← 1 to n− 1 do

for j ← 1 to n− i do
if A[j] > A[j + 1] then

swap(A[j], A[j + 1]);
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Analysis

Number key comparisons
∑n−1

i=1 (n− i) = n(n−1)
2 = Θ(n2).

Number swaps in the worst case: Θ(n2)

? What is the worst case?

! If A is sorted in decreasing order.
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Selection Sort

5 6 2 8 4 1 (i = 1)

1 6 2 8 4 5 (i = 2)

1 2 6 8 4 5 (i = 3)

1 2 4 8 6 5 (i = 4)

1 2 4 5 6 8 (i = 5)

1 2 4 5 6 8 (i = 6)

1 2 4 5 6 8

Selection of the smallest
element by search in the
unsorted part A[i..n] of
the array.

Swap the smallest
element with the first
element of the unsorted
part.

Unsorted part decreases
in size by one element
(i→ i+ 1). Repeat until
all is sorted. (i = n)
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Algorithm: Selection Sort

Input: Array A = (A[1], . . . , A[n]), n ≥ 0.
Output: Sorted Array A
for i← 1 to n− 1 do

p← i
for j ← i+ 1 to n do

if A[j] < A[p] then
p← j;

swap(A[i], A[p])
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Analysis

Number comparisons in worst case:

Θ(n2).

Number swaps in the worst case: n− 1 = Θ(n)
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Insertion Sort

5 6 2 8 4 1 (i = 1)

5 6 2 8 4 1 (i = 2)

5 6 2 8 4 1 (i = 3)

2 5 6 8 4 1 (i = 4)

2 5 6 8 4 1 (i = 5)

2 4 5 6 8 1 (i = 6)

1 2 4 5 6 8

Iterative procedure:
i = 1...n

Determine insertion
position for element i.
Insert element i

array
block movement
potentially required
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Insertion Sort

? What is the disadvantage of this algorithm compared to sorting
by selection?

! Many element movements in the worst case.

? What is the advantage of this algorithm compared to selection
sort?
! The search domain (insertion interval) is already sorted.

Consequently: binary search possible.
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Algorithm: Insertion Sort

Input: Array A = (A[1], . . . , A[n]), n ≥ 0.
Output: Sorted Array A
for i← 2 to n do

x← A[i]
p← BinarySearch(A[1...i− 1], x); // Smallest p ∈ [1, i] with A[p] ≥ x
for j ← i− 1 downto p do

A[j + 1]← A[j]

A[p]← x
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Analysis

Number comparisons in the worst case:

∑n−1
k=1 a · log k = a log((n− 1)!) ∈ O(n log n).

Number swaps in the worst case
∑n

k=2(k − 1) ∈ Θ(n2)
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Different point of view

Sorting node:
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Conclusion

In a certain sense, Selection Sort, Bubble Sort and Insertion Sort
provide the same kind of sort strategy. Will be made more precise. 6

6In the part about parallel sorting networks. For the sequential code of course the observations as described above still
hold.
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Shellsort (Donald Shell 1959)

Insertion sort on subsequences of the form (Ak·i) (i ∈ N) with
decreasing distances k. Last considered distance must be k = 1.
Worst-case performance critically depends on the chosen subsequences

Original concept with sequence 1, 2, 4, 8, ..., 2k. Running time: O(n2)

Sequence 1, 3, 7, 15, ..., 2k−1 (Hibbard 1963). O(n3/2)

Sequence 1, 2, 3, 4, 6, 8, ..., 2p3q (Pratt 1971). O(n log2 n)
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Shellsort

9 8 7 6 5 4 3 2 1 0

1 8 7 6 5 4 3 2 9 0 insertion sort, k = 4

1 0 7 6 5 4 3 2 9 8

1 0 3 6 5 4 7 2 9 8

1 0 3 2 5 4 7 6 9 8

1 0 3 2 5 4 7 6 9 8 insertion sort, k = 2

1 0 3 2 5 4 7 6 9 8

0 1 2 3 4 5 6 7 8 9 insertion sort, k = 1
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8. Sorting II

Heapsort, Quicksort, Mergesort
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8.1 Heapsort

[Ottman/Widmayer, Kap. 2.3, Cormen et al, Kap. 6]
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Heapsort

Inspiration from selectsort: fast insertion

Inspiration from insertion sort: fast determination of position

? Can we have the best of both worlds?

! Yes, but it requires some more thinking...
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[Max-]Heap7

Binary tree with the following prop-
erties

1 complete up to the lowest
level

2 Gaps (if any) of the tree in
the last level to the right

3 Heap-Condition:
Max-(Min-)Heap: key of a
child smaller (greater) that
that of the parent node

root
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15
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parent

child

leaves

7Heap(data structure), not: as in “heap and stack” (memory allocation)
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Heap as Array

Tree→ Array:
children(i) = {2i, 2i+ 1}
parent(i) = bi/2c
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Children
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[1]

[2] [3]

[4] [5] [6] [7]

[8] [9] [10] [11] [12]

Depends on the starting index8

8For array that start at 0: {2i, 2i+ 1} → {2i+ 1, 2i+ 2}, bi/2c → b(i− 1)/2c
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Insert

Insert new element at the first free
position. Potentially violates the heap
property.
Reestablish heap property: climb
successively
Worst case number of operations:
O(log n)
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Algorithm Sift-Up(A,m)

Input: Array A with at least m+ 1 and Max-Heap-Structure on
A[0, . . . ,m− 1]

Output: Array A with Max-Heap-Structure on A[0, . . . ,m].
v ← A[m] // value
c← m // current position
p← b(c− 1)/2c // parent node
while c > 0 and v > A[p] do

A[c]← A[p] // Value parent node → current node
c← p // parent node → current node
p← b(c− 1)/2c

A[c]← v // value → current node
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Height of a Heap
A complete binary tree with height9 h provides

1 + 2 + 4 + 8 + ...+ 2h−1 =
h−1∑
i=0

2i = 2h − 1

nodes. Thus for a heap with height h:

2h−1 − 1 < n ≤ 2h − 1

⇔ 2h−1 < n+ 1 ≤ 2h

Particularly h(n) = dlog2(n+ 1)e and h(n) ∈ Θ(log n).
9here: number of edges from the root to a leaf
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Remove the maximum

Replace the maximum by the lower
right element
Reestablish heap property: sink
successively (in the direction of the
greater child)
Worst case number of operations:
O(log n)
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Remove the maximum

Replace the maximum by the lower
right element

Reestablish heap property: sink
successively (in the direction of the
greater child)
Worst case number of operations:
O(log n)
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Why this is correct: Recursive heap structure

A heap consists of two heaps:
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Algorithm SiftDown(A, i,m)
Input: Array A with heap structure for the children of i. Last element

m.
Output: Array A with heap structure for i with last element m.
while 2i ≤ m do

j ← 2i; // j left child
if j < m and A[j] < A[j + 1] then

j ← j + 1; // j right child with greater key

if A[i] < A[j] then
swap(A[i], A[j])
i← j; // keep sinking down

else
i← m; // sift down finished
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Sort heap

A[1, ..., n] is a Heap.
While n > 1

swap(A[1], A[n])
SiftDown(A, 1, n− 1);
n← n− 1
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Heap creation

Observation: Every leaf of a heap is trivially a correct heap.

Consequence:

Induction from below!
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Heap creation

Observation: Every leaf of a heap is trivially a correct heap.

Consequence: Induction from below!
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Algorithm HeapSort(A, n)

Input: Array A with length n.
Output: A sorted.
// Build the heap.
for i← n/2 downto 1 do

SiftDown(A, i, n);

// Now A is a heap.
for i← n downto 2 do

swap(A[1], A[i])
SiftDown(A, 1, i− 1)

// Now A is sorted.
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Analysis: sorting a heap

SiftDown traverses at most log n nodes. For each node 2 key
comparisons. ⇒ sorting a heap costs in the worst case 2 log n
comparisons.

Number of memory movements of sorting a heap also O(n log n).
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Analysis: creating a heap

Calls to siftDown: n/2. Thus number of comparisons and
movements: v(n) ∈ O(n log n).

But mean length of the sift-down paths is much smaller:

v(n) =

blognc∑
l=0

2l︸︷︷︸
number heaps on level l

· (blog nc − l)︸ ︷︷ ︸
height heaps on level l

=

blognc∑
k=0

2blognc−k · k

≤
blognc∑
k=0

n

2k
· k = n ·

blognc∑
k=0

k

2k
∈ O(n)

with s(x) :=
∑∞

k=0 kx
k = x

(1−x)2
(0 < x < 1) 10 and s(1

2
) = 2

10f(x) = 1
1−x

= 1 + x+ x2...⇒ f ′(x) = 1
(1−x)2

= 1 + 2x+ ...
233
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Intermediate result

Heapsort: O(n log n) Comparisons and movements.

? Disadvantages of heapsort?

! Missing locality: heapsort jumps around in the sorted array
(negative cache effect).

! Two comparisons required before each necessary memory
movement.
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8.2 Mergesort

[Ottman/Widmayer, Kap. 2.4, Cormen et al, Kap. 2.3],
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Mergesort

Divide and Conquer!

Assumption: two halves of the array A are already sorted.
Minimum of A can be evaluated with two comparisons.
Iteratively: merge the two presorted halves of A in O(n).
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Merge

1 4 7 9 16 2 3 10 11 12

1 2 3 4 7 9 10 11 12 16
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Algorithm Merge(A, l,m, r)

Input: Array A with length n, indexes 1 ≤ l ≤ m ≤ r ≤ n.
A[l, . . . ,m], A[m+ 1, . . . , r] sorted

Output: A[l, . . . , r] sorted
1 B ← new Array(r − l + 1)
2 i← l; j ← m+ 1; k ← 1
3 while i ≤ m and j ≤ r do
4 if A[i] ≤ A[j] then B[k]← A[i]; i← i+ 1
5 else B[k]← A[j]; j ← j + 1
6 k ← k + 1;

7 while i ≤ m do B[k]← A[i]; i← i+ 1; k ← k + 1
8 while j ≤ r do B[k]← A[j]; j ← j + 1; k ← k + 1
9 for k ← l to r do A[k]← B[k − l + 1]
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Correctness
Hypothesis: after k iterations of the loop in line 3 B[1, . . . , k] is
sorted and B[k] ≤ A[i], if i ≤ m and B[k] ≤ A[j] if j ≤ r.

Proof by induction:
Base case: the empty array B[1, . . . , 0] is trivially sorted.
Induction step (k → k + 1):

wlog A[i] ≤ A[j], i ≤ m, j ≤ r.

B[1, . . . , k] is sorted by hypothesis and B[k] ≤ A[i].

After B[k + 1]← A[i] B[1, . . . , k + 1] is sorted.

B[k + 1] = A[i] ≤ A[i+ 1] (if i+ 1 ≤ m) and B[k + 1] ≤ A[j] if j ≤ r.

k ← k + 1, i← i+ 1: Statement holds again.
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Analysis (Merge)

Lemma
If: array A with length n, indexes 1 ≤ l < r ≤ n. m = b(l + r)/2c
and A[l, . . . ,m], A[m+ 1, . . . , r] sorted.
Then: in the call of Merge(A, l,m, r) a number of Θ(r − l) key
movements and comparisons are executed.

Proof: straightforward(Inspect the algorithm and count the
operations.)
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Mergesort

5 2 6 1 8 4 3 9

Split
5 2 6 1 8 4 3 9

Split
5 2 6 1 8 4 3 9

Split
5 2 6 1 8 4 3 9

Merge
2 5 1 6 4 8 3 9

Merge
1 2 5 6 3 4 8 9

Merge
1 2 3 4 5 6 8 9
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Mergesort
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1 2 3 4 5 6 8 9
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Algorithm (recursive 2-way) Mergesort(A, l, r)

Input: Array A with length n. 1 ≤ l ≤ r ≤ n
Output: Array A[l, . . . , r] sorted.
if l < r then

m← b(l + r)/2c // middle position
Mergesort(A, l,m) // sort lower half
Mergesort(A,m+ 1, r) // sort higher half
Merge(A, l,m, r) // Merge subsequences
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Analysis

Recursion equation for the number of comparisons and key
movements:

T (n) = T (
⌈n

2

⌉
) + T (

⌊n
2

⌋
) + Θ(n)

∈ Θ(n log n)

243



Analysis

Recursion equation for the number of comparisons and key
movements:

T (n) = T (
⌈n

2

⌉
) + T (

⌊n
2

⌋
) + Θ(n) ∈ Θ(n log n)

243



Algorithm StraightMergesort(A)

Avoid recursion: merge sequences of length 1, 2, 4, ... directly
Input: Array A with length n
Output: Array A sorted
length ← 1
while length < n do // Iterate over lengths n

r ← 0
while r + length < n do // Iterate over subsequences

l ← r + 1
m ← l + length − 1
r ← min(m + length, n)
Merge(A, l ,m, r)

length ← length · 2
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Analysis

Like the recursive variant, the straight 2-way mergesort always
executes a number of Θ(n log n) key comparisons and key
movements.
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Natural 2-way mergesort

Observation: the variants above do not make use of any presorting
and always execute Θ(n log n) memory movements.

? How can partially presorted arrays be sorted better?

! Recursive merging of previously sorted parts (runs) of A.
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Natural 2-way mergesort
5 6 2 4 8 3 9 7 1

2 4 5 6 8 3 7 9 1

2 3 4 5 6 7 8 9 1

1 2 3 4 5 6 7 8 9
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Algorithm NaturalMergesort(A)

Input: Array A with length n > 0
Output: Array A sorted
repeat

r ← 0
while r < n do

l ← r + 1
m ← l ; while m < n and A[m + 1] ≥ A[m] do m ← m + 1
if m < n then

r ← m + 1; while r < n and A[r + 1] ≥ A[r ] do r ← r + 1
Merge(A, l ,m, r);

else
r ← n

until l = 1
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Analysis

? Is it also asymptotically better than StraightMergesort on
average?

! No. Given the assumption of pairwise distinct keys, on average there are n/2
positions i with ki > ki+1, i.e. n/2 runs. Only one iteration is saved on average.

Natural mergesort executes in the worst case and on average a
number of Θ(n log n) comparisons and memory movements.
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8.3 Quicksort

[Ottman/Widmayer, Kap. 2.2, Cormen et al, Kap. 7]
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Quicksort

? What is the disadvantage of Mergesort?

! Requires additional Θ(n) storage for merging.

? How could we reduce the merge costs?

! Make sure that the left part contains only smaller elements than
the right part.

? How?
! Pivot and Partition!
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Use a pivot

1 Choose a (an arbitrary) pivot p
2 Partition A in two parts, one part L with the elements with
A[i] ≤ p and another part R with A[i] > p

3 Quicksort: Recursion on parts L and R
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Algorithm Partition(A[l..r], p)

Input: Array A, that contains the pivot p in the interval [l, r] at least once.
Output: Array A partitioned in [l..r] around p. Returns position of p.
while l ≤ r do

while A[l] < p do
l← l + 1

while A[r] > p do
r ← r − 1

swap(A[l], A[r])
if A[l] = A[r] then

l← l + 1

return l-1
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Algorithm Quicksort(A[l, . . . , r]

Input: Array A with length n. 1 ≤ l ≤ r ≤ n.
Output: Array A, sorted between l and r.
if l < r then

Choose pivot p ∈ A[l, . . . , r]
k ← Partition(A[l, . . . , r], p)
Quicksort(A[l, . . . , k − 1])
Quicksort(A[k + 1, . . . , r])
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Quicksort (arbitrary pivot)

2 4 5 6 8 3 7 9 1

2 1 3 6 8 5 7 9 4

1 2 3 4 5 8 7 9 6

1 2 3 4 5 6 7 9 8

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9
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Analysis: number comparisons

Worst case.

Pivot = min or max; number comparisons:

T (n) = T (n− 1) + c · n, T (1) = 0 ⇒ T (n) ∈ Θ(n2)
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Analysis: number swaps

Result of a call to partition (pivot 3):

2 1 3 6 8 5 7 9 4

? How many swaps have taken place?

! 2. The maximum number of swaps is given by the number of keys
in the smaller part.
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Analysis: number swaps

Thought experiment

Each key from the smaller part pays a coin when it is being
swapped.
After a key has paid a coin the domain containing the key
decreases to half its previous size.
Every key needs to pay at most log n coins. But there are only n
keys.

Consequence: there are O(n log n) key swaps in the worst case.
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Randomized Quicksort

Despite the worst case running time of Θ(n2), quicksort is used
practically very often.

Reason: quadratic running time unlikely provided that the choice of
the pivot and the pre-sorting are not very disadvantageous.

Avoidance: randomly choose pivot. Draw uniformly from [l, r].

259



Analysis (randomized quicksort)

Expected number of compared keys with input length n:

T (n) = (n− 1) +
1

n

n∑
k=1

(T (k − 1) + T (n− k)) , T (0) = T (1) = 0

Claim T (n) ≤ 4n log n.

Proof by induction:
Base case straightforward for n = 0 (with 0 log 0 := 0) and for n = 1.
Hypothesis: T (n) ≤ 4n log n for some n.
Induction step: (n− 1→ n)
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Analysis (randomized quicksort)

T (n) = n− 1 +
2

n

n−1∑
k=0

T (k)
H
≤ n− 1 +

2

n

n−1∑
k=0

4k log k

= n− 1 +

n/2∑
k=1

4k log k︸︷︷︸
≤logn−1

+
n−1∑

k=n/2+1

4k log k︸︷︷︸
≤logn

≤ n− 1 +
8

n

(log n− 1)

n/2∑
k=1

k + log n
n−1∑

k=n/2+1

k


= n− 1 +

8

n

(
(log n) · n(n− 1)

2
− n

4

(n
2

+ 1
))

= 4n log n− 4 log n− 3 ≤ 4n log n
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Analysis (randomized quicksort)

Theorem
On average randomized quicksort requires O(n · log n) comparisons.
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Practical Considerations

Worst case recursion depth n− 111. Then also a memory
consumption of O(n).

Can be avoided: recursion only on the smaller part. Then
guaranteed O(log n) worst case recursion depth and memory
consumption.

11stack overflow possible!
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Quicksort with logarithmic memory consumption
Input: Array A with length n. 1 ≤ l ≤ r ≤ n.
Output: Array A, sorted between l and r.
while l < r do

Choose pivot p ∈ A[l, . . . , r]
k ← Partition(A[l, . . . , r], p)
if k − l < r − k then

Quicksort(A[l, . . . , k − 1])
l← k + 1

else
Quicksort(A[k + 1, . . . , r])
r ← k − 1

The call of Quicksort(A[l, . . . , r]) in the original algorithm has moved to iteration (tail recursion!): the if-statement became a
while-statement.
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Practical Considerations.

Practically the pivot is often the median of three elements. For
example: Median3(A[l], A[r], A[bl + r/2c]).
There is a variant of quicksort that requires only constant storage.
Idea: store the old pivot at the position of the new pivot.
Complex divide-and-conquer algorithms often use a trivial (Θ(n2))
algorithm as base case to deal with small problem sizes.
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8.4 Appendix

Derivation of some mathematical formulas
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log n! ∈ Θ(n log n)

log n! =
n∑
i=1

log i ≤
n∑
i=1

log n = n log n

n∑
i=1

log i =

bn/2c∑
i=1

log i+
n∑

bn/2c+1

log i

≥
bn/2c∑
i=2

log 2 +
n∑

bn/2c+1

log
n

2

= (bn/2c︸ ︷︷ ︸
>n/2−1

−2 + 1) + (n− bn/2c︸ ︷︷ ︸
≥n/2

)(log n− 1)

>
n

2
log n− 2.
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[n! ∈ o(nn) ]

n log n ≥
bn/2c∑
i=1

log 2i+
n∑

i=bn/2c+1

log i

=
n∑
i=1

log i+
⌊n

2

⌋
log 2

>
n∑
i=1

log i+ n/2− 1 = log n! + n/2− 1

nn = 2n log2 n ≥ 2log2 n! · 2n/2 · 2−1 = n! · 2n/2−1

⇒ n!

nn
≤ 2−n/2+1 n→∞−→ 0⇒ n! ∈ o(nn) = O(nn)\Ω(nn)
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[Even n! ∈ o((n/c)n) ∀ 0 < c < e ]

Konvergenz oder Divergenz von fn = n!
(n/c)n .

Ratio Test

fn+1

fn
=

(n+ 1)!(
n+1
c

)n+1 ·
(
n
c

)n
n!

= c ·
(

n

n+ 1

)n
−→ c · 1

e
≶ 1 if c ≶ e

because
(
1 + 1

n

)n → e. Even the series
∑n

i=1 fn converges /
diverges for c ≶ e.

fn diverges for c = e, because (Stirling): n! ≈
√

2πn
(
n
e

)n.

269



[ Ratio Test]

Ratio test for a sequence (fn)n∈N: If fn+1

fn
−→
n→∞

λ, then the sequence

fn and the series
∑n

i=1 fi

converge, if λ < 1 and
diverge, if λ > 1.
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[ Ratio Test Derivation ]
Ratio test is implied by Geometric Series

Sn(r) :=
n∑
i=0

ri =
1− rn+1

1− r
.

converges for n→∞ if and only if −1 < r < 1.

Let 0 ≤ λ < 1:

∀ε > 0∃n0 : fn+1/fn < λ+ ε ∀n ≥ n0

⇒∃ε > 0,∃n0 : fn+1/fn ≤ µ < 1∀n ≥ n0

Thus
∞∑

n=n0

fn ≤ fn0 ·
∞∑

n=n0

·µn−n0 konvergiert.

(Analogously for divergence)
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9. C++ advanced (II): Templates
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What do we learn today?

templates of classes
function templates
Specialization
templates with values
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Motivation

Goal: generic vector class and functionality.

Examples

Vector<double> vd(10);
Vector<int> vi(10);
Vector<char> vi(20);

auto nd = vd ∗ vd; // norm (vector of double)
auto ni = vi ∗ vi; // norm (vector of int)
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Types as Template Parameters

1 In the concrete implementation of a class replace the type that
should become generic (in our example: double) by a
representative element, e.g. T.

2 Put in front of the class the construct template<typename T>12

Replace T by the representative name).

The construct template<typename T> can be understood as “for all
types T”.

12equally:template<class T>
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Types as Template Parameters
template <typename ElementType>
class Vector{

std::size_t size;
ElementType∗ elem;

public:
...
Vector(std::size_t s):

size{s},
elem{new ElementType[s]}{}

...
ElementType& operator[](std::size_t pos){

return elem[pos];
}
...

}
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Template Instances

Vector<typeName> generates a type instance Vector with
ElementType=typeName.
Notation: Instantiation
Examples

Vector<double> x; // vector of double
Vector<int> y; // vector of int
Vector<Vector<double>> x; // vector of vector of double
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Type-checking

Templates are basically replacement rules at instantiation time and
during compilation. The compiler always checks as little as
necessary and as much as possible.

278



Example

template <typename T>
class Pair{

T left; T right;
public:

Pair(T l, T r):left{l}, right{r}{}
T min(){

return left < right ? left : right;
}

};

Pair<int> a(10,20); // ok
auto m = a.min(); // ok
Pair<Pair<int>> b(a,Pair<int>(20,30)); // ok
auto n = b.min(); no match for operator< !
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Generic Programming

Generic components should be devel-
oped rather as a generalization of one
or more examples than from first prin-
ciples.

template <typename T>
class Vector{
public :

Vector ();
Vector(std :: size_t );
~Vector();
Vector(const Vector&);
Vector& operator=(const Vector&);
Vector (Vector&&);
Vector& operator=(Vector&&);
const T& operator[] (std :: size_t ) const;
T& operator[] (std :: size_t );
std :: size_t size () const;
T∗ begin();
T∗ end();
const T∗ begin() const;
const T∗ end() const;

}
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Function Templates

1 To make a concrete implementation generic, replace the
specific type (e.g. int) with a name, e.g. T,

2 Put in front of the function the construct
template<typename T>13(Replace T by the chosen name)

13equally:template<class T>
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Function Templates

template <typename T>
void swap(T& x, T&y){

T temp = x;
x = y;
y = temp;

}

The actual parameters’ types determine the version of the function
that is (compiled) and used:
int x=5;
int y=6;
swap(x,y); // calls swap with T=int
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Limits of Magic

template <typename T>
void swap(T& x, T&y){

T temp = x;
x = y;
y = temp;

}

An inadmissible version of the function is not generated:
int x=5;
double y=6;
swap(x,y); // error: no matching function for ...
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.. also with operators
template <typename T>
class Pair{

T left; T right;
public:

Pair(T l, T r):left{l}, right{r}{}
T min(){ return left < right? left: right; }
std::ostream& print (std::ostream& os) const{

return os << "("<< left << "," << right<< ")";
}

};

template <typename T>
std::ostream& operator<< (std::ostream& os, const Pair<T>& pair){

return pair.print(os);
}

Pair<int> a(10,20); // ok
std::cout << a; // ok
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.. also with operators
template <typename T>
class Pair{
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public:

Pair(T l, T r):left{l}, right{r}{}
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}

};
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std::ostream& operator<< (std::ostream& os, const Pair<T>& pair){

return pair.print(os);
}

Pair<int> a(10,20); // ok
std::cout << a; // ok
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Useful!

// Output of an arbitrary container
template <typename T>
void output(const T& t){

for (auto x: t)
std::cout << x << " ";

std::cout << "\n";
}

int main(){
std::vector<int> v={1,2,3};
output(v); // 1 2 3

}
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Explicit Type

// input of an arbitrary pair
template <typename T>
Pair<T> read(){

T left;
T right;
std::cin << left << right;
return Pair<T>(left,right);

}
...

auto p = read<double>();

If the type of a template instantiation cannot be inferred, it has to be
provided explicitly.
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Powerful!
template <typename T> // square number
T sq(T x){

return x∗x;
}
template <typename Container, typename F>
void apply(Container& c, F f){ // x <− f(x) forall x in c

for(auto& x: c)
x = f(x);

}
int main(){

std::vector<int> v={1,2,3};
apply(v,sq<int>);
output(v); // 1 4 9

}
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Specialization

template <>
class Pair<bool>{

short both;
public:

Pair(bool l, bool r):both{(l?1:0) + (r?2:0)} {};
std::ostream& print (std::ostream& os) const{

return os << "("<< both % 2 << "," << both /2 << ")";
}

};

Pair<int> i(10,20); // ok −− generic template
std::cout << i << std::endl; // (10,20);
Pair<bool> b(true, false); // ok −− special bool version
std::cout << b << std::endl; // (1,0)
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Template Parameterization with Values
template <typename T, int size>
class CircularBuffer{

T buf[size] ;
int in; int out;

0

1

2 3

4

5

6

78

9

out

in

public:
CircularBuffer():in{0},out{0}{};
bool empty(){

return in == out;
}
bool full(){

return (in + 1) % size == out;
}
void put(T x); // declaration
T get(); // declaration

};
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Template Parameterization with Values
template <typename T, int size>
void CircularBuffer<T,size>::put(T x){

assert(!full());
buf[in] = x;
in = (in + 1) % size;

} 0

1

2 3

4

5

6

78

9

out

in

template <typename T, int size>
T CircularBuffer<T,size>::get(){

assert(!empty());
T x = buf[out];
out = (out + 1) % size;
return x;

}

Potential for optimization if size = 2k.
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Memory Management

Guideline “Dynamic Memory”
For each new there is a matching delete!

Avoid:

Memory leaks: old objects that occupy memory
Pointer to released objects: dangling pointers
Releasing an object more than once using delete.

How?
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Smart Pointers

Can make sure that an object is deleted if and only if it is not used
any more
Are based on the RAII (Resouce Acquisition is Initialization)
paradigm.
Can be used instead of a normal pointer: are implemented as
class templates.
There are std::unique_ptr<>, std::shared_ptr<> (and
std::weak_ptr<>)

std::unique_ptr<Node> nodeU(new Node()); // unique pointer
std::shared_ptr<Node> nodeS(new Node()); // shared pointer
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Unique Pointer

The deconstructor of a std::unique_ptr<T> deletes the pointer contained.

std::unique_ptr<T> has exclusive ownership for the contained pointer on T.

Copy constructor and assignment operator are deleted. A unique pointer
cannot be copied by value. The move constructor is implemented: the pointer
can be moved.

No additional runtime overhead in comparison to a normal pointer

std::unique_ptr<Node> nodeU(new Node()); // unique pointer
std::unique_ptr<Node> node2 = std::move(nodeU); // ok
std::unique_ptr<Node> node3 = nodeU; // error
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Shared Pointer

std::shared_ptr<T> Counts the numbers of owners of a pointer (reference
count). When reference count goes to 0, the pointer is deleted.

Shared pointers can be copied.

Shared pointers provide additional space- and runtime overhead: they manage
the reference counter at runtime and contain a pointer to the reference. std::shared_ptr<Node>

RefCount (2)

std::shared_ptr<Node>

Node

std::shared_ptr<Node> nodeS(new Node()); // shared pointer, rc = 1
std::shared_ptr<Node> node2 = std::move(nodeS); // ok, rc unchanged
std::shared_ptr<Node> node3 = node2; // ok, rc = 2
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Smart Pointers

Some rules

Never call delete on a pointer contained in a smart pointer.
Avoid new, instead:
std::unique_ptr<Node> nodeU = std::make_unique<Node>()
std::shared_ptr<Node> nodeS = std::make_shared<Node>()

Where possible, use std::unique_ptr
If using std::shared_ptr make sure there are no cycles in the
pointer graph.
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10. Sorting III

Lower bounds for the comparison based sorting, radix- and
bucket-sort
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10.1 Lower bounds for comparison based sorting

[Ottman/Widmayer, Kap. 2.8, Cormen et al, Kap. 8.1]
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Lower bound for sorting

Up to here: worst case sorting takes Ω(n log n) steps.

Is there a better way?

No:

Theorem
Sorting procedures that are based on comparison require in the
worst case and on average at least Ω(n log n) key comparisons.
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Comparison based sorting

An algorithm must identify the correct one of n! permutations of an
array (Ai)i=1,...,n .

At the beginning the algorithm know nothing about the array
structure.
We consider the knowledge gain of the algorithm in the form of a
decision tree:

Nodes contain the remaining possibilities.
Edges contain the decisions.
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Decision tree

a < b

b < c

abc a < c

acb cab

b < c

a < c

bac bca

cba

Yes No

Yes No Yes No

Yes No Yes No

abc acb cab bac bca cba

abc acb cab bac bca cba

acb cab bac bca
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Decision tree

A binary tree with L leaves provides K = L− 1 inner nodes.14

The height of a binary tree with L leaves is at least log2 L. ⇒ The
heigh of the decision tree h ≥ log n! ∈ Ω(n log n).

Thus the length of the longest path in the decision tree ∈ Ω(n log n).

Remaining to show: mean length M(n) of a path M(n) ∈ Ω(n log n).

14Proof: start with emtpy tree (K = 0, L = 1). Each added node replaces a leaf by two leaves, i.e.}
K → K + 1⇒ L→ L+ 1.

301



Average lower bound

Tbl

Tbr

← br →
← bl →

Decision tree Tn with n leaves, average height
of a leaf m(Tn)

Assumption m(Tn) ≥ log n not for all n.

Choose smalles b with m(Tb) < log b⇒ b ≥ 2

bl + br = b with bl > 0 und br > 0⇒
bl < b, br < b⇒ m(Tbl) ≥ log bl und
m(Tbr) ≥ log br
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Average lower bound

Average height of a leaf:

m(Tb) =
bl
b

(m(Tbl) + 1) +
br
b

(m(Tbr) + 1)

≥ 1

b
(bl(log bl + 1) + br(log br + 1)) =

1

b
(bl log 2bl + br log 2br)

≥ 1

b
(b log b) = log b.

Contradiction. �
The last inequality holds because f(x) = x log x is convex (f ′′(x) = 1/x > 0) and
for a convex function it holds that f((x+ y)/2) ≤ 1/2f(x) + 1/2f(y) (x = 2bl,
y = 2br ).15 Enter x = 2bl, y = 2br, and bl + br = b.

15generally f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) for 0 ≤ λ ≤ 1.
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10.2 Radixsort and Bucketsort

Radixsort, Bucketsort [Ottman/Widmayer, Kap. 2.5, Cormen et al, Kap. 8.3]
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Radix Sort

Sorting based on comparison: comparable keys (< or >, often =).
No further assumptions.

Different idea: use more information about the keys.
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Assumptions

Assumption: keys representable as words from an alphabet
containing m elements.

Examples

m = 10 decimal numbers 183 = 18310
m = 2 dual numbers 1012
m = 16 hexadecimal numbers A016
m = 26 words “INFORMATIK”

m is called the radix of the representation.
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Assumptions

keys = m-adic numbers with same length.

Procedure z for the extraction of digit k in O(1) steps.

Example
z10(0, 85) = 5
z10(1, 85) = 8
z10(2, 85) = 0
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Radix-Exchange-Sort

Keys with radix 2.

Observation: if for some k ≥ 0:

z2(i, x) = z2(i, y) for all i > k

and
z2(k, x) < z2(k, y),

then it holds that x < y.
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Radix-Exchange-Sort

Idea:

Start with a maximal k.
Binary partition the data sets with z2(k, ·) = 0 vs. z2(k, ·) = 1 like
with quicksort.
k ← k − 1.

309



Radix-Exchange-Sort

0111 0110 1000 0011 0001

0111 0110 0001 0011 1000

0011 0001 0110 0111 1000
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0001 0011 0110 0111 1000
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Algorithm RadixExchangeSort(A, l, r, b)
Input: Array A with length n, left and right bounds 1 ≤ l ≤ r ≤ n, bit

position b
Output: Array A, sorted in the domain [l, r] by bits [0, . . . , b] .
if l < r and b ≥ 0 then

i← l − 1
j ← r + 1
repeat

repeat i← i+ 1 until z2(b, A[i]) = 1 or i ≥ j
repeat j ← j − 1 until z2(b, A[j]) = 0 or i ≥ j
if i < j then swap(A[i], A[j])

until i ≥ j
RadixExchangeSort(A, l, i− 1, b− 1)
RadixExchangeSort(A, i, r, b− 1)
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Analysis

RadixExchangeSort provides recursion with maximal recursion
depth = maximal number of digits p.

Worst case run time O(p · n).
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Bucket Sort
3 8 18 122 121 131 23 21 19 29

0 1 2 3 4 5 6 7 8 9

121
131
21

122 3
23

8
18

19
29

121 131 21 122 3 23 8 18 19 29
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implementation details

Bucket size varies greatly. Possibilities

Linked list or dynamic array for each digit.
One array of length n. compute offsets for each digit in the first
iteration.

Assumptions: Input length n , Number bits / integer: k , Number
Buckets: 2b

Asymptotic running time O(kb · (n+ 2b).

For Example: k = 32, 2b = 256 : k
b · (n+ 2b) = 4n+ 1024.
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11. Fundamental Data Structures

Abstract data types stack, queue, implementation variants for linked
lists [Ottman/Widmayer, Kap. 1.5.1-1.5.2, Cormen et al, Kap.
10.1.-10.2]
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Abstract Data Types

We recall

A stack is an abstract data type (ADR) with operations

push(x, S): Puts element x on the stack S.
pop(S): Removes and returns top most element of S or null
top(S): Returns top most element of S or null.
isEmpty(S): Returns true if stack is empty, false otherwise.
emptyStack(): Returns an empty stack.
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Implementation Push

top xn xn−1 x1 null

x

push(x, S):

1 Create new list element with x and pointer to the value of top.
2 Assign the node with x to top.
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Implementation Pop

top xn xn−1 x1 null

r

pop(S):

1 If top=null, then return null
2 otherwise memorize pointer p of top in r.
3 Set top to p.next and return r
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Analysis

Each of the operations push, pop, top and isEmpty on a stack can
be executed in O(1) steps.

321



Queue (fifo)

A queue is an ADT with the following operations

enqueue(x,Q): adds x to the tail (=end) of the queue.
dequeue(Q): removes x from the head of the queue and returns x
(null otherwise)
head(Q): returns the object from the head of the queue (null
otherwise)
isEmpty(Q): return true if the queue is empty, otherwise false
emptyQueue(): returns empty queue.
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Implementation Queue
x1 x2 xn−1 xn

head tail

null

x null

enqueue(x, S):

1 Create a new list element with x and pointer to null.
2 If tail 6= null, then set tail.next to the node with x.
3 Set tail to the node with x.
4 If head = null, then set head to tail.

323



Implementation Queue
x1 x2 xn−1 xn

head tail

null

x null

enqueue(x, S):

1 Create a new list element with x and pointer to null.

2 If tail 6= null, then set tail.next to the node with x.
3 Set tail to the node with x.
4 If head = null, then set head to tail.

323



Implementation Queue
x1 x2 xn−1 xn

head tail

null

x null

enqueue(x, S):

1 Create a new list element with x and pointer to null.
2 If tail 6= null, then set tail.next to the node with x.

3 Set tail to the node with x.
4 If head = null, then set head to tail.

323



Implementation Queue
x1 x2 xn−1 xn

head tail

null

x null

enqueue(x, S):

1 Create a new list element with x and pointer to null.
2 If tail 6= null, then set tail.next to the node with x.
3 Set tail to the node with x.

4 If head = null, then set head to tail.

323



Implementation Queue
x1 x2 xn−1 xn

head tail

null

x null

enqueue(x, S):

1 Create a new list element with x and pointer to null.
2 If tail 6= null, then set tail.next to the node with x.
3 Set tail to the node with x.
4 If head = null, then set head to tail.

323



Invariants
x1 x2 xn−1 xn

head tail

null

With this implementation it holds that

either head = tail = null,
or head = tail 6= null and head.next = null
or head 6= null and tail 6= null and head 6= tail and
head.next 6= null.
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Implementation Queue
x1 x2 xn−1 xn

head tail

null

r

dequeue(S):

1 Store pointer to head in r. If r = null, then return r .
2 Set the pointer of head to head.next.
3 Is now head = null then set tail to null.
4 Return the value of r.
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Analysis

Each of the operations enqueue, dequeue, head and isEmpty on
the queue can be executed in O(1) steps.
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Implementation Variants of Linked Lists
List with dummy elements (sentinels).

x1 x2 xn−1 xn

head tail

Advantage: less special cases

Variant: like this with pointer of an element stored singly indirect.
(Example: pointer to x3 points to x2.)
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Implementation Variants of Linked Lists

Doubly linked list

null x1 x2 xn−1 xn null

head tail
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Overview

enqueue delete search concat
(A) Θ(1) Θ(n) Θ(n) Θ(n)
(B) Θ(1) Θ(n) Θ(n) Θ(1)
(C) Θ(1) Θ(1) Θ(n) Θ(1)
(D) Θ(1) Θ(1) Θ(n) Θ(1)

(A) = singly linked
(B) = Singly linked with dummy element at the beginning and the end
(C) = Singly linked with indirect element addressing
(D) = doubly linked
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priority queue

Priority Queue

Operations

insert(x,p,Q): Enter object x with priority p.
extractMax(Q): Remove and return object x with highest priority.
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Implementation Priority Queue

With a Max Heap

Thus

insert in O(?) and
extractMax in O(?).
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12. Amortized Analyis

Amortized Analysis: Aggregate Analysis, Account-Method,
Potential-Method [Ottman/Widmayer, Kap. 3.3, Cormen et al, Kap.
17]
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Multistack

Multistack adds to the stack operations push und pop
multipop(s,S): remove the min(size(S), k) most recently inserted
objects and return them.

Implementation as with the stack. Runtime of multipop is O(k).
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Academic Question

If we execute on a stack with n elements a number of n times
multipop(k,S) then this costs O(n2)?

Certainly correct because each multipop may take O(n) steps.

How to make a better estimation?
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Amortized Analysis

Upper bound: average performance of each considered operation
in the worst case.

1

n

n∑
i=1

cost(opi)

Makes use of the fact that a few expensive operations are
opposed to many cheap operations.
In amortized analysis we search for a credit or a potential function
that captures how the cheap operations can “compensate” for the
expensive ones.
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Aggregate Analysis

Direct argument: compute a bound for the total number of
elementary operations and divide by the total number of operations.
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Aggregate Analysis: (Stack)

n∑
i=1

cost(opi) ≤ 2n

amortized cost(opi) ≤ 2 ∈ O(1)
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Accounting Method

Model

The computer is driven with coins: each elementary operation of
the machine costs a coin.
For each operation opk of a data structure, a number of coins ak
has to be put on an account A: Ak = Ak−1 + ak
Use the coins from the account A to pay the true costs tk of each
operation.
The account A needs to provide enough coins in order to pay
each of the ongoing operations opk: Ak − tk ≥ 0∀k.

⇒ ak are the amortized costs of opk.
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Accounting Method (Stack)

Each call of push costs 1 CHF and additionally 1 CHF will be
deposited on the account. (ak = 2)
Each call to pop costs 1 CHF and will be paid from the account.
(ak = 0)

Account will never have a negative balance.

ak ≤ 2∀ k, thus: constant amortized costs.
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Potential Method

Slightly different model

Define a potential Φi that is associated to the state of a data
structure at time i.
The potential shall be used to level out expensive operations und
therefore needs to be chosen such that it is increased during the
(frequent) cheap operations while it decreases for the (rare)
expensive operations.
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Potential Method (Formal)
Let ti denote the real costs of the operation opi.

Potential function Φi ≥ 0 to the data structure after i operations.
Requirement: Φi ≥ Φ0 ∀i.
of the ith operation:

ai := ti + Φi − Φi−1.

It holds
n∑
i=1

ai =
n∑
i=1

(ti + Φi − Φi−1) =

(
n∑
i=1

ti

)
+ Φn − Φ0 ≥

n∑
i=1

ti.
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Example stack

Potential function Φi = number element on the stack.

push(x, S): real costs ti = 1. Φi − Φi−1 = 1. Amortized costs
ai = 2.
pop(S): real costs ti = 1. Φi − Φi−1 = −1. Amortized costs
ai = 0.
multipop(k, S): real costs ti = k. Φi − Φi−1 = −k. amortized
costs ai = 0.

All operations have constant amortized cost! Therefore, on average
Multipop requires a constant amount of time. 16

16Note that we are not talking about the probabilistic mean but the (worst-case) average of the costs.
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Example Binary Counter

Binary counter with k bits. In the worst case for each count
operation maximally k bitflips. Thus O(n · k) bitflips for counting from
1 to n. Better estimation?

Real costs ti = number bit flips from 0 to 1 plus number of bit-flips
from 1 to 0.

...0 1111111︸ ︷︷ ︸
l Einsen

+1 = ...1 0000000︸ ︷︷ ︸
l Zeroes

.

⇒ ti = l + 1
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Binary Counter: Aggregate Analysis

Count the number of bit flips when counting from 0 to n− 1.

Observation

Bit 0 flips for each k − 1→ k

Bit 1 flips for each 2k − 1→ 2k

Bit 2 flips for each 4k − 1→ 4k

Total number bit flips
∑n−1

i=0
n
2i ≤ n ·

∑∞
i=0

1
2i = 2n

Amortized cost for each increase: O(1) bit flips.
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Binary Counter: Account Method

Observation: for each increment exactly one bit is incremented to 1,
while many bits may be reset to 0. Only a bit that had previously
been set to 1 can be reset to 0.

ai = 2: 1 CHF real cost for setting 0→ 1 plus 1 CHF to deposit on
the account. Every reset 1→ 0 can be paid from the account.
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Binary Counter: Potential Method

...0 1111111︸ ︷︷ ︸
l ones

+1 = ...1 0000000︸ ︷︷ ︸
l zeros

potential function Φi: number of 1-bits of xi.

⇒ Φ0 = 0 ≤ Φi ∀i
⇒ Φi − Φi−1 = 1− l,

⇒ ai = ti + Φi − Φi−1 = l + 1 + (1− l) = 2.

Amortized constant cost for each count operation.
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13. Dictionaries

Dictionary, Self-ordering List, Implementation of Dictionaries with
Array / List /Skip lists. [Ottman/Widmayer, Kap. 3.3,1.7, Cormen et
al, Kap. Problem 17-5]
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Dictionary

ADT to manage keys from a set K with operations

insert(k,D): Insert k ∈ K to the dictionary D. Already exists⇒
error messsage.
delete(k,D): Delete k from the dictionary D. Not existing⇒
error message.
search(k,D): Returns true if k ∈ D, otherwise false
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Idea

Implement dictionary as sorted array

Worst case number of fundamental operations

Search

O(log n)

Insert

O(n)

Delete

O(n)
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Other idea

Implement dictionary as a linked list

Worst case number of fundamental operations

Search

O(n)

Insert

O(1)17

Delete

O(n)

17Provided that we do not have to check existence.
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13.1 Skip Lists
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Sorted Linked List

2 5 8 18 22 23 31

Search for element / insertion position: worst-case n Steps.
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Sorted Linked List with two Levels

l2

l1

l0

Number elements: n0 := n

Stepsize on level 1: n1
Stepsize on level 2: n2 = 1

⇒ Search for element / insertion position: worst-case n0
n1

+ n1
n2

.

⇒ Best Choice for18 n1: n1 = n0
n1

=
√
n0.

Search for element / insertion position: worst-case 2
√
n steps.

18Differentiate and set to zero, cf. appendix
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Sorted Linked List with two Levels

l3

l2

l1

l0

Number elements: n0 := n

Stepsizes on levels 0 < i < 3: ni
Stepsize on level 3: n3 = 1

⇒ Best Choice for (n1, n2): n2 = n0
n1

= n1
n2

= 3
√
n0.

Search for element / insertion position: worst-case 3 · 3
√
n steps.
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Sorted Linked List with k Levels (Skiplist)

Number elements: n0 := n

Stepsizes on levels 0 < i < k: ni
Stepsize on level k: nk = 1

⇒ Best Choice for (n1, . . . , nk): nk−1 = n0
n1

= n1
n2

= · · · = k
√
n0.

Search for element / insertion position: worst-case k · k
√
n

steps19(Derivation: Appendix).

Assumption n = 2k

⇒ worst case log2 n · 2 steps and ni
ni+1

= 2∀ 0 ≤ i < log2 n.

19(Herleitung: Anhang)
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Search in a Skiplist

skip list

x1 x2 x3 x4 x5 x6 x7 x8 ∞

0
1
2
3

x1 ≤ x2 ≤ x3 ≤ · · · ≤ x9.

Example: search for a key x with x5 < x < x6.
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Analysis perfect skip list (worst cases)

Search in O(log n). Insert in O(n).
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Randomized Skip List

Idea: insert a key with random height H with P(H = i) = 1
2i+1 .

x1 x2 x3 x4 x5 x6 x7 x8 ∞
0
1
2
3
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0
1
2
3
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Analysis Randomized Skip List

Theorem
The expected number of fundamental operations for Search, Insert
and Delete of an element in a randomized skip list is O(log n).

The lengthy proof that will not be presented in this courseobserves the length of a
path from a searched node back to the starting point in the highest level.
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13.2 [Self Ordering]

not covered in class
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Self Ordered Lists

Problematic with the adoption of a linked list: linear search time

Idea: Try to order the list elements such that accesses over time are
possible in a faster way

For example

Transpose: For each access to a key, the key is moved one
position closer to the front.
Move-to-Front (MTF): For each access to a key, the key is moved
to the front of the list.
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Transpose

Transpose:

k1 k2 k3 k4 k5 · · · kn−1 kn

kn kn−1kn−1 kn

Worst case: Alternating sequence of n accesses to kn−1 and kn.

Runtime: Θ(n2)
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Transpose

Transpose:

k1 k2 k3 k4 k5 · · · kn−1 kn

kn kn−1

kn−1 kn

Worst case: Alternating sequence of n accesses to kn−1 and kn.
Runtime: Θ(n2)
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Move-to-Front
Move-to-Front:

k1 k2 k3 k4 k5 · · · kn−1 kn

kn−1 k1 k2 k3 k4 kn−2 knkn kn−1 k1 k2 k3 kn−3 kn−2

Alternating sequence of n accesses to kn−1 and kn.

Runtime: Θ(n)

Also here we can provide a sequence of accesses with quadratic
runtime, e.g. access to the last element. But there is no obvious
strategy to counteract much better than MTF..
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Analysis

Compare MTF with the best-possible competitor (algorithm) A. How
much better can A be?

Assumptions:

MTF and A may only move the accessed element.
MTF and A start with the same list.

Let Mk and Ak designate the lists after the kth step. M0 = A0.
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Analysis
Costs:

Access to x: position p of x in the list.
No further costs, if x is moved before p
Further costs q for each element that x is moved back starting
from p.

x

p q
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Amortized Analysis

Let an arbitrary sequence of search requests be given and let G(M)
k

and G(A)
k the costs in step k for Move-to-Front and A, respectively.

Want estimation of
∑

kG
(M)
k compared with

∑
kG

(A)
k .

⇒ Amortized analysis with potential function Φ.
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Potential Function
Potential function Φ = Number of inversions of A vs. MTF.

Inversion = Pair x, y such that for the positions of a and y(
p(A)(x) < p(A)(y)

)
6=
(
p(M)(x) < p(M)(y)

)
Ak 1 2 3 4 5 6 7 8 9 10

Mk 4 1 2 10 6 5 3 7 8 9

#inversion = #crossings
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Estimating the Potential Function: MTF
Element i at position
pi := p(M)(i).

access costs C(M)
k = pi.

xi: Number elements that are
in M before pi and in A after i .

MTF removes xi inversions.

pi − xi − 1: Number elements
that in M are before pi and in
A are before i.

MTF generates pi − 1− xi
inversions.

Ak 1 2 3 4 5 6 7 8 9 10

Mk 4 1 2 10 6 5 3 7 8 9

xipi − 1− xi

1 24 7 8 9610 3

Ak 1 2 3 4 5 6 7 8 9 10

Mk+1 5 4 1 2 10 6 3 7 8 9

xipi − 1− xi

1 24 3610 7 8 9
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Estimating the Potential Function: A

Wlog element i at position
p(A)(i).

X
(A)
k : number movements to

the back (otherwise 0).

access costs for i:
C

(A)
k = p(A)(i) ≥ p(M)(i)− xi.

A increases the number of
inversions maximally by X(A)

k .

Ak 1 2 3 4 5 6 7 8 9 10

Mk+1 5 4 1 2 10 6 3 7 8 9

1 2 3 4 6 7 8 9 10

Ak+1 1 2 3 4 6 7 5 8 9 10

Mk+1 5 4 1 2 106 3 7 8 9

1 2 3 4 6 7 8 9 10
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Estimation

Φk+1 − Φk ≤ −xi + (pi − 1− xi) +X
(A)
k

Amortized costs of MTF in step k:

a
(M)
k = C

(M)
k + Φk+1 − Φk

≤ pi − xi + (pi − 1− xi) +X
(A)
k

= (pi − xi) + (pi − xi)− 1 +X
(A)
k

≤ C
(A)
k + C

(A)
k − 1 +X

(A)
k ≤ 2 · C(A)

k +X
(A)
k .
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Estimation

Summing up costs∑
k

G
(M)
k =

∑
k

C
(M)
k ≤

∑
k

a
(M)
k ≤

∑
k

2 · C(A)
k +X

(A)
k

≤ 2 ·
∑
k

C
(A)
k +X

(A)
k

= 2 ·
∑
k

G
(A)
k

In the worst case MTF requires at most twice as many operations as
the optimal strategy.
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13.3 Appendix

Mathematik zur Skipliste
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[k-Level Skiplist Math]

Let the number of data points n0 and number levels k > 0 be given
and let nl be the numbers of elements skipped per level l, nk = 1.
Maximum number of total steps in the skip list:

f(~n) =
n0
n1

+
n1
n2

+ . . .
nk−1
nk

Minimize f for (n1, . . . , nk−1):
∂f(~n)
∂nt

= 0 for all 0 < t < k,
∂f(~n)
∂nt

= −nt−1
nt2

+ 1
nt+1

= 0 ⇒ nt+1 = n2t
nt−1

and nt+1

nt
= nt

nt−1
.
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[k-Level Skiplist Math]

Previous slide⇒ nt
n0

= nt
nt−1

nt−1
nt−2

. . . n1n0 =
(
n1
n0

)t
Particularly 1 = nk = nk1

nk−10

⇒ n1 = k

√
nk−10

Thus nk−1 = n0
n1

= k

√
nk0
nk−10

= k
√
n0.

Maximum number of total steps in the skip list: f(~n) = k · ( k
√
n0)

Assume n0 = 2k, then nl
nl+1

= 2 for all 0 ≤ l < k (skiplist halves data
in each step) and f(n) = k · 2 = 2 log2 n ∈ Θ(log n).
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14. Hashing

Hash Tables, Pre-Hashing, Hashing, Resolving Collisions using
Chaining, Simple Uniform Hashing, Popular Hash Functions,
Table-Doubling, Open Addressing: Probing, Uniform Hashing,
Universal Hashing, Perfect Hashing [Ottman/Widmayer, Kap.
4.1-4.3.2, 4.3.4, Cormen et al, Kap. 11-11.4]
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Motivating Example

Gloal: Efficient management of a table of all n ETH-students of

Possible Requirement: fast access (insertion, removal, find) of a
dataset by name
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Dictionary

Abstract Data Type (ADT) D to manage items20 i with keys k ∈ K
with operations

D.insert(i): Insert or replace i in the dictionary D.
D.delete(i): Delete i from the dictionary D. Not existing⇒ error
message.
D.search(k): Returns item with key k if it exists.

20Key-value pairs (k, v), in the following we consider mainly the keys
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Dictionary in C++

Associative Container std::unordered_map<>

// Create an unordered_map of strings that map to strings
std::unordered_map<std::string, std::string> u = {

{"RED","#FF0000"}, {"GREEN","#00FF00"}
};

u["BLUE"] = "#0000FF"; // Add

std::cout << "The HEX of color RED is: " << u["RED"] << "\n";

for( const auto& n : u ) // iterate over key−value pairs
std::cout << n.first << ":" << n.second << "\n";
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Motivation / Use
Perhaps the most popular data structure.

Supported in many programming languages (C++, Java, Python,
Ruby, Javascript, C# ...)
Obvious use

Databases, Spreadsheets
Symbol tables in compilers and interpreters

Less obvious

Substrin Search (Google, grep)
String commonalities (Document distance, DNA)
File Synchronisation
Cryptography: File-transfer and identification
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1. Idea: Direct Access Table (Array)

Index Item
0 -
1 -
2 -
3 [3,value(3)]
4 -
5 -
...

...
k [k,value(k)]
...

...

Problems

1 Keys must be non-negative
integers

2 Large key-range⇒ large array
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Solution to the first problem: Pre-hashing

Prehashing: Map keys to positive integers using a function
ph : K → N

Theoretically always possible because each key is stored as a
bit-sequence in the computer
Theoretically also: x = y ⇔ ph(x) = ph(y)

Practically: APIs offer functions for pre-hashing. (Java:
object.hashCode(), C++: std::hash<>, Python:
hash(object))
APIs map the key from the key set to an integer with a restricted
size.21

21Therefore the implication ph(x) = ph(y)⇒ x = y does not hold any more for all x,y.
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Prehashing Example : String

Mapping Name s = s1s2 . . . sls to key

ph(s) =

(
ls∑
i=1

sls−i+1 · bi
)

mod 2w

b so that different names map to different keys as far as possible.

b Word-size of the system (e.g. 32 or 64)

Example (Java) with b = 31, w = 32. Ascii-Values si.
Anna 7→ 2045632
Jacqueline 7→ 2042089953442505 mod 232 = 507919049
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Lösung zum zweiten Problem: Hashing
Reduce the universe. Map (hash-function) h : K → {0, ...,m− 1}
(m ≈ n = number entries of the table)

Collision: h(ki) = h(kj).
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Nomenclature

Hash funtion h: Mapping from the set of keys K to the index set
{0, 1, . . . ,m− 1} of an array (hash table).

h : K → {0, 1, . . . ,m− 1}.

Normally |K| � m. There are k1, k2 ∈ K with h(k1) = h(k2)
(collision).

A hash function should map the set of keys as uniformly as possible
to the hash table.
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Resolving Collisions: Chaining
Example m = 7, K = {0, . . . , 500}, h(k) = k mod m.
Keys 12

, 55 , 5 , 15 , 2 , 19 , 43

Direct Chaining of the Colliding entries

15

43

2 12

5

19

55

hash table

Colliding entries

0 1 2 3 4 5 6
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Algorithm for Hashing with Chaining

insert(i) Check if key k of item i is in list at position h(k). If no,
then append i to the end of the list. Otherwise replace element by
i.
find(k) Check if key k is in list at position h(k). If yes, return the
data associated to key k, otherwise return empty element null.
delete(k) Search the list at position h(k) for k. If successful,
remove the list element.
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Worst-case Analysis

Worst-case: all keys are mapped to the same index.

⇒ Θ(n) per operation in the worst case.
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Simple Uniform Hashing

Strong Assumptions: Each key will be mapped to one of the m
available slots

with equal probability (Uniformity)
and independent of where other keys are hashed
(Independence).
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Simple Uniform Hashing
Under the assumption of simple uniform hashing:
Expected length of a chain when n elements are inserted into a
hash table with m elements

E(Länge Kette j) = E

(
n−1∑
i=0

1(ki = j)

)
=

n−1∑
i=0

P(ki = j)

=
n∑
i=1

1

m
=
n

m

α = n/m is called load factor of the hash table.
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Simple Uniform Hashing

Theorem
Let a hash table with chaining be filled with load-factor α = n

m < 1.
Under the assumption of simple uniform hashing, the next operation
has expected costs of ≤ 1 + α.

Consequence: if the number slots m of the hash table is always at
least proportional to the number of elements n of the hash table,
n ∈ O(m)⇒ Expected Running time of Insertion, Search and
Deletion is O(1).
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Further Analysis (directly chained list)
1 Unsuccesful search.

The average list lenght is α = n
m . The list

has to be traversed completely.
⇒ Average number of entries considered

C ′n = α.

2 Successful search Consider the insertion history: key j sees an
average list length of (j − 1)/m.

⇒ Average number of considered entries

Cn =
1

n

n∑
j=1

(1 + (j − 1)/m))

= 1 +
1

n

n(n− 1)

2m
≈ 1 +

α

2

.
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Cn =
1

n

n∑
j=1

(1 + (j − 1)/m))

= 1 +
1

n

n(n− 1)

2m
≈ 1 +

α

2

.
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Advantages and Disadvantages of Chaining

Advantages

Possible to overcommit: α > 1 allowed
Easy to remove keys.

Disadvantages

Memory consumption of the chains-
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Examples of popular Hash Functions

h(k) = k mod m

Ideal: m prime, not too close to powers of 2 or 10

But often: m = 2k − 1 (k ∈ N)
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Examples of popular Hash Functions
Multiplication method

h(k) =
⌊
(a · k mod 2w)/2w−r

⌋
mod m

m = 2r, w = size of the machine word in bits.

Multiplication adds k along all bits of a, integer division with 2w−r and modm
extract the upper r bits.

Written as code a ∗ k >> (w−r)

A good value of a:
⌊√

5−1
2
· 2w
⌋
: Integer that represents the first w bits of the

fractional part of the irrational number.
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Illustration

k
×

k
a11 1

k

k

k

+

+

= ← r bits→

← r bits→0>> (w − r)

w bits← →
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Table size increase

We do not know beforehand how large n will be
Require m = Θ(n) at all times.

Table size needs to be adapted. Hash-Function changes⇒
rehashing

Allocate array A′ with size m′ > m

Insert each entry of A into A′ (with re-hashing the keys)
Set A← A′.
Costs O(n+m+m′).

How to choose m′?
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Table size increase

1.Idea n = m⇒ m′ ← m+ 1
Increase for each insertion: Costs Θ(1 + 2 + 3 + · · ·+ n) = Θ(n2)

2.Idea n = m⇒ m′ ← 2m Increase only ifm = 2i:
Θ(1 + 2 + 4 + 8 + · · ·+ n) = Θ(n)
Few insertions cost linear time but on average we have Θ(1)

Jede Operation vom Hashing mit Verketten hat erwartet amortisierte
Kosten Θ(1).

(⇒ Amortized Analysis)
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Open Addressing22

Store the colliding entries directly in the hash table using a probing
function s : K × {0, 1, . . . ,m− 1} → {0, 1, . . . ,m− 1}
Key table position along a probing sequence

S(k) := (s(k, 0), s(k, 1), . . . , s(k,m− 1)) mod m

Probing sequence must for each k ∈ K be a permutation of
{0, 1, . . . ,m− 1}

22Notational clarification: this method uses open addressing(meaning that the positions in the hashtable are not fixed) but
it is a closed hashing procedure (because the entries stay in the hashtable)
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Algorithms for open addressing

insert(i) Search for kes k of i in the table according to S(k). If k
is not present, insert k at the first free position in the probing
sequence. Otherwise error message.
find(k) Traverse table entries according to S(k). If k is found,
return data associated to k. Otherwise return an empty element
null.
delete(k) Search k in the table according to S(k). If k is found,
replace it with a special key removed.
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Linear Probing

s(k, j) = h(k) + j ⇒ S(k) = (h(k), h(k) + 1, . . . , h(k) +m− 1)
mod m

Example m = 7, K = {0, . . . , 500}, h(k) = k mod m.
Key

12 , 55 , 5 , 15 , 2 , 19

0 1 2 3 4 5 6

12 555 15 2 19
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Linear Probing
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Discussion

Example α = 0.95

The unsuccessful search consideres 200 table entries on average!
(here without derivation).

? Disadvantage of the method?

! Primary clustering: similar hash addresses have similar probing
sequences⇒ long contiguous areas of used entries.
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Quadratic Probing

s(k, j) = h(k) + dj/2e2 (−1)j+1

S(k) = (h(k), h(k) + 1, h(k)− 1, h(k) + 4, h(k)− 4, . . . ) mod m

Example m = 7, K = {0, . . . , 500}, h(k) = k mod m.
Keys

12 , 55 , 5 , 15 , 2 , 19

0 1 2 3 4 5 6

12 55515 219

404



Quadratic Probing

s(k, j) = h(k) + dj/2e2 (−1)j+1

S(k) = (h(k), h(k) + 1, h(k)− 1, h(k) + 4, h(k)− 4, . . . ) mod m

Example m = 7, K = {0, . . . , 500}, h(k) = k mod m.
Keys 12

, 55 , 5 , 15 , 2 , 19

0 1 2 3 4 5 6

12 55515 219

404



Quadratic Probing

s(k, j) = h(k) + dj/2e2 (−1)j+1

S(k) = (h(k), h(k) + 1, h(k)− 1, h(k) + 4, h(k)− 4, . . . ) mod m

Example m = 7, K = {0, . . . , 500}, h(k) = k mod m.
Keys 12 , 55

, 5 , 15 , 2 , 19

0 1 2 3 4 5 6

12

55515 219

404



Quadratic Probing

s(k, j) = h(k) + dj/2e2 (−1)j+1

S(k) = (h(k), h(k) + 1, h(k)− 1, h(k) + 4, h(k)− 4, . . . ) mod m

Example m = 7, K = {0, . . . , 500}, h(k) = k mod m.
Keys 12 , 55 , 5

, 15 , 2 , 19

0 1 2 3 4 5 6

12 55

515 219

404



Quadratic Probing
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Quadratic Probing
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Discussion

Example α = 0.95

Unsuccessfuly search considers 22 entries on average (here without
derivation)

? Problems of this method?
! Secondary clustering: Synonyms k and k′ (with h(k) = h(k′))

travers the same probing sequence.
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Double Hashing

Two hash functions h(k) and h′(k). s(k, j) = h(k) + j · h′(k).
S(k) = (h(k), h(k) + h′(k), h(k) + 2h′(k), . . . , h(k) + (m− 1)h′(k)) mod m

Example:
m = 7, K = {0, . . . , 500}, h(k) = k mod 7, h′(k) = 1 + k mod 5.
Keys

12 , 55 , 5 , 15 , 2 , 19

0 1 2 3 4 5 6

12 555 15 2 19
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Double Hashing

Probing sequence must permute all hash addresses. Thus
h′(k) 6= 0 and h′(k) may not divide m, for example guaranteed
with m prime.
h′ should be as independent of h as possible (to avoid secondary
clustering)

Independence:

P ((h(k) = h(k′)) ∧ (h′(k) = h′(k′))) = P (h(k) = h(k′)) ·P (h′(k) = h′(k′)) .

Independence largely fulfilled by h(k) = k mod m and
h′(k) = 1 + k mod (m− 2) (m prime).
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Uniform Hashing

Strong assumption: the probing sequence S(k) of a key l is equaly
likely to be any of the m! permutations of {0, 1, . . . ,m− 1}
(Double hashing is reasonably close)
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Analysis of Uniform Hashing with Open Addressing

Theorem
Let an open-addressing hash table be filled with load-factor
α = n

m < 1. Under the assumption of uniform hashing, the next
operation has expected costs of ≤ 1

1−α .

411



Analysis of Uniform Hashing with Open Addressing
Proof of the Theorem: Random Variable X: Number of probings when searching
without success.

P(X ≥ i)
∗
=

n

m
· n− 1

m− 1
· n− 2

m− 2
· · · n− i+ 2

m− i+ 2
∗∗
≤
( n
m

)i−1

= αi−1. (1 ≤ i ≤ m)

*: Aj :Slot used during step j.
P(A1 ∩ · · · ∩ Ai−1) = P(A1) ·P(A2|A1) · ... ·P(Ai−1|A1 ∩ · · · ∩ Ai−2),
**: n−1

m−1
< n

m
because23 n < m.

Moreover P(x ≥ i) = 0 for i ≥ m. Therefore

E(X)
Appendix

=
∞∑
i=1

P(X ≥ i) ≤
∞∑
i=1

αi−1 =
∞∑
i=0

αi =
1

1− α
.

23 n−1
m−1

< n
m
⇔ n−1

n
< m−1

m
⇔ 1− 1

n
< 1− 1

m
⇔ n < m (n > 0,m > 0)
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Overview

α = 0.50 α = 0.90 α = 0.95

Cn C ′n Cn C ′n Cn C ′n

(Direct) Chaining 1.25 0.50 1.45 0.90 1.48 0.95

Linear Probing 1.50 2.50 5.50 50.50 10.50 200.50

Quadratic Probing 1.44 2.19 2.85 11.40 3.52 22.05

Uniform Hashing 1.39 2.00 2.56 10.00 3.15 20.00

: Cn: Anzahl Schritte erfolgreiche Suche, C′n: Anzahl Schritte erfolglose Suche, Belegungsgrad α.
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Universal Hashing

|K| > m⇒ Set of “similar keys” can be chosen such that a large
number of collisions occur.
Impossible to select a “best” hash function for all cases.
Possible, however24: randomize!

Universal hash class H ⊆ {h : K → {0, 1, . . . ,m− 1}} is a family of
hash functions such that

∀ k1 6= k2 ∈ K it holds that |{h ∈ H with h(k1) = h(k2)}| ≤
|H|
m
.

24Similar as for quicksort
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Universal Hashing

Theorem
A function h randomly chosen from a universal class H of hash
functions randomly distributes an arbitrary sequence of keys from K
as uniformly as possible on the available slots.
When using hashing with chaining, the expected chain length for an
element that is not contained in the table is ≤ α = n/m. The
expected chain length for an element contained is ≤ 1 + α.
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Universal Hashing

Initial remark for the proof of the theorem:

Define with x, y ∈ K, h ∈ H, Y ⊆ K:

δ(h, x, y) =

{
1, if h(x) = h(y)

0, otherwise,
is h(x) = h(y) (0 or 1)?

δ(h, x, Y ) =
∑
y∈Y

δ(x, y, h), for how many y ∈ Y is h(x) = h(y)?

δ(H, x, y) =
∑
h∈H

δ(x, y, h) for how many h ∈ H is h(x) = h(y)?.

H is universal if for all x, y ∈ K, x 6= y : δ(H, x, y) ≤ |H|/m.
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Universal Hashing
Proof of the theorem

S ⊆ K: keys stored up to now. x is added now: (x 6∈ S)

Expected number of collisions of x with S

EH(δ(h, x, S)) =
∑
h∈H

δ(h, x, S)/|H|

=
1

|H|
∑
h∈H

∑
y∈S

δ(h, x, y) =
1

|H|
∑
y∈S

∑
h∈H

δ(h, x, y)

=
1

|H|
∑
y∈S

δ(H, x, y)

≤ 1

|H|
∑
y∈S

|H|
m

=
|S|
m

= α.

�
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Universal Hashing
S ⊆ K: keys stored up to now, now x ∈ S.

Expected number of collisions of x with S

EH(δ(x, S, h)) =
∑
h∈H

δ(x, S, h)/|H|

=
1

|H|
∑
h∈H

∑
y∈S

δ(h, x, y) =
1

|H|
∑
y∈S

∑
h∈H

δ(h, x, y)

=
1

|H|

δ(H, x, x) +
∑

y∈S−{x}

δ(H, x, y)


≤ 1

|H|

|H|+ ∑
y∈S−{x}

|H|/m

 = 1 +
|S| − 1

m
= 1 +

n− 1

m
≤ 1 + α.

�
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Construction Universal Class of Hashfunctions

Let key set be K = {0, . . . , u− 1} and p ≥ u be prime. With
a ∈ K \ {0}, b ∈ K define

hab : K → {0, . . . ,m− 1}, hab(x) = ((ax+ b) mod p) mod m.

Then the following theorem holds:

Theorem
The class H = {hab|a, b ∈ K, a 6= 0} is a universal class of hash
functions.

(Here without proof, see e.g. Cormen et al, Kap. 11.3.3)
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Perfect Hashing

If the set of used keys is known up-front, the hash function can be
chosen perfectly, i.e. such that there are no collisions.

Example: table of key words of a compiler.
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Observation (Birthday Paradox Reversed)
h be chosen at random from universal hashclass H.
n keys S ⊂ K
Random variable X : number collisionsof the n keys fromS

⇒

E(X) = E

∑
i6=j

1(h(ki) = h(kj)

 =
∑
i6=j

E (1(h(ki) = h(kj))

∗
=

(
n

2

)
1

m
≤ n2

2m

* # Unordered Pairs
∑

i 6=j 1 =
∑n−1

i=0

∑n−1
j=i+1 1 =

∑n−1
i=0 (n− 1− i) = n(n− 1)− n(n− 1)/2 = n(n− 1)/2
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Perfect Hashing with memory space Θ(n2)

if m = n2⇒ E(X) ≤ 1
2 .

Markov-Inequality25
P(X ≥ 1) ≤ E(X)

1 ≤ 1
2

Thus
E(X < 1) = E(no Collision) ≥ 1

2
.

Consequence: for n keys, in expected 2 · n steps, a collision free
hash-table of size m = n2 can be constructed by choosing from a
universal hash class at random.

25Appendix
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Perfect Hashing Idea
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Perfect Hashing with Θ(n) memory consumption.

Two-level hashing

1 Choose m = n and h : {0, 1, . . . , u− 1} → {0, 1, . . . ,m− 1}
from a universal hash-class. Insert all n keys into the hash table
using chaining. Let li be the length of a chain at index i.
If
∑m−1

i=0 l2i > 4n, then repeat this step 1.
2 For each index i = 1, . . . ,m− 1 with li > 0 construct, for the li

contained keys, hash tables of length l2i using universal hashing
(hash function h2,i) until there are no collisions.

Memory consumption Θ(n).
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Expected Running times

For Step 1: hash table of size m = n.
We show on the next page that E

(∑m−1
j=0 l

2
j

)
≤ 2n. Consequently

(Markov): P
(∑m−1

j=0 l
2
j ≥ 4n

)
≤ 2n

4n = 1
2 .

⇒ Expected two retries of step 1.
For Step 2:

∑
l2i ≤ 4n. For each i expected two trials with running

time l2i . Overal O(n)

⇒ The perfect hash tables can be constructed in expected O(n)
steps.
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Expected Memory Space 2nd Level Hash Tables

E

(
m−1∑
j=0

l2j

)
= E

(
m−1∑
j=0

n−1∑
i=0

n−1∑
i′=0

1(h(ki) = h(ki′) = j)

)

= E

(
n−1∑
i=0

n−1∑
i′=0

1(h(ki) = h(ki′))

)

= E

(∑
i=i′

1(h(ki) = h(ki′)) + 2 ·
∑
i 6=i′

1(h(ki) = h(ki′))

)
= n+ 2 ·

∑
i 6=i′

E (1(h(ki) = h(ki′)))

= n+ 2

(
n

2

)
1

m
m=n
= 2n− 1 ≤ 2n.
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14.9 Appendix

Some mathematical formulas
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[Birthday Paradox]

Assumption: m urns, n balls (wlog n ≤ m).
n balls are put uniformly distributed into the urns

What is the collision probability?

Birthdayparadox: with how many people (n) the probability that two
of them share the same birthday (m = 365) is larger than 50%?
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[Birthday Paradox]
P(no collision) = m

m ·
m−1
m · · · · ·

m−n+1
m = m!

(m−n)!·mm .

Let a� m. With ex = 1 + x+ x2

2! + . . . approximate 1− a
m ≈ e−

a
m .

This yields:

1 ·
(

1− 1

m

)
·
(

1− 2

m

)
· ... ·

(
1− n− 1

m

)
≈ e−

1+···+n−1
m = e−

n(n−1)
2m .

Thus
P(Kollision) = 1− e−

n(n−1)
2m .

Puzzle answer: with 23 people the probability for a birthday collision is 50.7%. Derived from the slightly more accurate

Stirling formula. n! ≈
√

2πn · nn · e−n
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[Formula for Expected Value]

X ≥ 0 discrete random variable with E(X) <∞

E(X)
(def)
=

∞∑
x=0

xP(X = x)

Counting
=

∞∑
x=1

∞∑
y=x

P(X = y)

=
∞∑
x=0

P(X ≥ x)
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[Markov Inequality]
discrete Version

E(X) =
∞∑

x=−∞

xP(X = x)

≥
∞∑
x=a

xP(X = x)

≥ a
∞∑
x=a

P(X = x)

= a ·P(X ≥ a)

⇒

P(X ≥ a) ≤ E(X)

a
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15. C++ advanced (III): Functors and Lambda
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What do we learn today?

Functors: objects with overloaded function operator ().
Closures
Lambda-Expressions: syntactic sugar
Captures
Function type variables
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Functors: Motivation

A simple output filter

template <typename T, typename Function>
void filter(const T& collection, Function f){

for (const auto& x: collection)
if (f(x)) std::cout << x << " ";

std::cout << "\n";
}

( filter works if the first argument offers an iterator and if the second argument
can be applied to elements with a result that can be converted to bool. )
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Functors: Motivation

template <typename T, typename Function>
void filter(const T& collection, Function f);

template <typename T>
bool even(T x){

return x % 2 == 0;
}

std::vector<int> a {1,2,3,4,5,6,7,9,11,16,19};
filter(a,even<int>); // output: 2,4,6,16
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Functor: Object with Overloaded Operator ()
class GreaterThan{

int value; // state
public:
GreaterThan(int x):value{x}{}

bool operator() (int par) const {
return par > value;

}
};

std::vector<int> a {1,2,3,4,5,6,7,9,11,16,19};
int value=8;
filter(a,GreaterThan(value)); // 9,11,16,19

A Functor is a callable
object. Can be under-
stood as a stateful func-
tion.
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Functor: object with overloaded operator ()
template <typename T>
class GreaterThan{

T value;
public:

GreaterThan(T x):value{x}{}

bool operator() (T par) const{
return par > value;

}
};

std::vector<int> a {1,2,3,4,5,6,7,9,11,16,19};
int value=8;
filter(a,GreaterThan<int>(value)); // 9,11,16,19

(this also works with a
template, of course)

438



The same with a Lambda-Expression

std::vector<int> a {1,2,3,4,5,6,7,9,11,16,19};
int value=8;

filter(a, [value](int x) {return x > value;} );
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Sum of Elements – Old School

std::vector<int> a {1,2,3,4,5,6,7,9,11,16,19};
int sum = 0;
for (auto x: a)

sum += x;
std::cout << sum << std::endl; // 83
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Sum of Elements – with Functor

template <typename T>
struct Sum{

T value = 0;

void operator() (T par){ value += par; }
};

std::vector<int> a {1,2,3,4,5,6,7,9,11,16,19};
Sum<int> sum;
// for_each copies sum: we need to copy the result back
sum = std::for_each(a.begin(), a.end(), sum);
std::cout << sum.value << std::endl; // 83
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Sum of Elements – with References26

template <typename T>
struct SumR{

T& value;
SumR (T& v):value{v} {}

void operator() (T par){ value += par; }
};

std::vector<int> a {1,2,3,4,5,6,7,9,11,16,19};
int s=0;
SumR<int> sum{s};
// cannot (and do not need to) assign to sum here
std::for_each(a.begin(), a.end(), sum);
std::cout << s << std::endl; // 83

26Of course this works, very similarly, using pointers 442



Sum of Elements – with Λ

std::vector<int> a {1,2,3,4,5,6,7,9,11,16,19};

int s=0;

std::for_each(a.begin(), a.end(), [&s] (int x) {s += x;} );

std::cout << s << std::endl;
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Sorting by Different Order
// pre: i >= 0
// post: returns sum of digits of i
int q(int i){

int res =0;
for(;i>0;i/=10)

res += i % 10;
return res;

}

std::vector<int> v {10,12,9,7,28,22,14};
std::sort (v.begin(), v.end(),

[] (int i, int j) { return q(i) < q(j);}
);

Now v =10, 12, 22, 14, 7, 9, 28 (sorted by sum of digits)
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Lambda-Expressions in Detail

[value] (int x) ->bool {return x > value;}

capture parameters return
type

statement
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Closure

[value] (int x) ->bool {return x > value;}

Lambda expressions evaluate to a temporary object – a closure
The closure retains the execution context of the function - the
captured objects.
Lambda expressions can be implemented as functors.
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Simple Lambda Expression

[]()−>void {std::cout << "Hello World";}

call:

[]()−>void {std::cout << "Hello World";}();

assignment:

auto f = []()−>void {std::cout << "Hello World";};
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Minimal Lambda Expression

[]{}

Return type can be inferred if no or only one return statement is
present.27

[]() {std::cout << "Hello World";}

If no parameters and no explicit return type, then () can be
omitted.

[]{std::cout << "Hello World";}

[...] can never be omitted.
27Since C++14 also several returns possible, provided that the same return type is deduced
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Examples

[](int x, int y) {std::cout << x ∗ y;} (4,5);

Output:

20
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Examples

[](int x, int y) {std::cout << x ∗ y;} (4,5);

Output: 20
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Examples

int k = 8;
auto f = [](int& v) {v += v;};
f(k);
std::cout << k;

Output:

16
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Examples

int k = 8;
auto f = [](int v) {v += v;};
f(k);
std::cout << k;

Output:

8
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Examples

int k = 8;
auto f = [](int v) {v += v;};
f(k);
std::cout << k;

Output: 8
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Capture – Lambdas

For Lambda-expressions the capture list determines the context
accessible

Syntax:

[x]: Access a copy of x (read-only)
[&x]: Capture x by reference
[&x,y]: Capture x by reference and y by value
[&]: Default capture all objects by reference in the scope of the
lambda expression
[=]: Default capture all objects by value in the context of the
Lambda-Expression
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Capture – Lambdas

int elements=0;
int sum=0;
std::for_each(v.begin(), v.end(),

[&] (int k) {sum += k; elements++;} // capture all by reference
)
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Capture – Lambdas

template <typename T>
void sequence(vector<int> & v, T done){

int i=0;
while (!done()) v.push_back(i++);

}

vector<int> s;
sequence(s, [&] {return s.size() >= 5;} )

now v =

0 1 2 3 4

The capture list refers to the context of the lambda expression.
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Capture – Lambdas

When is the value captured?
int v = 42;
auto func = [=] {std::cout << v << "\n"};
v = 7;
func();

Output:

42

Values are assigned when the lambda-expression is created.
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auto func = [=] {std::cout << v << "\n"};
v = 7;
func();

Output: 42

Values are assigned when the lambda-expression is created.
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Capture – Lambdas
(Why) does this work?
class Limited{

int limit = 10;
public:
// count entries smaller than limit
int count(const std::vector<int>& a){

int c = 0;
std::for_each(a.begin(), a.end(),

[=,&c] (int x) {if (x < limit) c++;}
);
return c;

}
};

The this pointer is implicitly copied by value
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Capture – Lambdas

struct mutant{
int i = 0;
void do(){ [=] {i=42;}();}

};

mutant m;
m.do();
std::cout << m.i;

Output:

42

The this pointer is implicitly copied by value
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Capture – Lambdas

struct mutant{
int i = 0;
void do(){ [=] {i=42;}();}

};

mutant m;
m.do();
std::cout << m.i;

Output: 42

The this pointer is implicitly copied by value
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Lambda Expressions are Functors

[x, &y] () {y = x;}

can be implemented as
unnamed {x,y};

with
class unnamed {

int x; int& y;
unnamed (int x_, int& y_) : x (x_), y (y_) {}
void operator () () {y = x;}

};
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Lambda Expressions are Functors

[=] () {return x + y;}

can be implemented as
unnamed {x,y};

with
class unnamed {

int x; int y;
unnamed (int x_, int y_) : x (x_), y (y_) {}
int operator () () const {return x + y;}

};
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Polymorphic Function Wrapper std::function

#include <functional>

int k= 8;
std::function<int(int)> f;
f = [k](int i){ return i+k; };
std::cout << f(8); // 16

can be used in order to store lambda expressions.

Other Examples
std::function<int(int,int)>;
std::function<void(double)> ...

http://en.cppreference.com/w/cpp/utility/functional/function
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Example

template <typename T>
auto toFunction(std::vector<T> v){

return [v] (T x) −> double {
int index = (int)(x+0.5);
if (index < 0) index = 0;
if (index >= v.size()) index = v.size()−1;
return v[index];

};
}
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Example
auto Gaussian(double mu, double sigma){

return [mu,sigma](double x) {
const double a = ( x − mu ) / sigma;
return std::exp( −0.5 ∗ a ∗ a );

};
}

template <typename F, typename Kernel>
auto smooth(F f, Kernel kernel){

return [kernel,f] (auto x) {
// compute convolution ...
// and return result

};
}
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Example

std::vector<double> v {1,2,5,3};
auto f = toFunction(v);
auto k = Gaussian(0,0.1);
auto g = smooth(f,k);

f

g
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Conclusion

Functors allow to write functional programs in C++. Lambdas are
syntactic sugar to simplify this.
With functors/lambdas classic patters from functional
programming (e.g. map / filter /reduce) can be applied in C++.
In combination with templates and the type inference (auto) very
powerful functions can be stored in variables. Functions can even
return functions (so called higher order functions).
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16. Binary Search Trees

[Ottman/Widmayer, Kap. 5.1, Cormen et al, Kap. 12.1 - 12.3]
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Dictionary implementation

Hashing: implementation of dictionaries with expected very fast
access times.

Disadvantages of hashing:

linear access time in worst case. Some
operations not supported at all:

enumerate keys in increasing order
next smallest key to given key
Key k in given interval k ∈ [l, r]
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Trees

Trees are

Generalized lists: nodes can have more than one successor
Special graphs: graphs consist of nodes and edges. A tree is a
fully connected, directed, acyclic graph.
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Trees

Use
Decision trees: hierarchic representation of
decision rules
syntax trees: parsing and traversing of
expressions, e.g. in a compiler
Code tress: representation of a code, e.g.
morse alphabet, huffman code
Search trees: allow efficient searching for an
element by value
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Examples

start

E

I

S

H V

U

F U

A

R

L A

W

P I

T

N

D

B X

K

C Y

M

G

Z Q

O

Ö CH

longshort

Morsealphabet
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Examples

3/5 + 7.0

+

/

3 5

7.0

Expression tree
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Nomenclature

Wurzel

W

I E

K

parent

child

inner node

leaves

Order of the tree: maximum number of child nodes, here: 3
Height of the tree: maximum path length root – leaf (here: 4)
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Binary Trees

A binary tree is

either a leaf, i.e. an empty tree,
or an inner leaf with two trees Tl (left subtree) and Tr (right
subtree) as left and right successor.

In each inner node v we store

a key v.key and
two nodes v.left and v.right to the roots of the left and right
subtree.

a leaf is represented by the null-pointer

key

left right
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Binary search tree
A binary search tree is a binary tree that fulfils the search tree
property:

Every node v stores a key
Keys in left subtree v.left are smaller than v.key
Keys in right subtree v.right are greater than v.key

16

7

5

2

10

9 15

18

17 30

99
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Searching

Input: Binary search tree with root r, key k
Output: Node v with v.key = k or null
v ← r
while v 6= null do

if k = v.key then
return v

else if k < v.key then
v ← v.left

else
v ← v.right

return null

8

4 13

10

9

19

Search (12)

→ null
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Height of a tree

The height h(T ) of a binary tree T with root r is given by

h(r) =

{
0 if r = null
1 + max{h(r.left), h(r.right)} otherwise.

The worst case run time of the search is thus O(h(T ))
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Insertion of a key

Insertion of the key k
Search for k
If successful search: output
error
Of no success: insert the key at
the leaf reached

8

4

5

13

10

9

19

Insert (5)
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Remove node

Three cases possible:
Node has no children
Node has one child
Node has two children

[Leaves do not count here]

8

3

5

4

13

10

9

19
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Remove node

Node has no children
Simple case: replace node by leaf.

8

3

5

4

13

10

9

19

remove(4)−→

8

3

5

13

10

9

19
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Remove node

Node has one child
Also simple: replace node by single child.

8

3

5

4

13

10

9

19

remove(3)−→

8

5

4

13

10

9

19
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Remove node

Node v has two children

The following observation helps: the
smallest key in the right subtree v.right
(the symmetric successor of v)

is smaller than all keys in v.right
is greater than all keys in v.left
and cannot have a left child.

Solution: replace v by its symmetric suc-
cessor.

8

3

5

4

13

10

9

19
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By symmetry...

Node v has two children

Also possible: replace v by its symmetric
predecessor.

8

3

5

4

13

10

9

19
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Algorithm SymmetricSuccessor(v)

Input: Node v of a binary search tree.
Output: Symmetric successor of v
w ← v.right
x← w.left
while x 6= null do

w ← x
x← x.left

return w
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Analysis

Deletion of an element v from a tree T requires O(h(T ))
fundamental steps:

Finding v has costs O(h(T ))

If v has maximal one child unequal to nullthen removal takes
O(1) steps
Finding the symmetric successor n of v takes O(h(T )) steps.
Removal and insertion of n takes O(1) steps.
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Traversal possibilities

preorder: v, then Tleft(v), then
Tright(v).

8, 3, 5, 4, 13, 10, 9, 19
postorder: Tleft(v), then Tright(v), then
v.

4, 5, 3, 9, 10, 19, 13, 8

inorder: Tleft(v), then v, then Tright(v).

3, 4, 5, 8, 9, 10, 13, 19

8

3

5

4

13

10

9

19
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Further supported operations

Min(T ): Read-out minimal value in
O(h)

ExtractMin(T ): Read-out and remove
minimal value in O(h)

List(T ): Output the sorted list of
elements
Join(T1, T2): Merge two trees with
max(T1) < min(T2) in O(n).
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Degenerated search trees

9

5

4 8

13

10 19

Insert 9,5,13,4,8,10,19
ideally balanced

4

5

8

9

10

13

19

Insert 4,5,8,9,10,13,19
linear list

19

13

10

9

8

5

4

Insert 19,13,10,9,8,5,4
linear list
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Probabilistically

A search tree constructed from a random sequence of numbers
provides an an expected path length of O(log n).

Attention: this only holds for insertions. If the tree is constructed by
random insertions and deletions, the expected path length is O(

√
n).

Balanced trees make sure (e.g. with rotations) during insertion or
deletion that the tree stays balanced and provide a O(log n)
Worst-case guarantee.
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17. AVL Trees

Balanced Trees [Ottman/Widmayer, Kap. 5.2-5.2.1, Cormen et al,
Kap. Problem 13-3]
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Objective

Searching, insertion and removal of a key in a tree generated from n
keys inserted in random order takes expected number of steps
O(log2 n).

But worst case Θ(n) (degenerated tree).

Goal: avoidance of degeneration. Artificial balancing of the tree for
each update-operation of a tree.

Balancing: guarantee that a tree with n nodes always has a height of
O(log n).

Adelson-Venskii and Landis (1962): AVL-Trees
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Balance of a node

The height balance of a node v is de-
fined as the height difference of its
sub-trees Tl(v) and Tr(v)

bal(v) := h(Tr(v))− h(Tl(v))

v

Tl(v)

Tr(v)

hl
hr

bal(v)
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AVL Condition

AVL Condition: for eacn node v of a
tree bal(v) ∈ {−1, 0, 1}

v

Tl(v)

Tr(v)

h h+ 1

h+ 2
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(Counter-)Examples

AVL tree with height
2 AVL tree with height

3 No AVL tree
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Number of Leaves

1. observation: a binary search tree with n keys provides exactly
n+ 1 leaves. Simple induction argument.

The binary search tree with n = 0 keys has m = 1 leaves
When a key is added (n→ n+ 1), then it replaces a leaf and adds two
new leafs (m→ m− 1 + 2 = m+ 1).

2. observation: a lower bound of the number of leaves in a search
tree with given height implies an upper bound of the height of a
search tree with given number of keys.
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Lower bound of the leaves

AVL tree with height 1 has
N(1) := 2 leaves.

AVL tree with height 2 has
at least N(2) := 3 leaves.
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Lower bound of the leaves for h > 2

Height of one subtree ≥ h− 1.
Height of the other subtree ≥ h− 2.

Minimal number of leaves N(h) is

N(h) = N(h− 1) +N(h− 2)

v

Tl(v)

Tr(v)

h− 2 h− 1

h

Overal we have N(h) = Fh+2 with Fibonacci-numbers F0 := 0,
F1 := 1, Fn := Fn−1 + Fn−2 for n > 1.
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Fibonacci Numbers, closed Form
It holds that28

Fi =
1√
5

(φi − φ̂i)

with the roots φ, φ̂ of the golden ratio equation x2 − x− 1 = 0:

φ =
1 +
√

5

2
≈ 1.618

φ̂ =
1−
√

5

2
≈ −0.618

28Derivation using generating functions (power series) in the appendix.
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Fibonacci Numbers, Inductive Proof
Fi

!
= 1√

5
(φi − φ̂i) [∗]

(
φ = 1+

√
5

2 , φ̂ = 1−
√
5

2

)
.

1 Immediate for i = 0, i = 1.

2 Let i > 2 and claim [∗] true for all Fj , j < i.

Fi
def
= Fi−1 + Fi−2

[∗]
=

1√
5

(φi−1 − φ̂i−1) +
1√
5

(φi−2 − φ̂i−2)

=
1√
5

(φi−1 + φi−2)− 1√
5

(φ̂i−1 + φ̂i−2) =
1√
5
φi−2(φ+ 1)− 1√

5
φ̂i−2(φ̂+ 1)

(φ, φ̂ fulfil x+ 1 = x2)

=
1√
5
φi−2(φ2)− 1√

5
φ̂i−2(φ̂2) =

1√
5

(φi − φ̂i).
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Tree Height
Because |φ̂| < 1, overal we have

N(h) ∈ Θ

(1 +
√

5

2

)h
 ⊆ Ω(1.618h)

and thus

N(h) ≥ c · 1.618h

⇒ h ≤ 1.44 log2 n+ c′.

An AVL tree is asymptotically not more than 44% higher than a
perfectly balanced tree.29

29The perfectly balanced tree has a height of dlog2 n+ 1e
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Insertion

Balance

Keep the balance stored in each node
Re-balance the tree in each update-operation

New node n is inserted:

Insert the node as for a search tree.
Check the balance condition increasing from n to the root.

499



Balance at Insertion Point

=⇒

+1 0p p

n

case 1: bal(p) = +1

=⇒

−1 0p p

n

case 2: bal(p) = −1

Finished in both cases because the subtree height did not change
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Balance at Insertion Point

=⇒

0 +1p p

n

case 3.1: bal(p) = 0 right

=⇒

0 −1p p

n

case 3.2: bal(p) = 0, left

Not finished in both case. Call of upin(p)
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upin(p) - invariant

When upin(p) is called it holds that

the subtree from p is grown and
bal(p) ∈ {−1,+1}
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upin(p)

Assumption: p is left son of pp30

=⇒

pp +1 pp 0

p p

case 1: bal(pp) = +1, done.

=⇒

pp 0 pp −1

p p

case 2: bal(pp) = 0, upin(pp)

In both cases the AVL-Condition holds for the subtree from pp

30If p is a right son: symmetric cases with exchange of +1 and −1
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upin(p)
Assumption: p is left son of pp

pp −1

p

case 3: bal(pp) = −1,

This case is problematic: adding n to the subtree from pp has
violated the AVL-condition. Re-balance!

Two cases bal(p) = −1, bal(p) = +1
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Rotations
case 1.1 bal(p) = −1. 31

y

x

t1

t2

t3

pp −2

p −1

h

h− 1

h− 1

h+ 2 h

=⇒
rotation

right

x

y

t1 t2 t3

pp 0

p 0

h h− 1 h− 1

h+ 1 h+ 1

31p right son: ⇒ bal(pp) = bal(p) = +1, left rotation
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Rotations
case 1.1 bal(p) = −1. 32

z

x

y

t1 t2 t3

t4

pp −2

p +1

h −1/+ 1

h− 1

h− 1

h− 2

h− 2

h− 1

h− 1

h+ 2 h

=⇒
double
rotation
left-right

y

x z

t1
t2 t3

t4

pp 0

0/− 1 +1/0

h− 1 h− 1

h− 2

h− 2

h− 1

h− 1

h+ 1

32p right son⇒ bal(pp) = +1, bal(p) = −1, double rotation right left
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Analysis

Tree height: O(log n).
Insertion like in binary search tree.
Balancing via recursion from node to the root. Maximal path
lenght O(log n).

Insertion in an AVL-tree provides run time costs of O(log n).
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Deletion
Case 1: Children of node n are both leaves Let p be parent node of
n. ⇒ Other subtree has height h′ = 0, 1 or 2.

h′ = 1: Adapt bal(p).
h′ = 0: Adapt bal(p). Call upout(p).
h′ = 2: Rebalanciere des Teilbaumes. Call upout(p).

p

n

h = 0, 1, 2

−→

p

h = 0, 1, 2
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Deletion

Case 2: one child k of node n is an inner node

Replace n by k. upout(k)

p

n

k −→

p

k
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Deletion

Case 3: both children of node n are inner nodes

Replace n by symmetric successor. upout(k)
Deletion of the symmetric successor is as in case 1 or 2.
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upout(p)

Let pp be the parent node of p.

(a) p left child of pp

1 bal(pp) = −1 ⇒ bal(pp)← 0. upout(pp)
2 bal(pp) = 0 ⇒ bal(pp)← +1.
3 bal(pp) = +1⇒ next slides.

(b) p right child of pp: Symmetric cases exchanging +1 and −1.
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upout(p)
Case (a).3: bal(pp) = +1. Let q be brother of p
(a).3.1: bal(q) = 0.33

ypp +1

xp 0 zq 0

1 2

3 4

h− 1 h− 1

h+ 1 h+ 1

=⇒
Left Rotate(y)

z −1

y +1

x 0

1 2

3

4

h− 1 h− 1

h+ 1

h+ 1

33(b).3.1: bal(pp) = −1, bal(q) = −1, Right rotation 512



upout(p)
Case (a).3: bal(pp) = +1. (a).3.2: bal(q) = +1.34

ypp +1

xp 0 zq +1

1 2

3

4

h− 1 h− 1

h

h+ 1

=⇒
Left Rotate(y)

z 0r

y 0

x 0

1 2 3 4

h− 1 h− 1 h h+ 1

plus upout(r).

34(b).3.2: bal(pp) = −1, bal(q) = +1, Right rotation+upout
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upout(p)
Case (a).3: bal(pp) = +1. (a).3.3: bal(q) = −1.35

ypp +1

xp 0 zq −1

w

1 2

3 4

5
h− 1 h− 1

h

=⇒
Rotate right
(z) left (y)

w 0r

y 0

x

z

0

1 2 3 4 5

h− 1 h− 1 h

plus upout(r).
35(b).3.3: bal(pp) = −1, bal(q) = −1, left-right rotation + upout
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Conclusion

AVL trees have worst-case asymptotic runtimes of O(log n) for
searching, insertion and deletion of keys.
Insertion and deletion is relatively involved and an overkill for
really small problems.
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17.5 Appendix

Derivation of some mathemmatical formulas
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[Fibonacci Numbers: closed form]

Closed form of the Fibonacci numbers: computation via generation
functions:

1 Power series approach

f(x) :=
∞∑
i=0

Fi · xi
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[Fibonacci Numbers: closed form]

2 For Fibonacci Numbers it holds that F0 = 0, F1 = 1,
Fi = Fi−1 + Fi−2 ∀ i > 1. Therefore:

f(x) = x+
∞∑
i=2

Fi · xi = x+
∞∑
i=2

Fi−1 · xi +
∞∑
i=2

Fi−2 · xi

= x+ x
∞∑
i=2

Fi−1 · xi−1 + x2
∞∑
i=2

Fi−2 · xi−2

= x+ x
∞∑
i=0

Fi · xi + x2
∞∑
i=0

Fi · xi

= x+ x · f(x) + x2 · f(x).
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[Fibonacci Numbers: closed form]

3 Thus:

f(x) · (1− x− x2) = x.

⇔ f(x) =
x

1− x− x2
= − x

x2 + x− 1

with the roots −φ and −φ̂ of x2 + x− 1,

φ =
1 +
√

5

2
≈ 1.6, φ̂ =

1−
√

5

2
≈ −0.6.

it holds that φ · φ̂ = −1 and thus

f(x) = − x

(x+ φ) · (x+ φ̂)
=

x

(1− φx) · (1− φ̂x)
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[Fibonacci Numbers: closed form]

4 It holds that:
(1− φ̂x)− (1− φx) =

√
5 · x.

Damit:

f(x) =
1√
5

(1− φ̂x)− (1− φx)

(1− φx) · (1− φ̂x)

=
1√
5

(
1

1− φx
− 1

1− φ̂x

)
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[Fibonacci Numbers: closed form]

5 Power series of ga(x) = 1
1−a·x (a ∈ R):

1

1− a · x
=

∞∑
i=0

ai · xi.

E.g. Taylor series of ga(x) at x = 0 or like this: Let
∑∞

i=0Gi · xi a power
series of g. By the identity ga(x)(1− a · x) = 1 it holds that for all x (within
the radius of convergence)

1 =
∞∑
i=0

Gi · xi − a ·
∞∑
i=0

Gi · xi+1 = G0 +
∞∑
i=1

(Gi − a ·Gi−1) · xi

For x = 0 it follows G0 = 1 and for x 6= 0 it follows then that Gi = a ·Gi−1 ⇒
Gi = ai.
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[Fibonacci Numbers: closed form]

6 Fill in the power series:

f(x) =
1√
5

(
1

1− φx
− 1

1− φ̂x

)
=

1√
5

( ∞∑
i=0

φixi −
∞∑
i=0

φ̂ixi

)

=
∞∑
i=0

1√
5

(φi − φ̂i)xi

Comparison of the coefficients with f(x) =
∑∞

i=0 Fi · xi yields

Fi =
1√
5

(φi − φ̂i).
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18. Quadtrees

Quadtrees, Collision Detection, Image Segmentation
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Quadtree

A quad tree is a tree of order 4.

... and as such it is not particularly interesting except when it is used
for ...
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Quadtree - Interpretation und Nutzen

Separation of a two-dimensional range into 4 equally sized parts.

[analogously in three dimensions with an octtree (tree of order 8)]
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Example 1: Collision Detection

Objects in the 2D-plane, e.g.
particle simulation on the screen.
Goal: collision detection
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Idea

Many objects: n2 detections
(naively)
Improvement?

Obviously: collision detection not
required for objects far away from
each other
What is „far away”?
Grid (m×m)
Collision detection per grid cell
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Grids

A grid often helps, but not always
Improvement?

More finegrained grid?
Too many grid cells!
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Adaptive Grids

A grid often helps, but not always
Improvement?

Adaptively refine grid
Quadtree!
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Algorithm: Insertion

Quadtree starts with a single node

Objects are added to the node.
When a node contains too many
objects, the node is split.
Objects that are on the boundary
of the quadtree remain in the
higher level node.
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Algorithm: Collision Detection

Run through the quadtree in a
recursive way. For each node test
collision with all objects contained
in the same or (recursively)
contained nodes.
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Example 2: Image Segmentation

⇒ +

(Possible applications: compression, denoising, edge detection)
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Quadtree on Monochrome Bitmap

Similar procedure to generate the quadtree: split nodes recursively
until each node only contains pixels of the same color.
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Quadtree with Approximation
When there are more than two color values, the quadtree can get
very large. ⇒ Compressed representation: approximate the image
piecewise constant on the rectangles of a quadtree.
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Piecewise Constant Approximation

(Grey-value) Image z ∈ RS on pixel indices S. 36

Rectangle r ⊂ S.

Goal: determine
arg min

x∈r

∑
s∈r

(zs − x)2

Solution: the arithmetic mean µr = 1
|r|
∑

s∈r zs

36we assume that S is a square with side length 2k for some k ≥ 0
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Intermediate Result

The (w.r.t. mean squared error) best approximation

µr =
1

|r|
∑
s∈r

zs

and the corresponding error∑
s∈r

(zs − µr)2 =: ‖zr − µr‖22

can be computed quickly after a O(|S|) tabulation: prefix sums!
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Which Quadtree?

Conflict

As close as possible to the data⇒ small rectangles, large
quadtree . Extreme case: one node per pixel. Approximation =
original
Small amount of nodes⇒ large rectangles, small quadtree
Extreme case: a single rectangle. Approximation = a single
grey value.
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Which Quadtree?

Idea: choose between data fidelity and complexity with a
regularisation parameter γ ≥ 0

Choose quadtree T with leaves37 L(T ) such that it minimizes the
following function

Hγ(T, z) := γ · |L(T )|︸ ︷︷ ︸
Number of Leaves

+
∑
r∈L(T )

‖zr − µr‖22︸ ︷︷ ︸
Cummulative approximation error of all leaves

.

37here: leaf: node with null-children
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Regularisation

Let T be a quadtree over a rectangle ST and let Tll, Tlr, Tul, Tur be
the four possible sub-trees and

Ĥγ(T, z) := min
T
γ · |L(T )|+

∑
r∈L(T )

‖zr − µr‖22

Extreme cases:
γ = 0⇒ original data;
γ →∞⇒ a single rectangle
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Observation: Recursion
If the (sub-)quadtree T represents only one pixel, then it cannot
be split and it holds that

Ĥγ(T, z) = γ

Let, otherwise,

M1 := γ + ‖zST
− µST

‖22
M2 := Ĥγ(Tll, z) + Ĥγ(Tlr, z) + Ĥγ(Tul, z) + Ĥγ(Tur, z)

then
Ĥγ(T, z) = min{M1(T, γ, z)︸ ︷︷ ︸

no split

,M2(T, γ, z)︸ ︷︷ ︸
split

}
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Algorithmus: Minimize(z,r,γ)
Input: Image data z ∈ RS, rectangle r ⊂ S, regularization γ > 0
Output: minT γ|L(T )|+ ‖z − µL(T )‖2

2

if |r| = 0 then return 0

m← γ +
∑

s∈r (zs − µr)2

if |r| > 1 then
Split r into rll,rlr,rul,rur
m1 ← Minimize(z, rll, γ); m2 ← Minimize(z, rlr, γ)
m3 ← Minimize(z, rul, γ); m4 ← Minimize(z, rur, γ)
m′ ← m1 +m2 +m3 +m4

else
m′ ←∞

if m′ < m then m← m′

return m
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Analysis

The minimization algorithm over dyadic partitions (quadtrees) takes
O(|S| log |S|) steps.
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Application: Denoising (with addditional Wedgelets)

noised γ = 0.003 γ = 0.01 γ = 0.03 γ = 0.1

γ = 0.3 γ = 1 γ = 3 γ = 10
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Extensions: Affine Regression + Wedgelets
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Other ideas

no quadtree: hierarchical one-dimensional modell (requires dynamic
programming)
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19. Dynamic Programming I

Memoization, Optimal Substructure, Overlapping Sub-Problems,
Dependencies, General Procedure. Examples: Fibonacci, Rod
Cutting, Longest Ascending Subsequence, Longest Common
Subsequence, Edit Distance, Matrix Chain Multiplication (Strassen)

[Ottman/Widmayer, Kap. 1.2.3, 7.1, 7.4, Cormen et al, Kap. 15]
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Fibonacci Numbers

(again)

Fn :=

{
n if n < 2

Fn−1 + Fn−2 if n ≥ 2.

Analysis: why ist the recursive algorithm so slow?
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Algorithm FibonacciRecursive(n)

Input: n ≥ 0
Output: n-th Fibonacci number

if n < 2 then
f ← n

else
f ← FibonacciRecursive(n− 1) + FibonacciRecursive(n− 2)

return f
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Analysis

T (n): Number executed operations.

n = 0, 1: T (n) = Θ(1)

n ≥ 2: T (n) = T (n− 2) + T (n− 1) + c.

T (n) = T (n− 2) + T (n− 1) + c ≥ 2T (n− 2) + c ≥ 2n/2c′ = (
√

2)nc′

Algorithm is exponential in n.
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Reason (visual)

F47

F46

F45

F44 F43

F44

F43 F42

F45

F44

F43 F42

F43

F42 F41

Nodes with same values are evaluated (too) often.
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Memoization

Memoization (sic) saving intermediate results.

Before a subproblem is solved, the existence of the corresponding
intermediate result is checked.
If an intermediate result exists then it is used.
Otherwise the algorithm is executed and the result is saved
accordingly.
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Memoization with Fibonacci

F47

F46

F45

F44 F43

F44

F45

Rechteckige Knoten wurden bereits ausgewertet.
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Algorithm FibonacciMemoization(n)

Input: n ≥ 0
Output: n-th Fibonacci number

if n ≤ 2 then
f ← 1

else if ∃memo[n] then
f ← memo[n]

else
f ← FibonacciMemoization(n− 1) + FibonacciMemoization(n− 2)
memo[n]← f

return f
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Analysis

Computational complexity:

T (n) = T (n− 1) + c = ... = O(n).

because after the call to f(n− 1), f(n− 2) has already been
computed.

A different argument: f(n) is computed exactly once recursively for
each n. Runtime costs: n calls with Θ(1) costs per call n · c ∈ Θ(n).
The recursion vanishes from the running time computation.

Algorithm requires Θ(n) memory.38

38But the naive recursive algorithm also requires Θ(n) memory implicitly.
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Looking closer ...

... the algorithm computes the values of F1, F2, F3,. . . in the
top-down approach of the recursion.

Can write the algorithm bottom-up. This is characteristic for dynamic
programming.
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Algorithm FibonacciBottomUp(n)

Input: n ≥ 0
Output: n-th Fibonacci number

F [1]← 1
F [2]← 1
for i← 3, . . . , n do

F [i]← F [i− 1] + F [i− 2]

return F [n]
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Dynamic Programming: Idea

Divide a complex problem into a reasonable number of
sub-problems
The solution of the sub-problems will be used to solve the more
complex problem
Identical problems will be computed only once
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Dynamic Programming Consequence

Identical problems will be computed only once

⇒ Results are saved

We trade spee against

memory consumption
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Dynamic Programming: Description

1 Use a DP-table with information to the subproblems.
Dimension of the entries? Semantics of the entries?

2 Computation of the base cases
Which entries do not depend on others?

3 Determine computation order.
In which order can the entries be computed such that dependencies are
fulfilled?

4 Read-out the solution
How can the solution be read out from the table?

Runtime (typical) = number entries of the table times required operations per entry.
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Dynamic Programing: Description with the example

1
Dimension of the table? Semantics of the entries?

n× 1 table. nth entry contains nth Fibonacci number.

2
Which entries do not depend on other entries?

Values F1 and F2 can be computed easily and independently.

3
What is the execution order such that required entries are always available?

Fi with increasing i.

4
Wie kann sich Lösung aus der Tabelle konstruieren lassen?

Fn ist die n-te Fibonacci-Zahl.
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Dynamic Programming = Divide-And-Conquer ?

In both cases the original problem can be solved (more easily) by
utilizing the solutions of sub-problems. The problem provides
optimal substructure.
Divide-And-Conquer algorithms (such as Mergesort):
sub-problems are independent; their solutions are required only
once in the algorithm.
DP: sub-problems are dependent. The problem is said to have
overlapping sub-problems that are required multiple-times in the
algorithm.
In order to avoid redundant computations, results are tabulated.
For sub-problems there must not be any circular dependencies.
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Rod Cutting

Rods (metal sticks) are cut and sold.
Rods of length n ∈ N are available. A cut does not provide any
costs.
For each length l ∈ N, l ≤ n known is the value vl ∈ R+

Goal: cut the rods such (into k ∈ N pieces) that

k∑
i=1

vli is maximized subject to
k∑
i=1

li = n.

562



Rod Cutting: Example

Possibilities to cut a rod of length 4 (without permutations)

Length 0 1 2 3 4
Price 0 2 3 8 9

⇒ Best cut: 3 + 1 with value 10.
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Wie findet man den DP Algorithms

0 Exact formulation of the wanted solution
1 Define sub-problems (and compute the cardinality)
2 Guess / Enumerate (and determine the running time for

guessing)
3 Recursion: relate sub-problems
4 Memoize / Tabularize. Determine the dependencies of the

sub-problems
5 Solve the problem

Running time = #sub-problems × time/sub-problem
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Structure of the problem
0 Wanted: rn = maximal value of rod (cut or as a whole) with

length n.
1 sub-problems: maximal value rk for each 0 ≤ k < n

2 Guess the length of the first piece
3 Recursion

rk = max {vi + rk−i : 0 < i ≤ k} , k > 0

r0 = 0

4 Dependency: rk depends (only) on values vi, 1 ≤ i ≤ k and the
optimal cuts ri, i < k

5 Solution in rn
565



Algorithm RodCut(v,n)

Input: n ≥ 0, Prices v
Output: best value

q ← 0
if n > 0 then

for i← 1, . . . , n do
q ← max{q, vi + RodCut(v, n− i)};

return q

Running time T (n) =
∑n−1

i=0 T (i) + c ⇒39 T (n) ∈ Θ(2n)

39T (n) = T (n− 1) +
∑n−2

i=0 T (i) + c = T (n− 1) + (T (n− 1)− c) + c = 2T (n− 1) (n > 0)
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Recursion Tree
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2

1

1

2

1

1

3

2

1

1

2

1

1
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Algorithm RodCutMemoized(m, v, n)
Input: n ≥ 0, Prices v, Memoization Table m
Output: best value

q ← 0
if n > 0 then

if ∃ m[n] then
q ← m[n]

else
for i← 1, . . . , n do

q ← max{q, vi + RodCutMemoized(m, v, n− i)};
m[n]← q

return q

Running time
∑n

i=1 i = Θ(n2)
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Subproblem-Graph

Describes the mutual dependencies of the subproblems

4 3 2 1 0

and must not contain cycles
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Construction of the Optimal Cut

During the (recursive) computation of the optimal solution for each
k ≤ n the recursive algorithm determines the optimal length of the
first rod
Store the lenght of the first rod in a separate table of length n
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Bottom-up Description with the example

1
Dimension of the table? Semantics of the entries?

n× 1 table. nth entry contains the best value of a rod of length n.

2
Which entries do not depend on other entries?

Value r0 is 0

3
What is the execution order such that required entries are always available?

ri, i = 1, . . . , n

.

4
Wie kann sich Lösung aus der Tabelle konstruieren lassen?

rn is the best value for the rod of length n.
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Rabbit!

A rabbit sits on cite (1, 1)
of an n × n grid. It can
only move to east or south.
On each pathway there is
a number of carrots. How
many carrots does the rab-
bit collect maximally?

1, 1

1, 2

1, 3

1, 4

2, 1

2, 2

2, 3

2, 4

3, 1

3, 2

3, 3

3, 4

4, 1

4, 2

4, 3

4, 4

4

4

3

3

3

1

0

2

3

4

0

0

2

2

1

4

1

0

3

2

4

1

2

1
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Rabbit!

Number of possible paths?
Choice of n− 1 ways to south out of
2n− 2 ways overal.

(
2n− 2

n− 1

)
∈ Ω(2n)

⇒ No chance for a naive algorithm
The path 100011

(1:to south, 0: to east)
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Recursion

Wanted: T0,0 = maximal number carrots from (0, 0) to (n, n).

Let w(i,j)−(i′,j′) number of carrots on egde from (i, j) to (i′, j′).

Recursion (maximal number of carrots from (i, j) to (n, n)

Tij =


max{w(i,j)−(i,j+1) + Ti,j+1, w(i,j)−(i+1,j) + Ti+1,j}, i < n, j < n

w(i,j)−(i,j+1) + Ti,j+1, i = n, j < n

w(i,j)−(i+1,j) + Ti+1,j, i < n, j = n

0 i = j = n
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Graph of Subproblem Dependencies

(1, 1)

(1, 2)

(1, 3)

(1, 4)

(2, 1)

(2, 2)

(2, 3)

(2, 4)

(3, 1)

(3, 2)

(3, 3)

(3, 4)

(4, 1)

(4, 2)

(4, 3)

(4, 4)
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Bottom-up Description with the example

1

Dimension of the table? Semantics of the entries?

Table T with size n× n. Entry at i, j provides the maximal number of carrots
from (i, j) to (n, n).

2
Which entries do not depend on other entries?

Value Tn,n is 0

3

What is the execution order such that required entries are always available?

Ti,j with i = n↘ 1 and for each i: j = n↘ 1, (or vice-versa: j = n↘ 1 and
for each j: i = n↘ 1)

.

4
Wie kann sich Lösung aus der Tabelle konstruieren lassen?

T1,1 provides the maximal number of carrots.
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Longest Ascending Sequence (LAS)

1 2 3 4 5 6 7

3 2 4 6 5 7 1

1 2 3 4 5 6 7

3 2 4 6 5 7 1

Connect as many as possible fitting ports without lines crossing.
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Formally

Consider Sequence An = (a1, . . . , an).
Search for a longest increasing
subsequence of An.
Examples of increasing subsequences:
(3, 4, 5), (2, 4, 5, 7), (3, 4, 5, 7), (3, 7).

1 2 3 4 5 6 7

3 2 4 6 5 7 1
A

Generalization: allow any numbers, even with duplicates (still only
strictly increasing subsequences permitted). Example:
(2, 3, 3, 3, 5, 1) with increasing subsequence (2, 3, 5).
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First idea

Let Li = longest ascending subsequence of Ai (1 ≤ i ≤ n)

Assumption: LAS Lk of Ak known for Now want to compute Lk+1 for
Ak+1 .

If ak+1 fits to Lk, then Lk+1 = Lk ⊕ ak+1?

Counterexample A5 = (1, 2, 5, 3, 4). Let A3 = (1, 2, 5) with L3 = A.
Determine L4 from L3?

It does not work this way, we cannot infer Lk+1 from Lk.
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Second idea.

Let Li = longest ascending subsequence of Ai (1 ≤ i ≤ n)

Assumption: a LAS Lj is known for each j ≤ k. Now compute LAS
Lk+1 for k + 1.

Look at all fitting Lk+1 = Lj ⊕ ak+1 (j ≤ k) and choose a longest
sequence.

Counterexample: A5 = (1, 2, 5, 3, 4). Let A4 = (1, 2, 5, 3) with
L1 = (1), L2 = (1, 2), L3 = (1, 2, 5), L4 = (1, 2, 5). Determine L5

from L1, . . . , L4?

That does not work either: cannot infer Lk+1 from only an arbitrary
solution Lj. We need to consider all LAS. Too many.
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Third approach

Let Mn,i = longest ascending subsequence of Ai (1 ≤ i ≤ n)

Assumption: the LAS Mj for Ak, that end with smallest element are
known for each of the lengths 1 ≤ j ≤ k.

Consider all fitting Mk,j ⊕ ak+1 (j ≤ k) and update the table of the
LAS,that end with smallest possible element.
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Third approach Example

Example: A = (1, 1000, 1001, 4, 5, 2, 6, 7)

A LAT Mk,·

1 (1)

+ 1000 (1), (1, 1000)
+ 1001 (1), (1, 1000), (1, 1000, 1001)
+ 4 (1), (1, 4), (1, 1000, 1001)
+ 5 (1), (1, 4), (1, 4, 5)
+ 2 (1), (1, 2), (1, 4, 5)
+ 6 (1), (1, 2), (1, 4, 5), (1, 4, 5, 6)
+ 7 (1), (1, 2), (1, 4, 5), (1, 4, 5, 6), (1, 4, 5, 6, 7)
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DP Table

Idea: save the last element of
the increasing sequence Mk,j

at slot j.

Example: 3 2 5 1 6 4
Problem: Table does not
contain the subsequence, only
the last value.
Solution: second table with the
predecessors.

Index 1 2 3 4 5 6
Wert 3 2 5 1 6 4

Predecessor −∞ −∞ 2 −∞ 5 1

Index 0 1 2 3 4 ...

(Lj)j -∞ 1 4 6 ∞
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Dynamic Programming Algorithm LAS

1

Table dimension? Semantics?

Two tables T [0, . . . , n] and V [1, . . . , n].
T [j]: last Element of the increasing subequence Mn,j

V [j]: Value of the predecessor of aj .
Start with T [0]← −∞, T [i]←∞ ∀i > 1

2

Computation of an entry

Entries in T sorted in ascending order. For each new entry ak+1 binary
search for l, such that T [l] < ak < T [l + 1]. Set T [l + 1]← ak+1. Set
V [k] = T [l].
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Dynamic Programming algorithm LAS

3
Computation order

Traverse the list anc compute T [k] and V [k] with ascending k

4

How can the solution be determined from the table?

Search the largest l with T [l] <∞. l is the last index of the LAS. Starting at l
search for the index i < l such that V [l] = ai, i is the predecessor of l.
Repeat with l← i until T [l] = −∞
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Analysis

Computation of the table:

Initialization: Θ(n) Operations
Computation of the kth entry: binary search on positions {1, . . . , k} plus
constant number of assignments.

n∑
k=1

(log k +O(1)) = O(n) +
n∑
k=1

log(k) = Θ(n log n).

Reconstruction: traverse A from right to left: O(n).

Overal runtime:
Θ(n log n).
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DNA - Comparison (Star Trek)
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DNA - Comparison

DNA consists of sequences of four different nucleotides Adenine
Guanine Thymine Cytosine
DNA sequences (genes) thus can be described with strings of A,
G, T and C.
Possible comparison of two genes: determine the longest
common subsequence

The longest common subsequence problem is a special case of the
minimal edit distance problem.
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Minimal Editing Distance

Editing distance of two sequences An = (a1, . . . , am),
Bm = (b1, . . . , bm).

Editing operations:

Insertion of a character
Deletion of a character
Replacement of a character

Question: how many editing operations at least required in order to
transform string A into string B.

TIGER ZIGER ZIEGER ZIEGE
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Minimal Editing Distance

Wanted: cheapest character-wise transformation An → Bm with
costs

operation Levenshtein LCS40 general
Insert c 1 1 ins(c)
Delete c 1 1 del(c)
Replace c→ c′ 1(c 6= c′) ∞ · 1(c 6= c′) repl(c, c′)

Beispiel
T I G E R
Z I E G E

T I _ G E R
Z I E G E _

T→Z +E -R
Z→T -E +R

40Longest common subsequence – A special case of an editing problem
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DP
0 E(n,m) = mimimum number edit operations (ED cost)
a1...n → b1...m

1 Subproblems E(i, j) = ED von a1...i. b1...j. #SP = n ·m
2 Guess CostsΘ(1)

a1..i → a1...i−1 (delete)
a1..i → a1...ibj (insert)
a1..i → a1...i1bj (replace)

3 Rekursion

E(i, j) = min


del(ai) + E(i− 1, j),

ins(bj) + E(i, j − 1),

repl(ai, bj) + E(i− 1, j − 1)
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DP

4 Dependencies

⇒ Computation from left top to bottom right. Row- or
column-wise.

5 Solution in E(n,m)
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Example (Levenshtein Distance)

E[i, j]← min
{
E[i−1, j]+1, E[i, j−1]+1, E[i−1, j−1]+1(ai 6= bj)

}
∅ Z I E G E

∅ 0 1 2 3 4 5
T 1 1 2 3 4 5
I 2 2 1 2 3 4
G 3 3 2 2 2 3
E 4 4 3 2 3 2
R 5 5 4 3 3 3

Editing steps: from bottom right to top left, following the recursion.
Bottom-Up description of the algorithm: exercise
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Bottom-Up DP algorithm ED]

1

Dimension of the table? Semantics?

Table E[0, . . . ,m][0, . . . , n]. E[i, j]: minimal edit distance of the strings
(a1, . . . , ai) and (b1, . . . , bj)

2

Computation of an entry

E[0, i]← i ∀0 ≤ i ≤ m, E[j, 0]← i ∀0 ≤ j ≤ n. Computation of E[i, j]
otherwise via E[i, j] =
min{del(ai) +E(i− 1, j), ins(bj) +E(i, j − 1), repl(ai, bj) +E(i− 1, j − 1)}
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Bottom-Up DP algorithm ED

3
Computation order

Rows increasing and within columns increasing (or the other way round).

4

Reconstruct solution?

Start with j = m, i = n. If E[i, j] = repl(ai, bj) + E(i− 1, j − 1) then output
ai → bj and continue with (j, i)← (j − 1, i− 1); otherwise, if
E[i, j] = del(ai) + E(i− 1, j) output del(ai) and continue with j ← j − 1
otherwise, if E[i, j] = ins(bj) + E(i, j − 1), continue with i← i− 1 .
Terminate for i = 0 and j = 0.
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E[i, j] = del(ai) + E(i− 1, j) output del(ai) and continue with j ← j − 1
otherwise, if E[i, j] = ins(bj) + E(i, j − 1), continue with i← i− 1 .
Terminate for i = 0 and j = 0.
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Matrix-Chain-Multiplication

Task: Computation of the product A1 ·A2 · ... ·An of matrices A1, . . . ,
An.

Matrix multiplication is associative, i.e. the order of evalution can be
chosen arbitrarily

Goal: efficient computation of the product.

Assumption: multiplicaiton of an (r× s)-matrix with an (s× u)-matrix
provides costs r · s · u.
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Does it matter?
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Recursion

Assume that the best possible computation of (A1 · A2 · · ·Ai) and
(Ai+1 · Ai+2 · · ·An) is known for each i.
Compute best i, done.

n× n-table M . entry M [p, q] provides costs of the best possible
bracketing (Ap · Ap+1 · · ·Aq).

M [p, q]← min
p≤i<q

(M [p, i] +M [i+ 1, q] + costs of the last multiplication)
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Computation of the DP-table

Base cases M [p, p]← 0 for all 1 ≤ p ≤ n.
Computation of M [p, q] depends on M [i, j] with p ≤ i ≤ j ≤ q,
(i, j) 6= (p, q).
In particular M [p, q] depends at most from entries M [i, j] with
i− j < q − p.
Consequence: fill the table from the diagonal.
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Analysis

DP-table has n2 entries. Computation of an entry requires
considering up to n− 1 other entries.

Overal runtime O(n3).

Readout the order from M : exercise!
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Digression: matrix multiplication
Consider the mutliplicaiton of two n× n matrices.

Let

A = (aij)1≤i,j≤n, B = (bij)1≤i,j≤n, C = (cij)1≤i,j≤n,

C = A ·B

then

cij =
n∑
k=1

aikbkj.

Naive algorithm requires Θ(n3) elementary multiplications.
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Divide and Conquer

C = ABA

B

e f

g h

a b

c d

ea+ fc eb+ fd

ga+ hc gb+ hd
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Divide and Conquer

Assumption n = 2k.
Number of elementary multiplications:
M(n) = 8M(n/2), M(1) = 1.
yields M(n) = 8log2 n = nlog2 8 = n3. No
advantage

e f

g h

a b

c d

ea+ fc eb+ fd

ga+ hc gb+ hd
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Strassen’s Matrix Multiplication
Nontrivial observation by Strassen (1969):
It suffices to compute the seven products
A = (e+ h) · (a+ d), B = (g + h) · a,
C = e · (b− d), D = h · (c− a), E = (e+ f) · d,
F = (g − e) · (a+ b), G = (f − h) · (c+ d). Denn:
ea+ fc = A+D − E +G, eb+ fd = C + E,
ga+ hc = B +D, gb+ hd = A−B + C + F .

This yields M ′(n) = 7M(n/2),M ′(1) = 1.
Thus M ′(n) = 7log2 n = nlog2 7 ≈ n2.807.

Fastest currently known algorithm:
O(n2.37)

e f

g h

a b

c d

ea+ fc eb+ fd

ga+ hc gb+ hd
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20. Dynamic Programming II

Subset sum problem, knapsack problem, greedy algorithm vs
dynamic programming [Ottman/Widmayer, Kap. 7.2, 7.3, 5.7,
Cormen et al, Kap. 15,35.5]
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Task

Partition the set of the “item” above into two set such that both sets
have the same value.

A solution:
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Subset Sum Problem

Consider n ∈ N numbers a1, . . . , an ∈ N.

Goal: decide if a selection I ⊆ {1, . . . , n} exists such that∑
i∈I

ai =
∑

i∈{1,...,n}\I

ai.
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Naive Algorithm

Check for each bit vector b = (b1, . . . , bn) ∈ {0, 1}n, if

n∑
i=1

biai
?
=

n∑
i=1

(1− bi)ai

Worst case: n steps for each of the 2n bit vectors b. Number of
steps: O(n · 2n).
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Algorithm with Partition
Partition the input into two equally sized parts a1, . . . , an/2 and
an/2+1, . . . , an.

Iterate over all subsets of the two parts and compute partial sum
Sk1 , . . . , S

k
2n/2

(k = 1, 2).

Sort the partial sums: Sk1 ≤ Sk2 ≤ · · · ≤ Sk
2n/2

.
Check if there are partial sums such that S1

i + S2
j = 1

2

∑n
i=1 ai =: h

Start with i = 1, j = 2n/2.
If S1

i + S2
j = h then finished

If S1
i + S2

j > h then j ← j − 1

If S1
i + S2

j < h then i← i+ 1
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Example

Set {1, 6, 2, 3, 4} with value sum 16 has 32 subsets.

Partitioning into {1, 6} , {2, 3, 4} yields the following 12 subsets with
value sums:

{1, 6} {2, 3, 4}

{} {1} {6} {1, 6} {} {2} {3} {4} {2, 3} {2, 4} {3, 4} {2, 3, 4}

0 1 6 7 0 2 3 4 5 6 7 9

⇔ One possible solution: {1, 3, 4}
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Analysis

Generate partial sums for each part: O(2n/2 · n).
Each sorting: O(2n/2 log(2n/2)) = O(n2n/2).
Merge: O(2n/2)

Overal running time

O
(
n · 2n/2

)
= O

(
n
(√

2
)n)

.

Substantial improvement over the naive method –
but still exponential!
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Dynamic programming
Task: let z = 1

2

∑n
i=1 ai. Find a selection I ⊂ {1, . . . , n}, such that∑

i∈I ai = z.

DP-table: [0, . . . , n]× [0, . . . , z]-table T with boolean entries. T [k, s]
specifies if there is a selection Ik ⊂ {1, . . . , k} such that∑

i∈Ik ai = s.

Initialization: T [0, 0] = true. T [0, s] = false for s > 1.

Computation:

T [k, s]←

{
T [k − 1, s] if s < ak

T [k − 1, s] ∨ T [k − 1, s− ak] if s ≥ ak

for increasing k and then within k increasing s.
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Example

{1, 6, 2, 5}
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 • · · · · · · · · · · · · · ·
1 • • · · · · · · · · · · · · ·
6 • • · · · · • • · · · · · · ·
2 • • • • · · • • • • · · · · ·
5 • • • • · • • • • • · • • • •

summe s

k

Determination of the solution: if T [k, s] = T [k − 1, s] then ak unused and continue with T [k − 1, s] , otherwise ak used

and continue with T [k − 1, s− ak] .
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That is mysterious

The algorithm requires a number of O(n · z) fundamental operations.

What is going on now? Does the algorithm suddenly have
polynomial running time?
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Explained

The algorithm does not necessarily provide a polynomial run time. z
is an number and not a quantity!

Input length of the algorithm ∼= number bits to reasonably represent
the data. With the number z this would be ζ = log z.

Consequently the algorithm requires O(n · 2ζ) fundamental
operations and has a run time exponential in ζ.

If, however, z is polynomial in n then the algorithm has polynomial
run time in n. This is called pseudo-polynomial.
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NP
It is known that the subset-sum algorithm belongs to the class of
NP-complete problems (and is thus NP-hard).

P: Set of all problems that can be solved in polynomial time.

NP: Set of all problems that can be solved Nondeterministically in
Polynomial time.

Implications:

NP contains P.
Problems can be verified in polynomial time.
Under the not (yet?) proven assumption41 that NP 6= P, there is no
algorithm with polynomial run time for the problem considered
above.

41The most important unsolved question of theoretical computer science. 623
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The knapsack problem
We pack our suitcase with ...

toothbrush

dumbell set

coffee machine

uh oh – too heavy.

Toothbrush

Air balloon

Pocket knife

identity card

dumbell set

Uh oh – too heavy.

toothbrush

coffe machine

pocket knife

identity card

Uh oh – too heavy.

Aim to take as much as possible with us. But some things are more
valuable than others!
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Knapsack problem

Given:

set of n ∈ N items {1, . . . , n}.
Each item i has value vi ∈ N and weight wi ∈ N.
Maximum weight W ∈ N.
Input is denoted as E = (vi, wi)i=1,...,n.

Wanted:

a selection I ⊆ {1, . . . , n} that maximises
∑

i∈I vi under∑
i∈I wi ≤ W .

625



Knapsack problem

Given:

set of n ∈ N items {1, . . . , n}.
Each item i has value vi ∈ N and weight wi ∈ N.
Maximum weight W ∈ N.
Input is denoted as E = (vi, wi)i=1,...,n.

Wanted:

a selection I ⊆ {1, . . . , n} that maximises
∑

i∈I vi under∑
i∈I wi ≤ W .

625



Greedy heuristics

Sort the items decreasingly by value per weight vi/wi: Permutation p
with vpi/wpi ≥ vpi+1

/wpi+1

Add items in this order (I ← I ∪ {pi}), if the maximum weight is not
exceeded.

That is fast: Θ(n log n) for sorting and Θ(n) for the selection. But is it
good?
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Counterexample

v1 = 1 w1 = 1 v1/w1 = 1

v2 = W − 1 w2 = W v2/w2 = W−1
W

Greed algorithm chooses {v1} with value 1.
Best selection: {v2} with value W − 1 and weight W .

Greedy heuristics can be arbitrarily bad.
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Dynamic Programming

Partition the maximum weight.

Three dimensional table m[i, w, v] (“doable”) of boolean values.

m[i, w, v] = true if and only if

A selection of the first i parts exists (0 ≤ i ≤ n)
with overal weight w (0 ≤ w ≤ W ) and
a value of at least v (0 ≤ v ≤

∑n
i=1 vi) .
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Computation of the DP table
Initially

m[i, w, 0]← true für alle i ≥ 0 und alle w ≥ 0.
m[0, w, v]← false für alle w ≥ 0 und alle v > 0.

Computation

m[i, w, v]←
{
m[i− 1, w, v] ∨m[i− 1, w − wi, v − vi] if w ≥ wi und v ≥ vi
m[i− 1, w, v] otherwise.

increasing in i and for each i increasing in w and for fixed i and w
increasing by v.

Solution: largest v, such that m[i, w, v] = true for some i and w.
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Observation

The definition of the problem obviously implies that

for m[i, w, v] = true it holds:
m[i′, w, v] = true ∀i′ ≥ i ,
m[i, w′, v] = true ∀w′ ≥ w ,
m[i, w, v′] = true ∀v′ ≤ v.
fpr m[i, w, v] = false it holds:
m[i′, w, v] = false ∀i′ ≤ i ,
m[i, w′, v] = false ∀w′ ≤ w ,
m[i, w, v′] = false ∀v′ ≥ v.

This strongly suggests that we do not need a 3d table!
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2d DP table

Table entry t[i, w] contains, instead of boolean values, the largest v,
that can be achieved42 with

items 1, . . . , i (0 ≤ i ≤ n)
at maximum weight w (0 ≤ w ≤ W ).

42We could have followed a similar idea in order to reduce the size of the sparse table.
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Computation

Initially

t[0, w]← 0 for all w ≥ 0.

We compute

t[i, w]←
{
t[i− 1, w] if w < wi
max{t[i− 1, w], t[i− 1, w − wi] + vi} otherwise.

increasing by i and for fixed i increasing by w.

Solution is located in t[n,w]
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Example
E = {(2, 3), (4, 5), (1, 1)}

0 1 2 3 4 5 6 7

∅ 0 0 0 0 0 0 0 0

(2, 3) 0 0 3 3 3 3 3 3

(4, 5) 0 0 3 3 5 5 8 8

(1, 1) 0 1 3 4 5 6 8 9

w

i

Reading out the solution: if t[i, w] = t[i− 1, w] then item i unused and continue with t[i− 1, w] otherwise used and

continue with t[i− 1, s− wi] .

633



Example
E = {(2, 3), (4, 5), (1, 1)}

0 1 2 3 4 5 6 7

∅ 0 0 0 0 0 0 0 0

(2, 3) 0 0 3 3 3 3 3 3

(4, 5) 0 0 3 3 5 5 8 8

(1, 1) 0 1 3 4 5 6 8 9

w

i

Reading out the solution: if t[i, w] = t[i− 1, w] then item i unused and continue with t[i− 1, w] otherwise used and

continue with t[i− 1, s− wi] .

633



Example
E = {(2, 3), (4, 5), (1, 1)}

0 1 2 3 4 5 6 7

∅ 0 0 0 0 0 0 0 0

(2, 3) 0 0 3 3 3 3 3 3

(4, 5) 0 0 3 3 5 5 8 8

(1, 1) 0 1 3 4 5 6 8 9

w

i

Reading out the solution: if t[i, w] = t[i− 1, w] then item i unused and continue with t[i− 1, w] otherwise used and

continue with t[i− 1, s− wi] .

633



Example
E = {(2, 3), (4, 5), (1, 1)}

0 1 2 3 4 5 6 7

∅ 0 0 0 0 0 0 0 0

(2, 3) 0 0 3 3 3 3 3 3

(4, 5) 0 0 3 3 5 5 8 8

(1, 1) 0 1 3 4 5 6 8 9

w

i

Reading out the solution: if t[i, w] = t[i− 1, w] then item i unused and continue with t[i− 1, w] otherwise used and

continue with t[i− 1, s− wi] .

633



Example
E = {(2, 3), (4, 5), (1, 1)}

0 1 2 3 4 5 6 7

∅ 0 0 0 0 0 0 0 0

(2, 3) 0 0 3 3 3 3 3 3

(4, 5) 0 0 3 3 5 5 8 8

(1, 1) 0 1 3 4 5 6 8 9

w

i

Reading out the solution: if t[i, w] = t[i− 1, w] then item i unused and continue with t[i− 1, w] otherwise used and

continue with t[i− 1, s− wi] .

633



Example
E = {(2, 3), (4, 5), (1, 1)}

0 1 2 3 4 5 6 7

∅ 0 0 0 0 0 0 0 0

(2, 3) 0 0 3 3 3 3 3 3

(4, 5) 0 0 3 3 5 5 8 8

(1, 1) 0 1 3 4 5 6 8 9

w

i

Reading out the solution: if t[i, w] = t[i− 1, w] then item i unused and continue with t[i− 1, w] otherwise used and

continue with t[i− 1, s− wi] .
633



Analysis

The two algorithms for the knapsack problem provide a run time in
Θ(n ·W ·

∑n
i=1 vi) (3d-table) and Θ(n ·W ) (2d-table) and are thus

both pseudo-polynomial, but they deliver the best possible result.

The greedy algorithm is very fast butmight deliver an arbitrarily bad
result.

Now we consider a solution between the two extremes.
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21. Dynamic Programming III

FPTAS [Ottman/Widmayer, Kap. 7.2, 7.3, Cormen et al, Kap.
15,35.5]
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Approximation

Let ε ∈ (0, 1) given. Let Iopt an optimal selection.

No try to find a valid selection I with∑
i∈I

vi ≥ (1− ε)
∑
i∈Iopt

vi.

Sum of weights may not violate the weight limit.
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Different formulation of the algorithm

Before: weight limit w→ maximal value v

Reversed: value v→ minimal weight w

⇒ alternative table g[i, v] provides the minimum weight with

a selection of the first i items (0 ≤ i ≤ n) that
provide a value of exactly v (0 ≤ v ≤

∑n
i=1 vi).
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Computation

Initially

g[0, 0]← 0

g[0, v]←∞ (Value v cannot be achieved with 0 items.).

Computation

g[i, v]←
{
g[i− 1, v] falls v < vi
min{g[i− 1, v], g[i− 1, v − vi] + wi} sonst.

incrementally in i and for fixed i increasing in v.

Solution can be found at largest index v with g[n, v] ≤ w.
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Example
E = {(2, 3), (4, 5), (1, 1)}

0 1 2 3 4 5 6 7 8 9

∅ 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

(2, 3) 0 ∞ ∞ 2 ∞ ∞ ∞ ∞ ∞ ∞

(4, 5) 0 ∞ ∞ 2 ∞ 4 ∞ ∞ 6 ∞

(1, 1) 0 1 ∞ 2 3 4 5 ∞ 6 7

v

i

Read out the solution: if g[i, v] = g[i− 1, v] then item i unused and continue with g[i− 1, v] otherwise used and continue

with g[i− 1, b− vi] .
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The approximation trick

Pseduopolynomial run time gets polynmial if the number of occuring
values can be bounded by a polynom of the input length.

Let K > 0 be chosen appropriately. Replace values vi by “rounded
values” ṽi = bvi/Kc delivering a new input E ′ = (wi, ṽi)i=1...n.

Apply the algorithm on the input E ′ with the same weight limit W .
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Idea

Example K = 5

Values

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, . . . , 98, 99, 100

→
0, 0, 0, 0, 1, 1, 1, 1, 1, 2, . . . , 19, 19, 20

Obviously less different values
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Properties of the new algorithm

Selection of items in E ′ is also admissible in E. Weight remains
unchanged!
Run time of the algorithm is bounded by O(n2 · vmax/K)
(vmax := max{vi|1 ≤ i ≤ n})
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How good is the approximation?

It holds that
vi −K ≤ K ·

⌊ vi
K

⌋
= K · ṽi ≤ vi

Let I ′opt be an optimal solution of E ′. Then∑
i∈Iopt

vi

− n ·K |Iopt|≤n
≤

∑
i∈Iopt

(vi −K) ≤
∑
i∈Iopt

(K · ṽi) = K
∑
i∈Iopt

ṽi

≤
I ′optoptimal

K
∑
i∈I ′opt

ṽi =
∑
i∈I ′opt

K · ṽi ≤
∑
i∈I ′opt

vi.
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Choice of K

Requirement: ∑
i∈I ′

vi ≥ (1− ε)
∑
i∈Iopt

vi.

Inequality from above:

∑
i∈I ′opt

vi ≥

∑
i∈Iopt

vi

− n ·K
thus: K = ε

∑
i∈Iopt

vi

n .
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Choice of K

Choose K = ε

∑
i∈Iopt

vi

n . The optimal sum is unknown. Therefore we
choose K ′ = εvmax

n .43

It holds that vmax ≤
∑

i∈Iopt
vi and thus K ′ ≤ K and the

approximation is even slightly better.

The run time of the algorithm is bounded by

O(n2 · vmax/K
′) = O(n2 · vmax/(ε · vmax/n)) = O(n3/ε).

43We can assume that items i with wi > W have been removed in the first place.
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FPTAS

Such a family of algorithms is called an approximation scheme: the
choice of ε controls both running time and approximation quality.

The runtime O(n3/ε) is a polynom in n and in 1
ε . The scheme is

therefore also called a FPTAS - Fully Polynomial Time
Approximation Scheme
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21. Dynamic Programming III

Optimal Search Tree [Ottman/Widmayer, Kap. 5.7]
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Optimal binary Search Trees
Given: search probabilities pi for each key ki (i = 1, . . . , n) and qi of
each interval di (i = 0, . . . , n) between search keys of a binary
search tree.

∑n
i=1 pi +

∑n
i=0 qi = 1.

Wanted: optimal search tree T with key depths depth(·), that
minimizes the expected search costs

C(T ) =
n∑
i=1

pi · (depth(ki) + 1) +
n∑
i=0

qi · (depth(di) + 1)

= 1 +
n∑
i=1

pi · depth(ki) +
n∑
i=0

qi · depth(di)
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Example

Expected Frequencies

i 0 1 2 3 4 5
pi 0.15 0.10 0.05 0.10 0.20
qi 0.05 0.10 0.05 0.05 0.05 0.10
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Example

k2

k1

d0 d1

k4

k3

d2 d3

k5

d4 d5

Search tree with expected
costs 2.8

k2

k1

d0 d1

k5

k4

k3

d2 d3

d4

d5

Search tree with expected
costs 2.75
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Structure of a optimal binary search tree

Subtree with keys ki, . . . , kj and intervals di−1, . . . , dj must be
optimal for the respective sub-problem.44

Consider all subtrees with roots kr and optimal subtrees for keys
ki, . . . , kr−1 and kr+1, . . . , kj

44The usual argument: if it was not optimal, it could be replaced by a better solution improving the overal solution.
651



Sub-trees for Searching

ki

di−1

ki+1..j

di dj· · ·

empty left subtree

kr

ki..r−1 kr+1..j

di−1 dr−1· · · dr dj· · ·

non-empty left and
right subtrees

kj

dj

ki..j−1

di−1 dj−1· · ·

empty right subtree
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Expected Search Costs

Let depthT (k) be the depth of a node k in the sub-tree T . Let k be
the root of subtrees Tr and TLr

and TRr
be the left and right sub-tree

of Tr. Then

depthT (ki) = depthTLr
(ki) + 1, (i < r)

depthT (ki) = depthTRr
(ki) + 1, (i > r)
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Expected Search Costs
Let e[i, j] be the costs of an optimal search tree with nodes
ki, . . . , kj.

Base case e[i, i− 1], expected costs di−1
Let w(i, j) =

∑j
l=i pl +

∑j
l=i−1 ql.

If kr is the root of an optimal search tree with keys ki, . . . , kj, then

e[i, j] = pr + (e[i, r − 1] + w(i, r − 1)) + (e[r + 1, j] + w(r + 1, j))

with w(i, j) = w(i, r − 1) + pr + w(r + 1, j):

e[i, j] = e[i, r − 1] + e[r + 1, j] + w(i, j).
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Dynamic Programming

e[i, j] =

{
qi−1 if j = i− 1,

mini≤r≤j{e[i, r − 1] + e[r + 1, j] + w[i, j]} if i ≤ j
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Computation
Tables e[1 . . . n+ 1, 0 . . . n], w[1 . . . n+ 1, 0 . . .m], r[1 . . . n, 1 . . . n]
Initially

e[i, i− 1]← qi−1, w[i, i− 1]← qi−1 for all 1 ≤ i ≤ n+ 1.

We compute

w[i, j] = w[i, j − 1] + pj + qj
e[i, j] = min

i≤r≤j
{e[i, r − 1] + e[r + 1, j] + w[i, j]}

r[i, j] = arg min
i≤r≤j
{e[i, r − 1] + e[r + 1, j] + w[i, j]}

for intervals [i, j] with increasing lengths l = 1, . . . , n, each for
i = 1, . . . , n− l + 1. Result in e[1, n], reconstruction via r. Runtime
Θ(n3). 656



Example

i 0 1 2 3 4 5
pi 0.15 0.10 0.05 0.10 0.20
qi 0.05 0.10 0.05 0.05 0.05 0.10

j

0 0.05

1 0.30 0.10

2 0.45 0.25 0.05

3 0.55 0.35 0.15 0.05

4 0.70 0.50 0.30 0.20 0.05

5 1.00 0.80 0.60 0.50 0.35 0.10

1 2 3 4 5 6 i

w

j

0 0.05

1 0.45 0.10

2 0.90 0.40 0.05

3 1.25 0.70 0.25 0.05

4 1.75 1.20 0.60 0.30 0.05

5 2.75 2.00 1.30 0.90 0.50 0.10

1 2 3 4 5 6 i

e
j

1 1

2 1 2

3 2 2 3

4 2 2 4 4

5 2 4 5 5 5

1 2 3 4 5 i

r
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22. Greedy Algorithms

Fractional Knapsack Problem, Huffman Coding [Cormen et al, Kap.
16.1, 16.3]
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The Fractional Knapsack Problem

set of n ∈ N items {1, . . . , n} Each item i has value vi ∈ N and
weight wi ∈ N. The maximum weight is given as W ∈ N. Input is
denoted as E = (vi, wi)i=1,...,n.

Wanted: Fractions 0 ≤ qi ≤ 1 (1 ≤ i ≤ n) that maximise the sum∑n
i=1 qi · vi under

∑n
i=1 qi · wi ≤ W .
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Greedy heuristics

Sort the items decreasingly by value per weight vi/wi.

Assumption vi/wi ≥ vi+1/wi+1

Let j = max{0 ≤ k ≤ n :
∑k

i=1wi ≤ W}. Set

qi = 1 for all 1 ≤ i ≤ j.

qj+1 =
W−

∑j
i=1 wi

wj+1
.

qi = 0 for all i > j + 1.

That is fast: Θ(n log n) for sorting and Θ(n) for the computation of
the qi.
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Correctness

Assumption: optimal solution (ri) (1 ≤ i ≤ n).

The knapsack is full:
∑

i ri · wi =
∑

i qi · wi = W .

Consider k: smallest i with ri 6= qi Definition of greedy: qk > rk. Let
x = qk − rk > 0.

Construct a new solution (r′i): r
′
i = ri∀i < k. r′k = qk. Remove

weight
∑n

i=k+1 δi = x · wk from items k + 1 to n. This works because∑n
i=k ri · wi =

∑n
i=k qi · wi.
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Correctness

n∑
i=k

r′ivi = rkvk + xwk
vk
wk

+
n∑

i=k+1

(riwi − δi)
vi
wi

≥ rkvk + xwk
vk
wk

+
n∑

i=k+1

riwi
vi
wi
− δi

vk
wk

= rkvk + xwk
vk
wk
− xwk

vk
wk

+
n∑

i=k+1

riwi
vi
wi

=
n∑
i=k

rivi.

Thus (r′i) is also optimal. Iterative application of this idea generates
the solution (qi).
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Huffman-Codes

Goal: memory-efficient saving of a sequence of characters using a
binary code with code words..

Example
File consisting of 100.000 characters from the alphabet {a, . . . , f}.

a b c d e f
Frequency (Thousands) 45 13 12 16 9 5
Code word with fix length 000 001 010 011 100 101
Code word variable length 0 101 100 111 1101 1100

File size (code with fix length): 300.000 bits.
File size (code with variable length): 224.000 bits.
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Huffman-Codes

Consider prefix-codes: no code word can start with a different
codeword.

Prefix codes can, compared with other codes, achieve the optimal
data compression (without proof here).
Encoding: concatenation of the code words without stop character
(difference to morsing).
affe→ 0 · 1100 · 1100 · 1101→ 0110011001101

Decoding simple because prefixcode
0110011001101→ 0 · 1100 · 1100 · 1101→ affe
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Code trees

100

86

58

a:45 b:13

28

c:12 d:16

14

14

e:9 f:5

0

0

0 0

0

0

1

11

1

1

Code words with fixed length

100

a:45 55

25

c:12 b:13

30

14

f:5 e:9

d:16

0

0

0 0

0

1

1

11

1

Code words with variable length
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Properties of the Code Trees

An optimal coding of a file is alway represented by a complete
binary tree: every inner node has two children.

Let C be the set of all code words, f(c) the frequency of a
codeword c and dT (c) the depth of a code word in tree T . Define
the cost of a tree as

B(T ) =
∑
c∈C

f(c) · dT (c).

(cost = number bits of the encoded file)

In the following a code tree is called optimal when it minimizes the
costs.
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Algorithm Idea

Tree construction bottom
up

Start with the set C of
code words
Replace iteriatively the
two nodes with smallest
frequency by a new
parent node. a:45 b:13 c:12 d:16 e:9 f:5
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Algorithm Huffman(C)

Input: code words c ∈ C
Output: Root of an optimal code tree

n← |C|
Q← C
for i = 1 to n− 1 do

allocate a new node z
z.left← ExtractMin(Q) // extract word with minimal frequency.
z.right← ExtractMin(Q)
z.freq← z.left.freq + z.right.freq
Insert(Q, z)

return ExtractMin(Q)
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Analyse

Use a heap: build Heap in O(n). Extract-Min in O(log n) for n
Elements. Yields a runtime of O(n log n).
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The greedy approach is correct

Theorem
Let x, y be two symbols with smallest frequencies in C and let T ′(C ′)
be an optimal code tree to the alphabet C ′ = C −{x, y}+ {z} with a
new symbol z with f(z) = f(x) + f(y). Then the tree T (C) that is
constructed from T ′(C ′) by replacing the node z by an inner node
with children x and y is an optimal code tree for the alphabet C.
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Proof
It holds that f(x) · dT (x) + f(y) · dT (y) =
(f(x) + f(y)) · (dT ′(z) + 1) = f(z) · dT ′(x) + f(x) + f(y). Thus
B(T ′) = B(T )− f(x)− f(y).

Assumption: T is not optimal. Then there is an optimal tree T ′′ with
B(T ′′) < B(T ). We assume that x and y are brothers in T ′′. Let T ′′′

be the tree where the inner node with children x and y is replaced by
z. Then it holds that
B(T ′′′) = B(T ′′)− f(x)− f(y) < B(T )− f(x)− f(y) = B(T ′).
Contradiction to the optimality of T ′.

The assumption that x and y are brothers in T ′′ can be justified
because a swap of elements with smallest frequency to the lowest
level of the tree can at most decrease the value of B.
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23. Graphs

Notation, Representation, Graph Traversal (DFS, BFS), Topological
Sorting , Reflexive transitive closure, Connected components
[Ottman/Widmayer, Kap. 9.1 - 9.4,Cormen et al, Kap. 22]
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Königsberg 1736
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Königsberg 1736
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[Multi]Graph

A

B

D

C

edge

node
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node

674



Cycles

Is there a cycle through the town (the
graph) that uses each bridge (each edge)
exactly once?

Euler (1736): no.
Such a cycle is called Eulerian path.
Eulerian path⇔ each node provides an
even number of edges (each node is of an
even degree).
‘⇒” is straightforward, “⇐” ist a bit more difficult but still elementary.

A

B

D

C
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Notation
1

2 3

4 5

undirected

V ={1, 2, 3, 4, 5}
E ={{1, 2}, {1, 3}, {2, 3}, {2, 4},
{2, 5}, {3, 4}, {3, 5}, {4, 5}}

1

2 3

4 5

directed

V ={1, 2, 3, 4, 5}
E ={(1, 3), (2, 1), (2, 5), (3, 2),

(3, 4), (4, 2), (4, 5), (5, 3)}
676



Notation

A directed graph consists of a set V = {v1, . . . , vn} of nodes
(Vertices) and a set E ⊆ V × V of Edges. The same edges may not
be contained more than once.

1 2

3 4 5

loop
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Notation
An undirected graph consists of a set V = {v1, . . . , vn} of nodes a
and a set E ⊆ {{u, v}|u, v ∈ V } of edges. Edges may bot be
contained more than once.45

1

2

3 4

5

undirected graph

45As opposed to the introductory example – it is then called multi-graph.
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Notation

An undirected graph G = (V,E) without loops where E comprises
all edges between pairwise different nodes is called complete.

1

2

3 4

5

a complete undirected graph
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Notation

A graph where V can be partitioned into disjoint sets U and W such
that each e ∈ E provides a node in U and a node in W is called
bipartite.
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Notation

A weighted graph G = (V,E, c) is a graph G = (V,E) with an edge
weight function c : E → R. c(e) is called weight of the edge e.

0

1

2

3

4

5

2

1.5

4

1

4

3
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Notation
For directed graphs G = (V,E)

w ∈ V is called adjacent to v ∈ V , if (v, w) ∈ E

Predecessors of v ∈ V : N−(v) := {u ∈ V |(u, v) ∈ E}.
Successors: N+(v) := {u ∈ V |(v, u) ∈ E}

N−(v) N+(v)

v

p1

p2

p3

s1

s2
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Notation

For directed graphs G = (V,E)

In-Degree: deg−(v) = |N−(v)|,
Out-Degree: deg+(v) = |N+(v)|

v

deg−(v) = 3, deg+(v) = 2

w

deg−(w) = 1, deg+(w) = 1
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Notation

For undirected graphs G = (V,E):

w ∈ V is called adjacent to v ∈ V , if {v, w} ∈ E

Neighbourhood of v ∈ V : N(v) = {w ∈ V |{v, w} ∈ E}
Degree of v: deg(v) = |N(v)| with a special case for the loops:
increase the degree by 2.

v

deg(v) = 5

w

deg(w) = 2
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Notation

For undirected graphs G = (V,E):
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Relationship between node degrees and number of
edges

For each graph G = (V,E) it holds

1
∑

v∈V deg−(v) =
∑

v∈V deg+(v) = |E|, for G directed
2
∑

v∈V deg(v) = 2|E|, for G undirected.
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Paths

Path: a sequence of nodes 〈v1, . . . , vk+1〉 such that for each
i ∈ {1 . . . k} there is an edge from vi to vi+1 .

Length of a path: number of contained edges k.
Weight of a path (in weighted graphs):

∑k
i=1 c((vi, vi+1)) (bzw.∑k

i=1 c({vi, vi+1}))
Simple path: path without repeating vertices
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Connectedness

An undirected graph is called connected, if for eacheach pair
v, w ∈ V there is a connecting path.
A directed graph is called strongly connected, if for each pair
v, w ∈ V there is a connecting path.
A directed graph is called weakly connected, if the corresponding
undirected graph is connected.
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Simple Observations

generally: 0 ≤ |E| ∈ O(|V |2)
connected graph: |E| ∈ Ω(|V |)
complete graph: |E| = |V |·(|V |−1)

2 (undirected)

Maximally |E| = |V |2 (directed ),|E| = |V |·(|V |+1)
2 (undirected)
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Cycles

Cycle: path 〈v1, . . . , vk+1〉 with v1 = vk+1

Simple cycle: Cycle with pairwise different v1, . . . , vk, that does
not use an edge more than once.
Acyclic: graph without any cycles.

Conclusion: undirected graphs cannot contain cycles with length 2
(loops have length 1)
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Representation using a Matrix
Graph G = (V,E) with nodes v1 . . . , vn stored as adjacency matrix
AG = (aij)1≤i,j≤n with entries from {0, 1}. aij = 1 if and only if edge
from vi to vj.

1 2

4

3

5


0 1 1 1 0
0 0 0 0 0
0 1 0 1 1
0 0 0 0 0
0 0 1 0 1


Memory consumption Θ(|V |2). AG is symmetric, if G undirected.
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Representation with a List
Many graphs G = (V,E) with nodes
v1, . . . , vn provide much less than n2

edges. Representation with adjacency
list: Array A[1], . . . , A[n], Ai comprises a
linked list of nodes in N+(vi).

1 2

4

3

5

1 2 3 4 5

2

3

4

2

4

5

3

5

Memory Consumption Θ(|V |+ |E|).
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Runtimes of simple Operations

Operation Matrix List

Find neighbours/successors of v ∈ V

Θ(n) Θ(deg+ v)

find v ∈ V without neighbour/successor

Θ(n2) Θ(n)

(u, v) ∈ E ?

Θ(1) Θ(deg+ v)

Insert edge

Θ(1) Θ(1)

Delete edge

Θ(1) Θ(deg+ v)
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Depth First Search
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Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.
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Order a, b, c, f, d, e, g, h, i

Adjazenzliste
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b c f e b h e
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e
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Colors

Conceptual coloring of nodes

white: node has not been discovered yet.
grey: node has been discovered and is marked for traversal /
being processed.
black: node was discovered and entirely processed.
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Algorithm Depth First visit DFS-Visit(G, v)

Input: graph G = (V,E), Knoten v.

v.color ← grey
foreach w ∈ N+(v) do

if w.color = white then
DFS-Visit(G,w)

v.color ← black

Depth First Search starting from node v. Running time (without
recursion): Θ(deg+ v)
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Algorithm Depth First visit DFS-Visit(G)

Input: graph G = (V,E)

foreach v ∈ V do
v.color ← white

foreach v ∈ V do
if v.color = white then

DFS-Visit(G,v)

Depth First Search for all nodes of a graph. Running time:
Θ(|V |+

∑
v∈V (deg+(v) + 1)) = Θ(|V |+ |E|).
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Iterative DFS-Visit(G, v)
Input: graph G = (V,E), v ∈ V with v.color = white

Stack S ← ∅
v.color ← grey; S.push(v) // invariant: grey nodes always on stack
while S 6= ∅ do

w ← nextWhiteSuccessor(v) // code: next slide
if w 6= null then

w.color ← grey; S.push(w)
v ← w // work on w. parent remains on the stack

else
v.color ← black // no grey successors, v becomes black
if S 6= ∅ then

v ← S.pop() // visit/revisit next node
if v.color = grey then S.push(v)

Memory Consumption Stack Θ(|V |)
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nextWhiteSuccessor(v)

Input: node v ∈ V
Output: Successor node u of v with u.color = white, null otherwise

foreach u ∈ N+(v) do
if u.color = white then

return u

return null
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Interpretation of the Colors

When traversing the graph, a tree (or Forest) is built. When nodes
are discovered there are three cases

White node: new tree edge
Grey node: Zyklus (“back-egde”)
Black node: forward- / cross edge
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Breadth First Search
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Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.

a b c

d e f

g h i

aaaa bb

dd eee

cc

f

gg hh i

Order a, b, d, e, c, f, g, h, i

Adjazenzliste
a b c d e f g h i

b c f e b h i

d f

e
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(Iterative) BFS-Visit(G, v)
Input: graph G = (V,E)

Queue Q← ∅
v.color ← grey
enqueue(Q, v)
while Q 6= ∅ do

w ← dequeue(Q)
foreach c ∈ N+(w) do

if c.color = white then
c.color ← grey
enqueue(Q, c)

w.color ← black

Algorithm requires extra space of O(|V |).
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Main program BFS-Visit(G)

Input: graph G = (V,E)

foreach v ∈ V do
v.color ← white

foreach v ∈ V do
if v.color = white then

BFS-Visit(G,v)

Breadth First Search for all nodes of a graph. Running time:
Θ(|V |+ |E|).
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Topological Sorting

Evaluation Order?
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Topological Sorting

Topological Sorting of an acyclic directed graph G = (V,E):

Bijective mapping
ord : V → {1, . . . , |V |}

such that
ord(v) < ord(w) ∀ (v, w) ∈ E.

Identify i with Element vi := ord1(i). Topological sorting =̂
〈v1, . . . , v|V |〉.
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(Counter-)Examples

1

2

3 4

5

Cyclic graph: cannot be sorted topologically.

Unterhose Hose

Socken Schuhe

Unterhemd Pullover

Mantel

Uhr

A possible toplogical sorting of the graph:
Unterhemd,Pullover,Unterhose,Uhr,Hose,Mantel,Socken,Schuhe
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Observation

Theorem
A directed graph G = (V,E) permits a topological sorting if and only
if it is acyclic.

Proof “⇒”: If G contains a cycle it cannot permit a topological
sorting, because in a cycle 〈vi1, . . . , vim〉 it would hold that
vi1 < · · · < vim < vi1.
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Inductive Proof Opposite Direction

Base case (n = 1): Graph with a single node without loop can be
sorted topologically, setord(v1) = 1.

Hypothesis: Graph with n nodes can be sorted topologically
Step (n→ n+ 1):

1 G contains a node vq with in-degree deg−(vq) = 0. Otherwise iteratively
follow edges backwards – after at most n+ 1 iterations a node would be
revisited. Contradiction to the cycle-freeness.

2 Graph without node vq and without its edges can be topologically sorted
by the hypothesis. Now use this sorting and set ord(vi)← ord(vi) + 1 for
all i 6= q and set ord(vq)← 1.

709



Inductive Proof Opposite Direction

Base case (n = 1): Graph with a single node without loop can be
sorted topologically, setord(v1) = 1.
Hypothesis: Graph with n nodes can be sorted topologically

Step (n→ n+ 1):

1 G contains a node vq with in-degree deg−(vq) = 0. Otherwise iteratively
follow edges backwards – after at most n+ 1 iterations a node would be
revisited. Contradiction to the cycle-freeness.

2 Graph without node vq and without its edges can be topologically sorted
by the hypothesis. Now use this sorting and set ord(vi)← ord(vi) + 1 for
all i 6= q and set ord(vq)← 1.

709



Inductive Proof Opposite Direction

Base case (n = 1): Graph with a single node without loop can be
sorted topologically, setord(v1) = 1.
Hypothesis: Graph with n nodes can be sorted topologically
Step (n→ n+ 1):

1 G contains a node vq with in-degree deg−(vq) = 0. Otherwise iteratively
follow edges backwards – after at most n+ 1 iterations a node would be
revisited. Contradiction to the cycle-freeness.

2 Graph without node vq and without its edges can be topologically sorted
by the hypothesis. Now use this sorting and set ord(vi)← ord(vi) + 1 for
all i 6= q and set ord(vq)← 1.

709



Inductive Proof Opposite Direction

Base case (n = 1): Graph with a single node without loop can be
sorted topologically, setord(v1) = 1.
Hypothesis: Graph with n nodes can be sorted topologically
Step (n→ n+ 1):

1 G contains a node vq with in-degree deg−(vq) = 0. Otherwise iteratively
follow edges backwards – after at most n+ 1 iterations a node would be
revisited. Contradiction to the cycle-freeness.

2 Graph without node vq and without its edges can be topologically sorted
by the hypothesis. Now use this sorting and set ord(vi)← ord(vi) + 1 for
all i 6= q and set ord(vq)← 1.

709



Inductive Proof Opposite Direction

Base case (n = 1): Graph with a single node without loop can be
sorted topologically, setord(v1) = 1.
Hypothesis: Graph with n nodes can be sorted topologically
Step (n→ n+ 1):

1 G contains a node vq with in-degree deg−(vq) = 0. Otherwise iteratively
follow edges backwards – after at most n+ 1 iterations a node would be
revisited. Contradiction to the cycle-freeness.

2 Graph without node vq and without its edges can be topologically sorted
by the hypothesis. Now use this sorting and set ord(vi)← ord(vi) + 1 for
all i 6= q and set ord(vq)← 1.

709



Preliminary Sketch of an Algorithm

Graph G = (V,E). d← 1

1 Traverse backwards starting from any node until a node vq with
in-degree 0 is found.

2 If no node with in-degree 0 found after n stepsm, then the graph
has a cycle.

3 Set ord(vq)← d.
4 Remove vq and his edges from G.
5 If V 6= ∅ , then d← d+ 1, go to step 1.

Worst case runtime:

Θ(|V |2).
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Improvement

Idea?

Compute the in-degree of all nodes in advance and traverse the
nodes with in-degree 0 while correcting the in-degrees of following
nodes.
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Algorithm Topological-Sort(G)
Input: graph G = (V,E).
Output: Topological sorting ord

Stack S ← ∅
foreach v ∈ V do A[v]← 0
foreach (v, w) ∈ E do A[w]← A[w] + 1 // Compute in-degrees
foreach v ∈ V with A[v] = 0 do push(S, v) // Memorize nodes with in-degree

0
i← 1
while S 6= ∅ do

v ← pop(S); ord[v]← i; i← i+ 1 // Choose node with in-degree 0
foreach (v, w) ∈ E do // Decrease in-degree of successors

A[w]← A[w]− 1
if A[w] = 0 then push(S,w)

if i = |V |+ 1 then return ord else return “Cycle Detected”
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Algorithm Correctness
Theorem
Let G = (V,E) be a directed acyclic graph. Algorithm
TopologicalSort(G) computes a topological sorting ord for G with
runtime Θ(|V |+ |E|).

Proof: follows from previous theorem:

1 Decreasing the in-degree corresponds with node removal.

2 In the algorithm it holds for each node v with A[v] = 0 that either the node
has in-degree 0 or that previously all predecessors have been assigned a
value ord[u]← i and thus ord[v] > ord[u] for all predecessors u of v. Nodes
are put to the stack only once.

3 Runtime: inspection of the algorithm (with some arguments like with graph
traversal)
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Algorithm Correctness

Theorem
Let G = (V,E) be a directed graph containing a cycle. Algorithm
TopologicalSort(G) terminates within Θ(|V |+ |E|) steps and detects
a cycle.

Proof: let 〈vi1 , . . . , vik〉 be a cycle in G. In each step of the algorithm remains
A[vij ] ≥ 1 for all j = 1, . . . , k. Thus k nodes are never pushed on the stack und
therefore at the end it holds that i ≤ V + 1− k.

The runtime of the second part of the algorithm can become shorter. But the
computation of the in-degree costs already Θ(|V |+ |E|).
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Alternative: Algorithm DFS-Topsort(G, v)
Input: graph G = (V,E), node v, node list L.

if v.color = grey then
stop (Cycle)

if v.color = black then
return

v.color ← grey
foreach w ∈ N+(v) do

DFS-Topsort(G,w)

v.color ← black
Add v to head of L

Call this algorithm for each node that has not yet been visited.
Asymptotic Running Time Θ(|V |+ |E|).
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Adjacency Matrix Product
1 2

4

3

5

B := A2
G =


0 1 1 1 0
0 0 0 0 0
0 1 0 1 1
0 0 0 0 0
0 0 1 0 1


2

=


0 1 0 1 1
0 0 0 0 0
0 0 1 0 1
0 0 0 0 0
0 1 1 1 2
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Interpretation

Theorem

Let G = (V,E) be a graph and k ∈ N. Then the element a(k)i,j of the

matrix (a
(k)
i,j )1≤i,j≤n = (AG)k provides the number of paths with

length k from vi to vj .
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Proof

By Induction.

Base case: straightforward for k = 1. ai,j = a
(1)
i,j .

Hypothesis: claim is true for all k ≤ l
Step (l→ l + 1):

a
(l+1)
i,j =

n∑
k=1

a
(l)
i,k · ak,j

ak,j = 1 iff egde k to j, 0 otherwise. Sum counts the number paths
of length l from node vi to all nodes vk that provide a direct direction
to node vj, i.e. all paths with length l + 1.

i k j

(l)

(l)
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Example: Shortest Path

Question: is there a path from i to j? How long is the shortest path?

Answer: exponentiate AG until for some k < n it holds that a(k)i,j > 0.

k provides the path length of the shortest path. If a(k)i,j = 0 for all
1 ≤ k < n, then there is no path from i to j.
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Example: Number triangles
Question: How many triangular path does an undirected graph
contain?

Answer: Remove all cycles (diagonal entries). Compute A3
G. a(3)ii

determines the number of paths of length 3 that contain i.

There are
6 different permutations of a triangular path. Thus for the number of
triangles:

∑n
i=1 a

(3)
ii /6.

1

2

3 4

5


0 0 1 1 1
0 0 1 1 1
1 1 0 1 1
1 1 1 0 0
1 1 1 0 0


3

=


4 4 8 8 8
4 4 8 8 8
8 8 8 8 8
8 8 8 4 4
8 8 8 4 4

 ⇒ 24/6 = 4
Dreiecke.
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Relation

Given a finite set V

(Binary) Relation R on V : Subset of the cartesian product
V × V = {(a, b)|a ∈ V, b ∈ V }
Relation R ⊆ V × V is called

reflexive, if (v, v) ∈ R for all v ∈ V
symmetric, if (v, w) ∈ R⇒ (w, v) ∈ R
transitive, if (v, x) ∈ R, (x,w) ∈ R⇒ (v, w) ∈ R

The (Reflexive) Transitive Closure R∗ of R is the smallest extension
R ⊆ R∗ ⊆ V × V such that R∗ is reflexive and transitive.
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Graphs and Relations

Graph G = (V,E)
adjacencies AG =̂ Relation E ⊆ V × V over V

reflexive⇔ ai,i = 1 for all i = 1, . . . , n. (loops)
symmetric⇔ ai,j = aj,i for all i, j = 1, . . . , n (undirected)
transitive ⇔ (u, v) ∈ E, (v, w) ∈ E ⇒ (u,w) ∈ E. (reachability)
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Example: Equivalence Relation

Equivalence relation ⇔ symmetric, transitive, reflexive relation ⇔
collection of complete, undirected graphs where each element has a
loop.

Example: Equivalence classes of the num-
bers {0, ..., 7} modulo 3

0
1

2

3

4
5

6

7

1

4

7

2

5
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Reflexive Transitive Closure
Reflexive transitive closure of G ⇔ Reachability relation E∗:
(v, w) ∈ E∗ iff ∃ path from node v to w.


0 1 0 0 1
0 0 0 1 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0


1

2

3 4

5

G = (V,E)

⇒


1 1 1 1 1
0 1 1 1 0
0 1 1 1 0
0 1 1 1 0
0 1 1 1 1



1

2

3 4

5

G∗ = (V,E∗)
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Computation of the Reflexive Transitive Closure

Goal: computation of B = (bij)1≤i,j≤n with bij = 1⇔ (vi, vj) ∈ E∗

Observation: aij = 1 already implies (vi, vj) ∈ E∗.

First idea:

Start with B ← A and set bii = 1 for each i (Reflexivity.).
Iterate over i, j, k and set bij = 1, if bik = 1 and bkj = 1. Then all
paths with lenght 1 and 2 taken into account.
Repeated iteration⇒ all paths with length 1 . . . 4 taken into
account.
dlog2 ne iterations required. ⇒ running time n3 dlog2 ne
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Improvement: Algorithm of Warshall (1962)

Inductive procedure: all paths known over nodes from {vi : i < k}.
Add node vk.

1

2

3 4

5


1 1 0 0 1
0 0 0 1 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
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Algorithm TransitiveClosure(AG)

Input: Adjacency matrix AG = (aij)i,j=1...n

Output: Reflexive transitive closure B = (bij)i,j=1...n of G

B ← AG
for k ← 1 to n do

akk ← 1 // Reflexivity
for i← 1 to n do

for j ← 1 to n do
bij ← max{bij, bik · bkj} // All paths via vk

return B

Runtime Θ(n3).
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Correctness of the Algorithm (Induction)
Invariant (k): all paths via nodes with maximal index < k
considered.

Base case (k = 1): All directed paths (all edges) in AG

considered.
Hypothesis: invariant (k) fulfilled.
Step (k → k + 1): For each path from vi to vj via nodes with
maximal index k: by the hypothesis bik = 1 and bkj = 1. Therefore
in the k-th iteration: bij ← 1.

vi vk vj

(v<k) (v<k)
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Connected Components

Connected components of an undirected graph G: equivalence
classes of the reflexive, transitive closure of G. Connected
component = subgraph G′ = (V ′, E ′), E ′ = {{v, w} ∈ E|v, w ∈ V ′}
with
{{v, w} ∈ E|v ∈ V ′ ∨w ∈ V ′} = E = {{v, w} ∈ E|v ∈ V ′ ∧w ∈ V ′}

1 2

3 4 5

6 7

Graph with connected compo-
nents {1, 2, 3, 4}, {5, 7}, {6}.
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Computation of the Connected Components

Computation of a partitioning of V into pairwise disjoint subsets
V1, . . . , Vk
such that each Vi contains the nodes of a connected component.
Algorithm: depth-first search or breadth-first search. Upon each
new start of DFSSearch(G, v) or BFSSearch(G, v) a new empty
connected component is created and all nodes being traversed
are added.
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24. Shortest Paths

Motivation, Dijkstra’s algorithm on distance graphs, Bellman-Ford
Algorithm, Floyd-Warshall Algorithm

[Ottman/Widmayer, Kap. 9.5 Cormen et al, Kap. 24.1-24.3,
25.2-25.3]
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River Crossing (Missionaries and Cannibals)
Problem: Three cannibals and three missionaries are standing at a
river bank. The available boat can carry two people. At no time may
at any place (banks or boat) be more cannibals than missionaries.
How can the missionaries and cannibals cross the river as fast as
possible? 46

K K K

M M M
B

46There are slight variations of this problem. It is equivalent to the jealous husbands problem.
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Problem as Graph

Enumerate permitted configurations as nodes and connect them
with an edge, when a crossing is allowed. The problem then
becomes a shortest path problem.

Example

links rechts
Missionare 3 0
Kannibalen 3 0
Boot x

links rechts
Missionare 2 1
Kannibalen 2 1
Boot x

Überfahrt möglich

6 Personen am linken Ufer 4 Personen am linken Ufer
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The whole problem as a graph

3 0
3 0
x

3 0
2 1
x

3 0
1 2
x

3 0
0 3
x

2 1
2 1
x

1 2
1 2
x

0 3
1 2
x

0 3
2 1
x

0 3
3 0
x

6 5 4 3 4 2 1 2 3

3 0
2 1

x

3 0
1 2

x

3 0
0 3

x

2 1
2 1

x

1 2
1 2

x

0 3
1 2

x

0 3
2 1

x

0 3
3 0

x

0 3
0 3

x

5 4 3 4 2 1 2 3 0
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Another Example: Mystic Square

Want to find the fastest solution for

2 4 6
7 5 3
1 8

1 2 3
4 5 6
7 8
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Problem as Graph
1 2 3
4 5 6
7 8

1 2 3
4 5 6
7 8

1 2 3
4 5 6

7 8

1 2 3
4 5
7 8 6

1 2 3
4 5
7 8 6

1 2 3
4 8 5
7 6

1 2 3
4 5

7 8 6

2 4 6
7 5 3
1 8
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Route Finding
Provided cities A - Z and Distances between cities.

A

B

C

D

E

F

G

H

I Z

3

1

6

4

1

3

5

7

1

4 5

1

4

1

7 4

3
8

5

10

5

What is the shortest path from A to Z?
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Simplest Case
Constant edge weight 1 (wlog)

Solution: Breadth First Search

S

t
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Weighted Graphs
Given: G = (V,E, c), c : E → R, s, t ∈ V .
Wanted: Length (weight) of a shortest path from s to t.
Path: p = 〈s = v0, v1, . . . , vk = t〉, (vi, vi+1) ∈ E (0 ≤ i < k)
Weight: c(p) :=

∑k−1
i=0 c((vi, vi+1)).

S

t2 1

3

2

1

Path with weight 9
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Shortest Paths

Notation: we write

u
p
 v oder p : u v

and mean a path p from u to v

Notation: δ(u, v) = weight of a shortest path from u to v:

δ(u, v) =

{
∞ no path from u to v
min{c(p) : u

p
 v} otherwise
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Observations (1)

It may happen that a shortest paths does not exist: negative cycles
can occur.

s u

v

w

t
1

1

−1

−1

1

1
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Observations (2)

There can be exponentially many paths.

s

t

(at least 2|V |/2 paths from s to t)

⇒ To try all paths is too inefficient
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Observations (3)
Triangle Inequality

For all s, u, v ∈ V :

δ(s, v) ≤ δ(s, u) + δ(u, v)

s

u

v

A shortest path from s to v cannot be longer than a shortest path from s to v that
has to include u
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Observations (4)

Optimal Substructure

Sub-paths of shortest paths are shortest paths. Let p = 〈v0, . . . , vk〉
be a shortest path from v0 to vk. Then each of the sub-paths
pij = 〈vi, . . . , vj〉 (0 ≤ i < j ≤ k) is a shortest path from vi to vj.

u x y v
p p

q

p

If not, then one of the sub-paths could be shortened which immediately leads to a
contradiction.
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Observations (5)

Shortest paths do not contain cycles

1 Shortest path contains a negative cycle: there is no shortest path,
contradiction

2 Path contains a positive cycle: removing the cycle from the path will reduce
the weight. Contradiction.

3 Path contains a cycle with weight 0: removing the cycle from the path will not
change the weight. Remove the cycle (convention).
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Ingredients of an Algorithm
Wanted: shortest paths from a starting node s.

Weight of the shortest path found so far

ds : V → R

At the beginning: ds[v] =∞ for all v ∈ V .
Goal: ds[v] = δ(s, v) for all v ∈ V .
Predecessor of a node

πs : V → V

Initially πs[v] undefined for each node v ∈ V
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General Algorithm

1 Initialise ds and πs: ds[v] =∞, πs[v] = null for each v ∈ V
2 Set ds[s]← 0

3 Choose an edge (u, v) ∈ E
Relaxiere (u, v):

if ds[v] > d[u] + c(u, v) then
ds[v]← ds[u] + c(u, v)
πs[v]← u

4 Repeat 3 until nothing can be relaxed any more.
(until ds[v] ≤ ds[u] + c(u, v) ∀(u, v) ∈ E)

747



It is Safe to Relax
At any time in the algorithm above it holds

ds[v] ≥ δ(s, v) ∀v ∈ V

In the relaxation step:

δ(s, v) ≤ δ(s, u) + δ(u, v) [Triangle Inequality].
δ(s, u) ≤ ds[u] [Induction Hypothesis].
δ(u, v) ≤ c(u, v) [Minimality of δ]

⇒ ds[u] + c(u, v) ≥ δ(s, v)

⇒ min{ds[v], ds[u] + c(u, v)} ≥ δ(s, v)

748



It is Safe to Relax
At any time in the algorithm above it holds

ds[v] ≥ δ(s, v) ∀v ∈ V

In the relaxation step:

δ(s, v) ≤ δ(s, u) + δ(u, v) [Triangle Inequality].
δ(s, u) ≤ ds[u] [Induction Hypothesis].
δ(u, v) ≤ c(u, v) [Minimality of δ]

⇒ ds[u] + c(u, v) ≥ δ(s, v)

⇒ min{ds[v], ds[u] + c(u, v)} ≥ δ(s, v)

748



Central Question

How / in which order should edges be chosen in above algorithm?
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Special Case: Directed Acyclic Graph (DAG)

DAG⇒ topological sorting returns optimal visiting order

s

v1

v2

v3

v4

v5

v6

v7

v8
2

4

−3

1

−1

2

−2

2

−2

2

3

−1

0

2

4

−1

−2

0

−4

3

−6

Top. Sort: ⇒ Order s, v1, v2, v3, v4, v6, v5, v8, v7.
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Special Case: Directed Acyclic Graph (DAG)

DAG⇒ topological sorting returns optimal visiting order

s

v1

v2

v3

v4

v5

v6

v7

v8
2

4

−3

1

−1

2

−2

2

−2

2

3

−1
0

2

4

−1

−2

0

−4

3

−6

Top. Sort: ⇒ Order s, v1, v2, v3, v4, v6, v5, v8, v7.
750



Assumption (preliminary)

s

a

b

c

d

e

2

3

2

6

1

3

1

1

All weights of G are positive.
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Observation (Dijkstra)

s

u

v

w

4

7

2

t
0

4

7

2

upper bounds

Smallest upper bound
global minimum!
cannot be relaxed further
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Basic Idea

Set V of nodes is partitioned into
the set M of nodes for which a
shortest path from s is already known,
the set R =

⋃
v∈M N+(v) \M of

nodes where a shortest path is not yet
known but that are accessible directly
from M ,
the set U = V \ (M ∪R) of nodes that
have not yet been considered.

s

2

2

5

3

5

2

1

2
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Induction

Induction over |M |: choose nodes from
R with smallest upper bound. Add r to M
and update R and U accordingly.

Correctness: if within the “wavefront” a
node with minimal weight w has been
found then no path over later nodes (pro-
viding weight ≥ d) can provide any im-
provement.

s

2

2

5

3

5

2

1

2
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Algorithm Dijkstra(G, s)
Input: Positively weighted Graph G = (V,E, c), starting point s ∈ V ,
Output: Minimal weights d of the shortest paths and corresponding predecessor

node for each node.

foreach u ∈ V do
ds[u]←∞; πs[u]← null

ds[s]← 0; R← {s}
while R 6= ∅ do

u← ExtractMin(R)
foreach v ∈ N+(u) do

if ds[u] + c(u, v) < ds[v] then
ds[v]← ds[u] + c(u, v)
πs[v]← u
R← R ∪ {v}
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Example

s

a

b

c

d

e

2

3

2

6

1

3

1

1
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s

a

b

c

d

e

2

3

2

6

1

3

1

1

0

∞

∞

∞

∞

∞

s

M = {s}
R = {}

U = {a, b, c, d, e}
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2
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6

1

3

1

1

0

∞

∞

∞

∞

∞
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a

b

2

3
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2
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3

1

1

0

∞

∞

∞

∞

∞
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a

b

2

3
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a
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Implementation: Data Structure for R?
Required operations:

Insert (add to R)
ExtractMin (over R) and DecreaseKey (Update in R)
foreach v ∈ N+(u) do

if ds[u] + c(u, v) < ds[v] then
ds[v]← ds[u] + c(u, v)
πs[v]← u
if v ∈ R then

DecreaseKey(R, v) // Update of a d(v) in the heap of R
else

R← R ∪ {v} // Update of d(v) in the heap of R

MinHeap!
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DecreaseKey

DecreaseKey: climbing in MinHeap in O(log |V |)
Position in the heap?

alternative (a): Store position at the nodes
alternative (b): Hashtable of the nodes
alterantive (c): re-insert node after successful relax operation and mark it
"deleted" once extracted (Lazy Deletion).47

47For lazy deletion a pair of egde (or target node) and distance is required.
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Runtime

|V |× ExtractMin: O(|V | log |V |)
|E|× Insert or DecreaseKey: O(|E| log |V |)
1× Init: O(|V |)
Overal: O(|E| log |V |).

Can be improved when a data structure optimized for ExtractMin and
DecreaseKey ist used (Fibonacci Heap), then runtime
O(|E|+ |V | log |V |).
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General Weighted Graphs
Relaxing Step as before but with a return value:

Relax(u, v) (u, v ∈ V , (u, v) ∈ E)
if ds[u] + c(u, v) < ds[v] then

ds[v]← ds[u] + c(u, v)
πs[v]← u
return true

return false

s

u

v

ds(u)

ds(v)

Problem: cycles with negative weights can shorten the path, a
shortest path is not guaranteed to exist.
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Dynamic Programming Approach (Bellman)

Induction over number of edges ds[i, v]: Shortest path from s to v via
maximally i edges.

ds[i, v] = min{ds[i− 1, v], min
(u,v)∈E

(ds[i− 1, u] + c(u, v))

ds[0, s] = 0, ds[0, v] =∞ ∀v 6= s.
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Dynamic Programming Approach (Bellman)

s · · · v · · · w
0 0 ∞ ∞ ∞ ∞
1 0 ∞ 7 ∞ −2
... ... ... ... ... ...

n− 1 0 · · · · · · · · · · · ·

s

u

v

w

4

7

−2

Algorithm: Iterate over last row until the relaxation steps do not
provide any further changes, maximally n− 1 iterations. If still
changes, then there is no shortest path.

762



Algorithm Bellman-Ford(G, s)
Input: Graph G = (V,E, c), starting point s ∈ V
Output: If return value true, minimal weights d for all shortest paths from s,

otherwise no shortest path.

foreach u ∈ V do
ds[u]←∞; πs[u]← null

ds[s]← 0;
for i← 1 to |V | do

f ← false
foreach (u, v) ∈ E do

f ← f ∨ Relax(u, v)

if f = false then return true

return false;

Runtime O(|E| · |V |).
763



All shortest Paths

Compute the weight of a shortest path for each pair of nodes.

|V |× Application of Dijkstra’s Shortest Path algorithm
O(|V | · |E| · log |V |) (with Fibonacci Heap:
O(|V |2 log |V |+ |V | · |E|))
|V |× Application of Bellman-Ford: O(|E| · |V |2)
There are better ways!
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Induction via node number48

Consider weights of all shortest paths Sk with intermediate nodes in
V k := {v1, . . . , vk}, provided that weights for all shortest paths Sk−1

with intermediate nodes in V k−1 are given.

vk no intermediate node of a shortest path of vi  vj in V k:
Weight of a shortest path vi  vj in Sk−1 is then also weight of
shortest path in Sk.
vk intermediate node of a shortest path vi  vj in V k: Sub-paths
vi  vk and vk  vj contain intermediate nodes only from Sk−1.

48like for the algorithm of the reflexive transitive closure of Warshall
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DP Induction

dk(u, v) = Minimal weight of a path u v with intermediate nodes in
V k

Induktion

dk(u, v) = min{dk−1(u, v), dk−1(u, k) + dk−1(k, v)}(k ≥ 1)

d0(u, v) = c(u, v)
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DP Algorithm Floyd-Warshall(G)

Input: Acyclic Graph G = (V,E, c)
Output: Minimal weights of all paths d
d0 ← c
for k ← 1 to |V | do

for i← 1 to |V | do
for j ← 1 to |V | do

dk(vi, vj) = min{dk−1(vi, vj), d
k−1(vi, vk) + dk−1(vk, vj)}

Runtime: Θ(|V |3)
Remark: Algorithm can be executed with a single matrix d (in place).
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Reweighting

Idea: Reweighting the graph in order to apply Dijkstra’s algorithm.

The following does not work. The graphs are not equivalent in terms
of shortest paths.
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t

u

v

1

1

1

1

−1 c→c+2
=⇒ s’

t’

u’

v’

3

3

3

3

1
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Reweighting

Other Idea: “Potential” (Height) on the nodes

G = (V,E, c) a weighted graph.
Mapping h : V → R

New weights

c̃(u, v) = c(u, v) + h(u)− h(v), (u, v ∈ V )
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Reweighting

Observation: A path p is shortest path in in G = (V,E, c) iff it is
shortest path in in G̃ = (V,E, c̃)

c̃(p) =
k∑
i=1

c̃(vi−1, vi) =
k∑
i=1

c(vi−1, vi) + h(vi−1)− h(vi)

= h(v0)− h(vk) +
k∑
i=1

c(vi−1, vi) = c(p) + h(v0)− h(vk)

Thus c̃(p) minimal in all v0  vk ⇐⇒ c(p) minimal in all v0  vk.

Weights of cycles are invariant: c̃(v0, . . . , vk = v0) = c(v0, . . . , vk = v0)
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Johnson’s Algorithm

Add a new node s 6∈ V :

G′ = (V ′, E ′, c′)

V ′ = V ∪ {s}
E ′ = E ∪ {(s, v) : v ∈ V }

c′(u, v) = c(u, v), u 6= s

c′(s, v) = 0(v ∈ V )
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Johnson’s Algorithm

If no negative cycles, choose as height function the weight of the
shortest paths from s,

h(v) = d(s, v).

For a minimal weight d of a path the following triangular inequality holds:

d(s, v) ≤ d(s, u) + c(u, v).

Substitution yields h(v) ≤ h(u) + c(u, v). Therefore

c̃(u, v) = c(u, v) + h(u)− h(v) ≥ 0.
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Algorithm Johnson(G)
Input: Weighted Graph G = (V,E, c)
Output: Minimal weights of all paths D.

New node s. Compute G′ = (V ′, E ′, c′)
if BellmanFord(G′, s) = false then return “graph has negative cycles”
foreach v ∈ V ′ do

h(v)← d(s, v) // d aus BellmanFord Algorithmus

foreach (u, v) ∈ E ′ do
c̃(u, v)← c(u, v) + h(u)− h(v)

foreach u ∈ V do
d̃(u, ·)← Dijkstra(G̃′, u)
foreach v ∈ V do

D(u, v)← d̃(u, v) + h(v)− h(u)
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Analysis

Runtimes

Computation of G′: O(|V |)
Bellman Ford G′: O(|V | · |E|)
|V |× Dijkstra O(|V | · |E| · log |V |)
(with Fibonacci Heap: O(|V |2 log |V |+ |V | · |E|))

Overal O(|V | · |E| · log |V |)
(O(|V |2 log |V |+ |V | · |E|))
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25. Minimum Spanning Trees

Motivation, Greedy, Algorithm Kruskal, General Rules, ADT
Union-Find, Algorithm Jarnik, Prim, Dijkstra, ,Algorithm Jarnik, Prim,
Dijkstra ,Fibonacci Heaps

[Ottman/Widmayer, Kap. 9.6, 6.2, 6.1, Cormen et al, Kap. 23, 19]
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Problem

Given: Undirected, weighted, connected graph G = (V,E, c).

Wanted: Minimum Spanning Tree T = (V,E ′): connected, cycle-free
subgraph E ′ ⊂ E, such that

∑
e∈E′ c(e) minimal.
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Application Examples

Network-Design: find the cheapest / shortest network that
connects all nodes.
Approximation of a solution of the travelling salesman problem:
find a round-trip, as short as possible, that visits each node once.
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Greedy Procedure

Recall:

Greedy algorithms compute the solution stepwise choosing locally
optimal solutions.
Most problems cannot be solved with a greedy algorithm.
The Minimum Spanning Tree problem can be solved with a greedy
strategy.
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Greedy Idea (Kruskal, 1956)

Construct T by adding the cheapest edge that does not generate a
cycle.
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(Solution is not unique.)
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Algorithm MST-Kruskal(G)

Input: Weighted Graph G = (V,E, c)
Output: Minimum spanning tree with edges A.

Sort edges by weight c(e1) ≤ ... ≤ c(em)
A← ∅
for k = 1 to |E| do

if (V,A ∪ {ek}) acyclic then
A← A ∪ {ek}

return (V,A, c)
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Correctness

At each point in the algorithm (V,A) is a forest, a set of trees.

MST-Kruskal considers each edge ek exactly once and either
chooses or rejects ek
Notation (snapshot of the state in the running algorithm)

A: Set of selected edges
R: Set of rejected edges
U : Set of yet undecided edges
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Cut
A cut of G is a partition S, V − S of V . (S ⊆ V ).

An edge crosses a cut when one of its endpoints is in S and the
other is in V \ S.

S

V \ S
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Rules

1 Selection rule: choose a cut that is not crossed by a selected
edge. Of all undecided edges that cross the cut, select the one
with minimal weight.

2 Rejection rule: choose a cycle without rejected edges. Of all
undecided edges of the cycle, reject those with maximal weight.
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Rules

Kruskal applies both rules:

1 A selected ek connects two connection components, otherwise
it would generate a cycle. ek is minimal, i.e. a cut can be chosen
such that ek crosses and ek has minimal weight.

2 A rejected ek is contained in a cycle. Within the cycle ek has
minimal weight.
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Correctness

Theorem
Every algorithm that applies the rules above in a step-wise manner
until U = ∅ is correct.

Consequence: MST-Kruskal is correct.
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Selection invariant

Invariant: At each step there is a minimal spanning tree that contains
all selected and none of the rejected edges.

If both rules satisfy the invariant, then the algorithm is correct.
Induction:

At beginning: U = E, R = A = ∅. Invariant obviously holds.
Invariant is preserved at each step of the algorithm.
At the end: U = ∅, R ∪ A = E ⇒ (V,A) is a spanning tree.

Proof of the theorem: show that both rules preserve the invariant.
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Selection rule preserves the invariant

At each step there is a minimal spanning tree T that contains all selected and none of the rejected edges.

Choose a cut that is not crossed by a selected edge. Of all undecided edges that cross the cut, select the egde e with
minimal weight.

Case 1: e ∈ T (done)
Case 2: e 6∈ T . Then T ∪ {e} contains a cycle that contains e
Cycle must have a second edge e′ that also crosses the cut.49

Because e′ 6∈ R , e′ ∈ U . Thus c(e) ≤ c(e′) and T ′ = T \ {e′}∪{e}
is also a minimal spanning tree (and c(e) = c(e′)).

49Such a cycle contains at least one node in S and one node in V \ S and therefore at lease to edges between S and
V \ S.
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Rejection rule preserves the invariant

At each step there is a minimal spanning tree T that contains all selected and none of the rejected edges.

Choose a cycle without rejected edges. Of all undecided edges of the cycle, reject an edge e with maximal weight.

Case 1: e 6∈ T (done)
Case 2: e ∈ T . Remove e from T , This yields a cut. This cut must
be crossed by another edge e′ of the cycle. Because c(e′) ≤ c(e) ,
T ′ = T \ {e} ∪ {e′} is also minimal (and c(e) = c(e′)).
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Implementation Issues

Consider a set of sets i ≡ Ai ⊂ V . To identify cuts and cycles:
membership of the both ends of an edge to sets?
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Implementation Issues

General problem: partition (set of subsets) .e.g.
{{1, 2, 3, 9}, {7, 6, 4}, {5, 8}, {10}}
Required: Abstract data type “Union-Find” with the following
operations

Make-Set(i): create a new set represented by i.
Find(e): name of the set i that contains e .
Union(i, j): union of the sets with names i and j.
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Union-Find Algorithm MST-Kruskal(G)
Input: Weighted Graph G = (V,E, c)
Output: Minimum spanning tree with edges A.

Sort edges by weight c(e1) ≤ ... ≤ c(em)
A← ∅
for k = 1 to |V | do

MakeSet(k)

for k = 1 to m do
(u, v)← ek
if Find(u) 6= Find(v) then

Union(Find(u),Find(v))
A← A ∪ ek

else // conceptual: R← R ∪ ek
return (V,A, c)
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Implementation Union-Find

Idea: tree for each subset in the partition,e.g.
{{1, 2, 3, 9}, {7, 6, 4}, {5, 8}, {10}}

1

2 3

9

6

7 4

5

8

10

roots = names (representatives) of the sets,
trees = elements of the sets
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Implementation Union-Find

1

2 3

9

6

7 4

5

8

10

Representation as array:

Index 1 2 3 4 5 6 7 8 9 10
Parent 1 1 1 6 5 6 5 5 3 10
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Implementation Union-Find

Index 1 2 3 4 5 6 7 8 9 10
Parent 1 1 1 6 5 6 5 5 3 10

Make-Set(i) p[i]← i; return i

Find(i) while (p[i] 6= i) do i← p[i]
return i

Union(i, j) 50 p[j]← i;

50i and j need to be names (roots) of the sets. Otherwise use Union(Find(i),Find(j))
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Optimisation of the runtime for Find

Tree may degenerate. Example: Union(8, 7), Union(7, 6),
Union(6, 5), ...

Index 1 2 3 4 5 6 7 8 ..
Parent 1 1 2 3 4 5 6 7 ..

Worst-case running time of Find in Θ(n).
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Optimisation of the runtime for Find

Idea: always append smaller tree to larger tree. Requires additional
size information (array) g

Make-Set(i) p[i]← i; g[i]← 1; return i

Union(i, j)
if g[j] > g[i] then swap(i, j)
p[j]← i
if g[i] = g[j] then g[i]← g[i] + 1

⇒ Tree depth (and worst-case running time for Find) in Θ(log n)

796



[Observation]

Theorem
The method above (union by size) preserves the following property
of the trees: a tree of height h has at least 2h nodes.

Immediate consequence: runtime Find = O(log n).

(not shown in class) 797



[Proof]

Induction: by assumption, sub-trees have at
least 2hi nodes. WLOG: h2 ≤ h1

h2 < h1:

h(T1 ⊕ T2) = h1 ⇒ g(T1 ⊕ T2) ≥ 2h

h2 = h1:

g(T1) ≥ g(T2) ≥ 2h2

⇒g(T1 ⊕ T2) = g(T1) + g(T2) ≥ 2 · 2h2 = 2h(T1⊕T2)

T1

T2

h1

h2

(not shown in class) 798



Further improvement

Link all nodes to the root when Find is called.

Find(i):
j ← i
while (p[i] 6= i) do i← p[i]
while (j 6= i) do

t← j
j ← p[j]
p[t]← i

return i

Cost: amortised nearly constant (inverse of the
Ackermann-function).51

51We do not go into details here.
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Running time of Kruskal’s Algorithm

Sorting of the edges: Θ(|E| log |E|) = Θ(|E| log |V |). 52

Initialisation of the Union-Find data structure Θ(|V |)
|E|× Union(Find(x),Find(y)): O(|E| log |E|) = O(|E| log |V |).

Overal Θ(|E| log |V |).

52because G is connected: |V | ≤ |E| ≤ |V |2
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Algorithm of Jarnik (1930), Prim, Dijkstra (1959)

Idea: start with some v ∈ V and grow the spanning tree from here
by the acceptance rule.

A← ∅
S ← {v0}
for i← 1 to |V | do

Choose cheapest (u, v) mit u ∈ S, v 6∈ S
A← A ∪ {(u, v)}
S ← S ∪ {v} // (Coloring)

S

V \ S

Remark: a union-Find data structure is not required. It suffices to
color nodes when they are added to S.
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Running time

Trivially O(|V | · |E|).
Improvement (like with Dijkstra’s ShortestPath)

With Min-Heap: costs

Initialization (node coloring) O(|V |)
|V |× ExtractMin = O(|V | log |V |),
|E|× Insert or DecreaseKey: O(|E| log |V |),

O(|E| · log |V |)
With a Fibonacci-Heap: O(|E|+ |V | · log |V |).
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Fibonacci Heaps

Data structure for elements with key with operations

MakeHeap(): Return new heap without elements
Insert(H, x): Add x to H
Minimum(H): return a pointer to element m with minimal key
ExtractMin(H): return and remove (from H) pointer to the element
m

Union(H1, H2): return a heap merged from H1 and H2

DecreaseKey(H, x, k): decrease the key of x in H to k
Delete (H, x): remove element x from H
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Advantage over binary heap?

Binary Heap Fibonacci Heap
(worst-Case) (amortized)

MakeHeap Θ(1) Θ(1)
Insert Θ(log n) Θ(1)
Minimum Θ(1) Θ(1)
ExtractMin Θ(log n) Θ(log n)
Union Θ(n) Θ(1)
DecreaseKey Θ(log n) Θ(1)
Delete Θ(log n) Θ(log n)
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Structure

Set of trees that respect the Min-Heap property. Nodes that can be
marked.

23 7 3

18

39

52 38

41

17

30

24

26

35

46

min
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Implementation

Doubly linked lists of nodes with a marked-flag and number of
children. Pointer to minimal Element and number nodes.

23 7 3

18

39

52 38

41
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30
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min
n = 14

0 0 3 2 2

1

0

0 1

0

0 1

0

0
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Simple Operations
MakeHeap (trivial)
Minimum (trivial)
Insert(H, e)

1 Insert new element into root-list
2 If key is smaller than minimum, reset min-pointer.

Union (H1, H2)
1 Concatenate root-lists of H1 and H2

2 Reset min-pointer.

Delete(H, e)
1 DecreaseKey(H, e,−∞)
2 ExtractMin(H)
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ExtractMin

1 Remove minimal node m from the root list
2 Insert children of m into the root list
3 Merge heap-ordered trees with the same degrees until all trees

have a different degree:
Array of degrees a[0, . . . , n] of elements, empty at beginning.
For each element e of the root list:

a Let g be the degree of e
b If a[g] = nil: a[g]← e.
c If e′ := a[g] 6= nil: Merge e with e′ resutling in e′′ and set a[g]← nil.

Set e′′ unmarked. Re-iterate with e← e′′ having degree g + 1.
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DecreaseKey (H, e, k)

1 Remove e from its parent node p (if existing) and decrease the
degree of p by one.

2 Insert(H, e)
3 Avoid too thin trees:

a If p = nil then done.
b If p is unmarked: mark p and done.
c If p marked: unmark p and cut p from its parent pp. Insert (H, p). Iterate

with p← pp.
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Estimation of the degree

Theorem
Let p be a node of a F-Heap H. If child nodes of p are sorted by time
of insertion (Union), then it holds that the ith child node has a
degree of at least i− 2.

Proof: p may have had more children and lost by cutting. When the ith child pi
was linked, p and pi must at least have had degree i− 1. pi may have lost at least
one child (marking!), thus at least degree i− 2 remains.
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Estimation of the degree

Theorem
Every node p with degree k of a F-Heap is the root of a subtree with
at least Fk+1 nodes. (F : Fibonacci-Folge)

Proof: Let Sk be the minimal number of successors of a node of degree k in a
F-Heap plus 1 (the node itself). Clearly S0 = 1, S1 = 2. With the previous theorem
Sk ≥ 2 +

∑k−2
i=0 Si, k ≥ 2 (p and nodes p1 each 1). For Fibonacci numbers it holds

that (induction) Fk ≥ 2 +
∑k

i=2 Fi, k ≥ 2 and thus (also induction) Sk ≥ Fk+2.

Fibonacci numbers grow exponentially fast (O(ϕk)) Consequence: maximal
degree of an arbitrary node in a Fibonacci-Heap with n nodes is O(log n).
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Amortized worst-case analysis Fibonacci Heap

t(H): number of trees in the root list of H, m(H): number of marked
nodes in H not within the root-list, Potential function
Φ(H) = t(H) + 2 ·m(H). At the beginnning Φ(H) = 0. Potential
always non-negative.

Amortized costs:

Insert(H, x): t′(H) = t(H) + 1, m′(H) = m(H), Increase of the
potential: 1, Amortized costs Θ(1) + 1 = Θ(1)

Minimum(H): Amortized costs = real costs = Θ(1)

Union(H1, H2): Amortized costs = real costs = Θ(1)
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Amortized costs of ExtractMin

Number trees in the root list t(H).
Real costs of ExtractMin operation O(log n+ t(H)).
When merged still O(log n) nodes.
Number of markings can only get smaller when trees are merged
Thus maximal amortized costs of ExtractMin

O(log n+ t(H)) +O(log n)−O(t(H)) = O(log n).
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Amortized costs of DecreaseKey

Assumption: DecreaseKey leads to c cuts of a node from its
parent node, real costs O(c)

c nodes are added to the root list
Delete (c− 1) mark flags, addition of at most one mark flag
Amortized costs of DecreaseKey:

O(c) + (t(H) + c) + 2 · (m(H)− c+ 2))− (t(H) + 2m(H)) = O(1)
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26. Flow in Networks

Flow Network, Maximal Flow, Cut, Rest Network, Max-flow Min-cut
Theorem, Ford-Fulkerson Method, Edmonds-Karp Algorithm,
Maximal Bipartite Matching [Ottman/Widmayer, Kap. 9.7, 9.8.1],
[Cormen et al, Kap. 26.1-26.3]
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Motivation

Modelling flow of fluents, components on conveyors, current in
electrical networks or information flow in communication networks.
Connectivity of Communication Networks, Bipartite Matching,
Circulation, Scheduling, Image Segmentation, Baseball
Eliminination...
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Flow Network

Flow network G = (V,E, c): directed
graph with capacities
Antiparallel edges forbidden:
(u, v) ∈ E ⇒ (v, u) 6∈ E.
Model a missing edge (u, v) by
c(u, v) = 0.
Source s and sink t: special nodes.
Every node v is on a path between s
and t : s v  t
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t
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Flow
A Flow f : V ×V → R fulfills the following
conditions:

Bounded Capacity:
For all u, v ∈ V : f(u, v) ≤ c(u, v).
Skew Symmetry:
For all u, v ∈ V : f(u, v) = −f(v, u).
Conservation of flow:
For all u ∈ V \ {s, t}:∑

v∈V

f(u, v) = 0.
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t
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Value of the flow:
|f | =

∑
v∈V f(s, v).

Here |f | = 18.
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How large can a flow possibly be?

Limiting factors: cuts

cut separating s from t: Partition of V into S and T with s ∈ S,
t ∈ T .
Capacity of a cut: c(S, T ) =

∑
v∈S,v′∈T c(v, v

′)

Minimal cut: cut with minimal capacity.
Flow over the cut: f(S, T ) =

∑
v∈S,v′∈T f(v, v′)
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Implicit Summation
Notation: Let U,U ′ ⊆ V

f(U,U ′) :=
∑
u∈U
u′∈U ′

f(u, u′), f(u, U ′) := f({u}, U ′)

Thus

|f | = f(s, V )

f(U,U) = 0

f(U,U ′) = −f(U ′, U)

f(X ∪ Y, Z) = f(X,Z) + f(Y, Z), if X ∩ Y = ∅.
f(R, V ) = 0 if R ∩ {s, t} = ∅. [flow conversation!]
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How large can a flow possibly be?
For each flow and each cut it holds that f(S, T ) = |f |:

f(S, T ) = f(S, V )− f(S, S)︸ ︷︷ ︸
0

= f(S, V )

= f(s, V ) + f(S − {s}︸ ︷︷ ︸
63t,63s

, V ) = |f |.
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Maximal Flow ?
In particular, for each cut (S, T ) of V .

|f | ≤
∑

v∈S,v′∈T

c(v, v′) = c(S, T )

Will discover that equality holds for minS,T c(S, T ).
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c = 23
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Maximal Flow ?

Naive Procedure
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Conclusion: greedy increase of flow does not solve the problem.
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The Method of Ford-Fulkerson
Start with f(u, v) = 0 for all u, v ∈ V
Determine rest network* Gf and expansion path in Gf

Increase flow via expansion path*
Repeat until no expansion path available.

Gf := (V,Ef , cf)

cf(u, v) := c(u, v)− f(u, v) ∀u, v ∈ V
Ef := {(u, v) ∈ V × V |cf(u, v) > 0}

*Will now be explained
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Increase of flow, negative!

Let some flow f in the network be given.

Finding:

Increase of the flow along some edge possible, when flow can be
increased along the edge,i.e. if f(u, v) < c(u, v).
Rest capacity cf(u, v) = c(u, v)− f(u, v) > 0.
Increase of flow against the direction of the edge possible, if flow
can be reduced along the edge, i.e. if f(u, v) > 0.
Rest capacity cf(v, u) = f(u, v) > 0.
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Rest Network

Rest network Gf provided by the edges with positive rest capacity:

s

v1

v2

v3

v4

t

16/8

13/10

12/12

14/10

20/14

4/4

9/4
4/4 7/6

s

v1

v2

v3

v4

t
8

8

3

10

12

4

10

6

14

4

5

4

4 1 6

Rest networks provide the same kind of properties as flow networks with the exception of permitting antiparallel

capacity-edges
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Observation

Theorem
Let G = (V,E, c) be a flow network with source s and sink t and f a
flow in G. Let Gf be the corresponding rest networks and let f ′ be a
flow in Gf . Then f ⊕ f ′ with

(f ⊕ f ′)(u, v) = f(u, v) + f ′(u, v)

defines a flow in G with value |f |+ |f ′|.
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Proof
f ⊕ f ′ defines a flow in G:

capacity limit

(f ⊕ f ′)(u, v) = f(u, v) + f ′(u, v)︸ ︷︷ ︸
≤c(u,v)−f(u,v)

≤ c(u, v)

skew symmetry

(f ⊕ f ′)(u, v) = −f(v, u) +−f ′(v, u) = −(f ⊕ f ′)(v, u)

flow conservation u ∈ V − {s, t}:∑
v∈V

(f ⊕ f ′)(u, v) =
∑
v∈V

f(u, v) +
∑
v∈V

f ′(u, v) = 0
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Proof

Value of f ⊕ f ′

|f ⊕ f ′| = (f ⊕ f ′)(s, V )

=
∑
u∈V

f(s, u) + f ′(s, u)

= f(s, V ) + f ′(s, V )

= |f |+ |f ′|

�
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Augmenting Paths

expansion path p: simple path from s to t in the rest network Gf .

Rest capacity cf(p) = min{cf(u, v) : (u, v) edge in p}
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Flow in Gf

Theorem
The mapping fp : V × V → R,

fp(u, v) =


cf(p) if (u, v) edge in p
−cf(p) if (v, u) edge in p
0 otherwise

provides a flow in Gf with value |fp| = cf(p) > 0.

fp is a flow (easy to show). there is one and only one u ∈ V with
(s, u) ∈ p. Thus |fp| =

∑
v∈V fp(s, v) = fp(s, u) = cf(p).
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Consequence

Strategy for an algorithm:

With an expansion path p in Gf the flow f ⊕ fp defines a new flow
with value |f ⊕ fp| = |f |+ |fp| > |f |.
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Max-Flow Min-Cut Theorem

Theorem
Let f be a flow in a flow network G = (V,E, c) with source s and
sink t. The following statementsa are equivalent:

1 f is a maximal flow in G
2 The rest network Gf does not provide any expansion paths
3 It holds that |f | = c(S, T ) for a cut (S, T ) of G.
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Proof

(3)⇒ (1):
It holds that |f | ≤ c(S, T ) for all cuts S, T . From |f | = c(S, T ) it
follows that |f | is maximal.
(1)⇒ (2):
f maximal Flow in G. Assumption: Gf has some expansion path
|f ⊕ fp| = |f |+ |fp| > |f |. Contradiction.
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Proof (2)⇒ (3)

Assumption: Gf has no expansion path

Define S = {v ∈ V : there is a path s v in Gf}.
(S, T ) := (S, V \ S) is a cut: s ∈ S, t ∈ T .

Let u ∈ S and v ∈ T . Then cf(u, v) = 0, also
cf(u, v) = c(u, v)− f(u, v) = 0. Somit f(u, v) = c(u, v).

Thus

|f | = f(S, T ) =
∑
u∈S

∑
v∈T

f(u, v) =
∑
u∈S

∑
v∈T

c(u, v) = C(S, T ).

�
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Algorithm Ford-Fulkerson(G, s, t)

Input: Flow network G = (V,E, c)
Output: Maximal flow f .

for (u, v) ∈ E do
f(u, v)← 0

while Exists path p : s t in rest network Gf do
cf (p)← min{cf (u, v) : (u, v) ∈ p}
foreach (u, v) ∈ p do

f(u, v)← f(u, v) + cf (p)
f(v, u)← f(v, u)− cf (p)
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Practical Consideration

In an implementation of the Ford-Fulkerson algorithm the negative
flow egdes are usually not stored because their value always equals
the negated value of the antiparallel edge.

f(u, v)← f(u, v) + cf (p)
f(v, u)← f(v, u)− cf (p)

is then transformed to
if (u, v) ∈ E then

f(u, v)← f(u, v) + cf (p)
else

f(v, u)← f(v, u)− cf (p)
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Analysis

The Ford-Fulkerson algorithm does not
necessarily have to converge for irrational
capacities. For integers or rational numbers it
terminates.
For an integer flow, the algorithms requires
maximally |fmax| iterations of the while loop
(because the flow increases minimally by 1).
Search a single increasing path (e.g. with
DFS or BFS) O(|E|) Therefore O(fmax|E|).

s

u

v

t

1000

1000

1

1000

1000

With an unlucky choice the al-
gorithm may require up to 2000
iterations here.
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Edmonds-Karp Algorithm

Choose in the Ford-Fulkerson-Method for finding a path in Gf the
expansion path of shortest possible length (e.g. with BFS)

839



Edmonds-Karp Algorithm

Theorem
When the Edmonds-Karp algorithm is applied to some integer
valued flow network G = (V,E) with source s and sink t then the
number of flow increases applied by the algorithm is in O(|V | · |E|).
⇒ Overal asymptotic runtime: O(|V | · |E|2)

[Without proof]
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Application: maximal bipartite matching
Given: bipartite undirected graph G = (V,E).

Matching M : M ⊆ E such that |{m ∈M : v ∈ m}| ≤ 1 for all v ∈ V .

Maximal Matching M : Matching M , such that |M | ≥ |M ′| for each
matching M ′.
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Corresponding flow network
Construct a flow network that corresponds to the partition L,R of a
bipartite graph with source s and sink t, with directed edges from s
to L, from L to R and from R to t. Each edge has capacity 1.

L R

s t

L R
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Integer number theorem

Theorem
If the capacities of a flow network are integers, then the maximal
flow generated by the Ford-Fulkerson method provides integer
numbers for each f(u, v), u, v ∈ V .

[without proof]

Consequence: Ford-Fulkerson generates for a flow network that
corresponds to a bipartite graph a maximal matching
M = {(u, v) : f(u, v) = 1}.
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27. Parallel Programming I

Moore’s Law and the Free Lunch, Hardware Architectures, Parallel
Execution, Flynn’s Taxonomy, Multi-Threading, Parallelism and
Concurrency, C++ Threads, Scalability: Amdahl and Gustafson,
Data-parallelism, Task-parallelism, Scheduling

[Task-Scheduling: Cormen et al, Kap. 27] [Concurrency, Scheduling:
Williams, Kap. 1.1 – 1.2]
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The Free Lunch

The free lunch is over 53

53"The Free Lunch is Over", a fundamental turn toward concurrency in software, Herb Sutter, Dr. Dobb’s Journal, 2005
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Moore’s Law

Gordon E. Moore (1929)Observation by Gordon E. Moore:

The number of transistors on integrated circuits doubles
approximately every two years.
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For a long time...

the sequential execution became faster ("Instruction Level
Parallelism", "Pipelining", Higher Frequencies)
more and smaller transistors = more performance
programmers simply waited for the next processor generation
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Today

the frequency of processors does not increase significantly and
more (heat dissipation problems)
the instruction level parallelism does not increase significantly any
more
the execution speed is dominated by memory access times (but
caches still become larger and faster)
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Trends
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Multicore

Use transistors for more compute cores
Parallelism in the software
Programmers have to write parallel programs to benefit from new
hardware
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Forms of Parallel Execution

Vectorization
Pipelining
Instruction Level Parallelism
Multicore / Multiprocessing
Distributed Computing
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Vectorization

Parallel Execution of the same operations on elements of a vector
(register)

x

y
+ x+ yskalar

x1 x2 x3 x4

y1 y2 y3 y4
+ x1 + y1 x2 + y2 x3 + y3 x4 + y4vector

x1 x2 x3 x4

y1 y2 y3 y4
fma 〈x, y〉vector
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Pipelining in CPUs

Fetch Decode Execute Data Fetch Writeback

Multiple Stages

Every instruction takes 5 time units (cycles)
In the best case: 1 instruction per cycle, not always possible
(“stalls”)

Paralellism (several functional units) leads to faster execution.
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ILP – Instruction Level Parallelism

Modern CPUs provide several hardware units and execute
independent instructions in parallel.

Pipelining
Superscalar CPUs (multiple instructions per cycle)
Out-Of-Order Execution (Programmer observes the sequential
execution)
Speculative Execution ()
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27.2 Hardware Architectures
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Shared vs. Distributed Memory

CPU CPU CPU

Shared Memory

Mem

CPU CPU CPU

Mem Mem Mem

Distributed Memory

Interconnect
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Shared vs. Distributed Memory Programming

Categories of programming interfaces

Communication via message passing
Communication via memory sharing

It is possible:

to program shared memory systems as distributed systems (e.g. with
message passing MPI)
program systems with distributed memory as shared memory systems
(e.g. partitioned global address space PGAS)
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Shared Memory Architectures

Multicore (Chip Multiprocessor - CMP)
Symmetric Multiprocessor Systems (SMP)
Simultaneous Multithreading (SMT = Hyperthreading)

one physical core, Several Instruction Streams/Threads: several virtual
cores
Between ILP (several units for a stream) and multicore (several units for
several streams). Limited parallel performance.

Non-Uniform Memory Access (NUMA)

Same programming interface
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Overview

CMP SMP NUMA

860



An Example

AMD Bulldozer: be-
tween CMP and SMT

2x integer core
1x floating point core
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Flynn’s Taxonomy

SI = Single Instruction
MI = Multiple Instructions

SD = Single Data
MD = Multiple Data

Single-Core Fehlertoleranz

Vector Computing / GPU Multi-Core
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MD = Multiple Data

Single-Core Fehlertoleranz

Vector Computing / GPU Multi-Core
862



Massively Parallel Hardware
[General Purpose] Graphical Processing
Units ([GP]GPUs)

Revolution in High Performance
Computing

Calculation 4.5 TFlops vs. 500 GFlops
Memory Bandwidth 170 GB/s vs. 40
GB/s

SIMD

High data parallelism
Requires own programming model. Z.B.
CUDA / OpenCL
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27.3 Multi-Threading, Parallelism and Concurrency
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Processes and Threads

Process: instance of a program

each process has a separate context, even a separate address space
OS manages processes (resource control, scheduling, synchronisation)

Threads: threads of execution of a program

Threads share the address space
fast context switch between threads
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Why Multithreading?

Avoid “polling” resources (files, network, keyboard)
Interactivity (e.g. responsivity of GUI programs)
Several applications / clients in parallel
Parallelism (performance!)
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Multithreading conceptually

Thread 1

Thread 2

Thread 3

Single Core

Thread 1

Thread 2

Thread 3

Multi Core
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Thread switch on one core (Preemption)
thread 1 thread 2

idle
busy

Store State t1
Interrupt

Load State t2

busyidle

Store State t2
Interrupt

Load State t1
busy

idle
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Parallelität vs. Concurrency
Parallelism: Use extra resources to solve a problem faster
Concurrency: Correctly and efficiently manage access to shared
resources
Begriffe überlappen offensichtlich. Bei parallelen Berechnungen
besteht fast immer Synchronisierungsbedarf.

Parallelism

Work

Resources

Concurrency

Requests

Resources
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Thread Safety

Thread Safety means that in a concurrent application of a program
this always yields the desired results.

Many optimisations (Hardware, Compiler) target towards the correct
execution of a sequential program.

Concurrent programs need an annotation that switches off certain
optimisations selectively.
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Example: Caches

Access to registers faster than to
shared memory.
Principle of locality.
Use of Caches (transparent to the
programmer)

If and how far a cache coherency is guar-
anteed depends on the used system.
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27.4 C++ Threads
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C++11 Threads
#include <iostream>
#include <thread>

void hello(){
std::cout << "hello\n";

}

int main(){
// create and launch thread t
std::thread t(hello);
// wait for termination of t
t.join();
return 0;

}

create thread

hello

join
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C++11 Threads
void hello(int id){

std::cout << "hello from " << id << "\n";
}

int main(){
std::vector<std::thread> tv(3);
int id = 0;
for (auto & t:tv)

t = std::thread(hello, ++id);
std::cout << "hello from main \n";
for (auto & t:tv)

t.join();
return 0;

}

create threads

join
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Nondeterministic Execution!

One execution:
hello from main
hello from 2
hello from 1
hello from 0

Other execution:
hello from 1
hello from main
hello from 0
hello from 2

Other execution:
hello from main
hello from 0
hello from hello from 1
2
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Technical Detail

To let a thread continue as background thread:
void background();

void someFunction(){
...
std::thread t(background);
t.detach();
...

} // no problem here, thread is detached
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More Technical Details

With allocating a thread, reference parameters are copied, except
explicitly std::ref is provided at the construction.
Can also run Functor or Lambda-Expression on a thread
In exceptional circumstances, joining threads should be executed
in a catch block

More background and details in chapter 2 of the book C++ Concurrency in Action,
Anthony Williams, Manning 2012. also available online at the ETH library.
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27.5 Scalability: Amdahl and Gustafson
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Scalability

In parallel Programming:

Speedup when increasing number p of processors
What happens if p→∞?
Program scales linearly: Linear speedup.
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Parallel Performance

Given a fixed amount of computing work W (number computing
steps)

Sequential execution time T1
Parallel execution time on p CPUs

Perfection: Tp = T1/p

Performance loss: Tp > T1/p (usual case)
Sorcery: Tp < T1/p
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Parallel Speedup

Parallel speedup Sp on p CPUs:

Sp =
W/Tp
W/T1

=
T1
Tp
.

Perfection: linear speedup Sp = p

Performance loss: sublinear speedup Sp < p (the usual case)
Sorcery: superlinear speedup Sp > p

Efficiency:Ep = Sp/p
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Reachable Speedup?
Parallel Program

Parallel Part Seq. Part

80% 20%

T1 = 10

T8 =?

T8 =
10 · 0.8

8
+ 10 · 0.2 = 1 + 2 = 3

S8 =
T1
T8

=
10

3
≈ 3.3 < 8 (!)
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Amdahl’s Law: Ingredients

Computational work W falls into two categories

Paralellisable part Wp

Not parallelisable, sequential part Ws

Assumption: W can be processed sequentially by one processor in
W time units (T1 = W ):

T1 = Ws +Wp

Tp ≥ Ws +Wp/p
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Amdahl’s Law

Sp =
T1
Tp
≤ Ws +Wp

Ws +
Wp

p
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Amdahl’s Law

With sequential, not parallelizable fraction λ: Ws = λW ,
Wp = (1− λ)W :

Sp ≤
1

λ+ 1−λ
p

Thus
S∞ ≤

1

λ

885



Amdahl’s Law

With sequential, not parallelizable fraction λ: Ws = λW ,
Wp = (1− λ)W :

Sp ≤
1

λ+ 1−λ
p

Thus
S∞ ≤

1

λ

885



Illustration Amdahl’s Law

p = 1

t

Ws

Wp

p = 2

Ws

Wp

p = 4

Ws

Wp

T1
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Amdahl’s Law is bad news

All non-parallel parts of a program can cause problems
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Gustafson’s Law

Fix the time of execution
Vary the problem size.
Assumption: the sequential part stays constant, the parallel part
becomes larger
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Illustration Gustafson’s Law
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Gustafson’s Law
Work that can be executed by one processor in time T :

Ws +Wp = T

Work that can be executed by p processors in time T :

Ws + p ·Wp = λ · T + p · (1− λ) · T

Speedup:

Sp =
Ws + p ·Wp

Ws +Wp
= p · (1− λ) + λ

= p− λ(p− 1)
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Amdahl vs. Gustafson

Amdahl Gustafson

p = 4 p = 4
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Amdahl vs. Gustafson

The laws of Amdahl and Gustafson are models of speedup for
parallelization.

Amdahl assumes a fixed relative sequential portion, Gustafson
assumes a fixed absolute sequential part (that is expressed as
portion of the work W1 and that does not increase with increasing
work).

The two models do not contradict each other but describe the
runtime speedup of different problems and algorithms.
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27.6 Task- and Data-Parallelism
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Parallel Programming Paradigms

Task Parallel: Programmer explicitly defines parallel tasks.
Data Parallel: Operations applied simulatenously to an aggregate
of individual items.
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Example Data Parallel (OMP)

double sum = 0, A[MAX];
#pragma omp parallel for reduction (+:ave)
for (int i = 0; i< MAX; ++i)

sum += A[i];
return sum;
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Example Task Parallel (C++11 Threads/Futures)

double sum(Iterator from, Iterator to)
{

auto len = from − to;
if (len > threshold){

auto future = std::async(sum, from, from + len / 2);
return sumS(from + len / 2, to) + future.get();

}
else

return sumS(from, to);
}
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Work Partitioning and Scheduling

Partitioning of the work into parallel task (programmer or system)

One task provides a unit of work
Granularity?

Scheduling (Runtime System)

Assignment of tasks to processors
Goal: full resource usage with little overhead
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Example: Fibonacci P-Fib

if n ≤ 1 then
return n

else
x← spawn P-Fib(n− 1)
y ← spawn P-Fib(n− 2)
sync
return x+ y;
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P-Fib Task Graph
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P-Fib Task Graph
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Question

Each Node (task) takes 1 time unit.
Arrows depict dependencies.
Minimal execution time when number
of processors =∞?

critical path
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Performance Model

p processors
Dynamic scheduling
Tp: Execution time on p processors
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Performance Model

Tp: Execution time on p processors
T1: work: time for executing total work
on one processor
T1/Tp: Speedup
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Performance Model

T∞: span: critical path, execution time
on∞ processors. Longest path from
root to sink.
T1/T∞: Parallelism: wider is better
Lower bounds:

Tp ≥ T1/p Work law
Tp ≥ T∞ Span law
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Greedy Scheduler

Greedy scheduler: at each time it schedules as many as availbale
tasks.
Theorem
On an ideal parallel computer with p processors, a greedy scheduler
executes a multi-threaded computation with work T1 and span T∞ in
time

Tp ≤ T1/p+ T∞

905



Beispiel
Assume p = 2.

Tp = 5 Tp = 4
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Proof of the Theorem

Assume that all tasks provide the same amount of work.

Complete step: p tasks are available.

incomplete step: less than p steps available.

Assume that number of complete steps larger than bT1/pc. Executed work
≥ bT1/pc · p+ p = T1 − T1 mod p+ p > T1. Contradiction. Therefore maximally
bT1/pc complete steps.

We now consider the graph of tasks to be done. Any maximal (critical) path starts
with a node t with deg−(t) = 0. An incomplete step executes all available tasks t
with deg−(t) = 0 and thus decreases the length of the span. Number incomplete
steps thus limited by T∞.
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Consequence

if p� T1/T∞, i.e. T∞ � T1/p, then Tp ≈ T1/p.

Example Fibonacci
T1(n)/T∞(n) = Θ(φn/n). For moderate sizes of n we can use a lot
of processors yielding linear speedup.
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Granularity: how many tasks?
#Tasks = #Cores?

Problem if a core cannot be fully used
Example: 9 units of work. 3 core.
Scheduling of 3 sequential tasks.

Exclusive utilization:

P1

P2

P3

s1

s2

s3

Execution Time: 3 Units

Foreign thread disturbing:

P1

P2

P3

s1

s2 s1

s3

Execution Time: 5 Units

909



Granularity: how many tasks?
#Tasks = #Cores?
Problem if a core cannot be fully used

Example: 9 units of work. 3 core.
Scheduling of 3 sequential tasks.

Exclusive utilization:

P1

P2

P3

s1

s2

s3

Execution Time: 3 Units

Foreign thread disturbing:

P1

P2

P3

s1

s2 s1

s3

Execution Time: 5 Units

909



Granularity: how many tasks?
#Tasks = #Cores?
Problem if a core cannot be fully used
Example: 9 units of work. 3 core.
Scheduling of 3 sequential tasks.

Exclusive utilization:

P1

P2

P3

s1

s2

s3

Execution Time: 3 Units

Foreign thread disturbing:

P1

P2

P3

s1

s2 s1

s3

Execution Time: 5 Units

909



Granularity: how many tasks?
#Tasks = #Cores?
Problem if a core cannot be fully used
Example: 9 units of work. 3 core.
Scheduling of 3 sequential tasks.

Exclusive utilization:

P1

P2

P3

s1

s2

s3

Execution Time: 3 Units

Foreign thread disturbing:

P1

P2

P3

s1

s2 s1

s3

Execution Time: 5 Units
909



Granularity: how many tasks?
#Tasks = Maximum?
Example: 9 units of work. 3 cores.
Scheduling of 9 sequential tasks.

Exclusive utilization:

P1

P2

P3

s1

s2

s3

s4

s5

s6

s7

s8

s9

Execution Time: 3 + ε Units

Foreign thread disturbing:

P1

P2

P3

s1

s2

s3

s4 s5

s6 s7

s8

s9

Execution Time: 4 Units. Full uti-
lization.
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Granularity: how many tasks?

#Tasks = Maximum?
Example: 106 tiny units of work.

P1

P2

P3

Execution time: dominiert vom Overhead.
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Granularity: how many tasks?

Answer: as many tasks as possible with a sequential cutoff such that
the overhead can be neglected.
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Example: Parallelism of Mergesort

Work (sequential runtime) of
Mergesort T1(n) = Θ(n log n).
Span T∞(n) = Θ(n)

Parallelism T1(n)/T∞(n) = Θ(log n)
(Maximally achievable speedup with
p =∞ processors)

split

merge
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28. Parallel Programming II

Shared Memory, Concurrency, Excursion: lock algorithm (Peterson),
Mutual Exclusion Race Conditions [C++ Threads: Williams, Kap.
2.1-2.2], [C++ Race Conditions: Williams, Kap. 3.1] [C++ Mutexes:
Williams, Kap. 3.2.1, 3.3.3]
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28.1 Shared Memory, Concurrency
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Sharing Resources (Memory)

Up to now: fork-join algorithms: data parallel or
divide-and-conquer
Simple structure (data independence of the threads) to avoid race
conditions
Does not work any more when threads access shared memory.

916



Managing state

Managing state: Main challenge of concurrent programming.

Approaches:

Immutability, for example constants.
Isolated Mutability, for example thread-local variables, stack.
Shared mutable data, for example references to shared memory,
global variables
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Protect the shared state

Method 1: locks, guarantee exclusive access to shared data.
Method 2: lock-free data structures, exclusive access with a much
finer granularity.
Method 3: transactional memory (not treated in class)

918



Canonical Example

class BankAccount {
int balance = 0;

public:
int getBalance(){ return balance; }
void setBalance(int x) { balance = x; }
void withdraw(int amount) {

int b = getBalance();
setBalance(b − amount);

}
// deposit etc.

};

(correct in a single-threaded world)
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Bad Interleaving

Parallel call to widthdraw(100) on the same account

Thread 1
int b = getBalance();

setBalance(b−amount);

Thread 2

int b = getBalance();

setBalance(b−amount);
t
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Tempting Traps

WRONG:
void withdraw(int amount) {

int b = getBalance();
if (b==getBalance())

setBalance(b − amount);
}

Bad interleavings cannot be solved with a repeated reading
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Tempting Traps

also WRONG:
void withdraw(int amount) {

setBalance(getBalance() − amount);
}

Assumptions about atomicity of operations are almost always wrong
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Mutual Exclusion

We need a concept for mutual exclusion

Only one thread may execute the operation withdraw on the same
account at a time.

The programmer has to make sure that mutual exclusion is used.
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More Tempting Traps
class BankAccount {

int balance = 0;
bool busy = false;

public:
void withdraw(int amount) {

while (busy); // spin wait
busy = true;
int b = getBalance();
setBalance(b − amount);
busy = false;

}

// deposit would spin on the same boolean
};

does not work!
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Just moved the problem!

Thread 1

while (busy); //spin

busy = true;

int b = getBalance();

setBalance(b − amount);

Thread 2

while (busy); //spin

busy = true;

int b = getBalance();
setBalance(b − amount);

t
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How ist this correctly implemented?

We use locks (mutexes) from libraries
They use hardware primitives, Read-Modify-Write (RMW)
operations that can, in an atomic way, read and write depending
on the read result.
Without RMW Operations the algorithm is non-trivial and requires
at least atomic access to variable of primitive type.
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28.2 Excursion: lock algorithm
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Alice’s Cat vs. Bob’s Dog
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Required: Mutual Exclusion

929



Required: Mutual Exclusion
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Required: No Lockout When Free
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Communication Types

Transient: Parties participate at the same time

Persistent: Parties participate at different times

Mutual exclusion: persistent communication
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Communication Idea 1
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Access Protocol
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Problem!
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Communication Idea 2
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Access Protocol 2.1
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Access Protocol 2.1
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Different Scenario
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Problem: No Mutual Exclusion
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Checking Flags Twice: Deadlock
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Access Protocol 2.2
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Access Protocol 2.2
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Access Protocol 2.2:provably correct
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Weniger schwerwiegend: Starvation
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Final Solution
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Final Solution
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General Problem of Locking remains
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Peterson’s Algorithm54

for two processes is provable correct and free from starvation

non−critical section

flag[me] = true // I am interested
victim = me // but you go first
// spin while we are both interested and you go first:
while (flag[you] && victim == me) {};

critical section

flag[me] = false

The code assumes that the access to flag
/ victim is atomic and particularly lineariz-
able or sequential consistent. An assump-
tion that – as we will see below – is not nec-
essarily given for normal variables. The
Peterson-lock is not used on modern hard-
ware.

54not relevant for the exam 945
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28.3 Mutual Exclusion
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Critical Sections and Mutual Exclusion

Critical Section
Piece of code that may be executed by at most one process (thread)
at a time.

Mutual Exclusion
Algorithm to implement a critical section

acquire_mutex(); // entry algorithm\\
... // critical section
release_mutex(); // exit algorithm
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Required Properties of Mutual Exclusion

Correctness (Safety)
At most one process executes the
critical section code

Liveness
Acquiring the mutex must terminate in
finite time when no process executes
in the critical section
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Almost Correct

class BankAccount {
int balance = 0;
std::mutex m; // requires #include <mutex>

public:
...
void withdraw(int amount) {

m.lock();
int b = getBalance();
setBalance(b − amount);
m.unlock();

}
};

What if an exception occurs?
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RAII Approach

class BankAccount {
int balance = 0;
std::mutex m;

public:
...
void withdraw(int amount) {

std::lock_guard<std::mutex> guard(m);
int b = getBalance();
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} // Destruction of guard leads to unlocking m
};

What about getBalance / setBalance?
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Reentrant Locks

Reentrant Lock (recursive lock)

remembers the currently affected thread;
provides a counter

Call of lock: counter incremented
Call of unlock: counter is decremented. If counter = 0 the lock is released.
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Account with reentrant lock
class BankAccount {

int balance = 0;
std::recursive_mutex m;
using guard = std::lock_guard<std::recursive_mutex>;

public:
int getBalance(){ guard g(m); return balance;
}
void setBalance(int x) { guard g(m); balance = x;
}
void withdraw(int amount) { guard g(m);

int b = getBalance();
setBalance(b − amount);

}
};
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28.4 Race Conditions
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Race Condition

A race condition occurs when the result of a computation depends
on scheduling.
We make a distinction between bad interleavings and data races
Bad interleavings can occur even when a mutex is used.

954



Example: Stack

Stack with correctly synchronized access:

template <typename T>
class stack{

...
std::recursive_mutex m;
using guard = std::lock_guard<std::recursive_mutex>;

public:
bool isEmpty(){ guard g(m); ... }
void push(T value){ guard g(m); ... }
T pop(){ guard g(m); ...}

};
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Peek

Forgot to implement peek. Like this?

template <typename T>
T peek (stack<T> &s){

T value = s.pop();
s.push(value);
return value;

}

not thread-safe!

Despite its questionable style the code is correct in a sequential
world. Not so in concurrent programming.
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Bad Interleaving!

Initially empty stack s, only shared between threads 1 and 2.

Thread 1 pushes a value and checks that the stack is then
non-empty. Thread 2 reads the topmost value using peek().

Thread 1

s.push(5);

assert(!s.isEmpty());

Thread 2

int value = s.pop();

s.push(value);
return value;

t
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The fix

Peek must be protected with the same lock as the other access
methods
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Bad Interleavings

Race conditions as bad interleavings can happen on a high level of
abstraction

In the following we consider a different form of race condition: data
race.
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How about this?

class counter{
int count = 0;
std::recursive_mutex m;
using guard = std::lock_guard<std::recursive_mutex>;

public:
int increase(){

guard g(m); return ++count;
}
int get(){

return count;
}

}

not thread-safe!
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How about this?

class counter{
int count = 0;
std::recursive_mutex m;
using guard = std::lock_guard<std::recursive_mutex>;

public:
int increase(){

guard g(m); return ++count;
}
int get(){

return count;
}

}

not thread-safe!
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Why wrong?

It looks like nothing can go wrong because the update of count
happens in a “tiny step”.

But this code is still wrong and depends on
language-implementation details you cannot assume.

This problem is called Data-Race

Moral: Do not introduce a data race, even if every interleaving you
can think of is correct. Don’t make assumptions on the memory
order.
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A bit more formal

Data Race (low-level Race-Conditions) Erroneous program behavior
caused by insufficiently synchronized accesses of a shared resource
by multiple threads, e.g. Simultaneous read/write or write/write of
the same memory location

Bad Interleaving (High Level Race Condition) Erroneous program
behavior caused by an unfavorable execution order of a
multithreaded algorithm, even if that makes use of otherwise well
synchronized resources.
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We look deeper
class C {

int x = 0;
int y = 0;

public:
void f() {

x = 1;
y = 1;

}
void g() {

int a = y;
int b = x;
assert(b >= a);

}
}

A
B

C
D

Can this fail?

There is no interleaving of f and g that
would cause the assertion to fail:

A B C D X

A C B D X

A C D B X

C A B D X

C C D B X

C D A B X

It can nevertheless fail!
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C
D

Can this fail?

There is no interleaving of f and g that
would cause the assertion to fail:

A B C D X

A C B D X

A C D B X

C A B D X

C C D B X

C D A B X

It can nevertheless fail!
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One Resason: Memory Reordering

Rule of thumb: Compiler and hardware allowed to make changes
that do not affect the semantics of a sequentially executed program

void f() {
x = 1;
y = x+1;
z = x+1;

}

⇐⇒
sequentially equivalent

void f() {
x = 1;
z = x+1;
y = x+1;

}
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From a Software-Perspective

Modern compilers do not give guarantees that a global ordering of
memory accesses is provided as in the sourcecode:

Some memory accesses may be even optimized away completely!
Huge potential for optimizations – and for errors, when you make
the wrong assumptions
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Example: Self-made Rendevouz

int x; // shared

void wait(){
x = 1;
while(x == 1);

}

void arrive(){
x = 2;

}

Assume thread 1 calls wait, later thread 2
calls arrive. What happens?

thread 1

thread 2

wait

arrive
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Compilation

Source
int x; // shared

void wait(){
x = 1;
while(x == 1);

}

void arrive(){
x = 2;

}

Without optimisation

wait:
movl $0x1, x
test:
mov x, %eax
cmp $0x1, %eax
je test

arrive:
movl $0x2, x

With optimisation

wait:
movl $0x1, x
test:
jmp test

arrive
movl $0x2, x

if equal

always
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Hardware Perspective

Modern multiprocessors do not enforce global ordering of all
instructions for performance reasons:

Most processors have a pipelined architecture and can execute
(parts of) multiple instructions simultaneously. They can even
reorder instructions internally.
Each processor has a local cache, and thus loads/stores to shared
memory can become visible to other processors at different times
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Memory Hierarchy

Registers

L1 Cache

L2 Cache

...

System Memory slow,high latency,low cost,high capacity

fast,low latency, high cost, low capacity
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An Analogy
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Schematic
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Memory Models

When and if effects of memory operations become visible for
threads, depends on hardware, runtime system and programming
language.

A memory model (e.g. that of C++) provides minimal guarantees for
the effect of memory operations

leaving open possibilities for optimisation
containing guidelines for writing thread-safe programs

For instance, C++ provides guarantees when synchronisation with a
mutex is used.
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Fixed
class C {

int x = 0;
int y = 0;
std::mutex m;

public:
void f() {

m.lock(); x = 1; m.unlock();
m.lock(); y = 1; m.unlock();

}
void g() {

m.lock(); int a = y; m.unlock();
m.lock(); int b = x; m.unlock();
assert(b >= a); // cannot fail

}
};
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Atomic
Here also possible:
class C {

std::atomic_int x{0}; // requires #include <atomic>
std::atomic_int y{0};

public:
void f() {

x = 1;
y = 1;

}
void g() {

int a = y;
int b = x;
assert(b >= a); // cannot fail

}
}; 974



29. Parallel Programming III

Deadlock and Starvation Producer-Consumer, The concept of the
monitor, Condition Variables [Deadlocks : Williams, Kap. 3.2.4-3.2.5]
[Condition Variables: Williams, Kap. 4.1]
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Deadlock Motivation
class BankAccount {

int balance = 0;
std::recursive_mutex m;
using guard = std::lock_guard<std::recursive_mutex>;

public:
...
void withdraw(int amount) { guard g(m); ... }
void deposit(int amount){ guard g(m); ... }

void transfer(int amount, BankAccount& to){
guard g(m);
withdraw(amount);
to.deposit(amount);

}
};

Problem?
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Deadlock Motivation
Suppose BankAccount instances x and y

Thread 1: x.transfer(1,y);

acquire lock for x

withdraw from x

acquire lock for y

Thread 2: y.transfer(1,x);

acquire lock for y

withdraw from y

acquire lock for x

977



Deadlock Motivation
Suppose BankAccount instances x and y

Thread 1: x.transfer(1,y);

acquire lock for x

withdraw from x

acquire lock for y

Thread 2: y.transfer(1,x);

acquire lock for y

withdraw from y

acquire lock for x

977



Deadlock Motivation
Suppose BankAccount instances x and y

Thread 1: x.transfer(1,y);

acquire lock for x

withdraw from x

acquire lock for y

Thread 2: y.transfer(1,x);

acquire lock for y

withdraw from y

acquire lock for x

977



Deadlock Motivation
Suppose BankAccount instances x and y

Thread 1: x.transfer(1,y);

acquire lock for x

withdraw from x

acquire lock for y

Thread 2: y.transfer(1,x);

acquire lock for y

withdraw from y

acquire lock for x

977



Deadlock Motivation
Suppose BankAccount instances x and y

Thread 1: x.transfer(1,y);

acquire lock for x

withdraw from x

acquire lock for y

Thread 2: y.transfer(1,x);

acquire lock for y

withdraw from y

acquire lock for x

977



Deadlock

Deadlock: two or more processes are
mutually blocked because each process
waits for another of these processes to
proceed.
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Threads and Resources

Grafically t and Resources (Locks) r

Thread t attempts to acquire resource a: t a

Resource b is held by thread q: s b
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Deadlock – Detection
A deadlock for threads t1, . . . , tn occurs when the graph describing
the relation of the n threads and resources r1, . . . , rm contains a
cycle.

t1

r1t2

r2

t3 r3

t4

r4
held by

wants
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Techniques

Deadlock detection detects cycles in the dependency graph.
Deadlocks can in general not be healed: releasing locks generally
leads to inconsistent state
Deadlock avoidance amounts to techniques to ensure a cycle can
never arise

Coarser granularity “one lock for all”
Two-phase locking with retry mechanism
Lock Hierarchies
...
Resource Ordering
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Back to the Example
class BankAccount {

int id; // account number, also used for locking order
std::recursive_mutex m; ...

public:
...
void transfer(int amount, BankAccount& to){

if (id < to.id){
guard g(m); guard h(to.m);
withdraw(amount); to.deposit(amount);

} else {
guard g(to.m); guard h(m);
withdraw(amount); to.deposit(amount);

}
}

};
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C++11 Style
class BankAccount {

...
std::recursive_mutex m;
using guard = std::lock_guard<std::recursive_mutex>;

public:
...
void transfer(int amount, BankAccount& to){

std::lock(m,to.m); // lock order done by C++
// tell the guards that the lock is already taken:
guard g(m,std::adopt_lock); guard h(to.m,std::adopt_lock);
withdraw(amount);
to.deposit(amount);

}
};
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By the way...
class BankAccount {

int balance = 0;
std::recursive_mutex m;
using guard = std::lock_guard<std::recursive_mutex>;

public:
...
void withdraw(int amount) { guard g(m); ... }
void deposit(int amount){ guard g(m); ... }

void transfer(int amount, BankAccount& to){
withdraw(amount);
to.deposit(amount);

}
};

This would have worked here also.
But then for a very short amount of
time, money disappears, which does
not seem acceptable (transient incon-
sistency!)
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Starvation und Livelock

Starvation: the repeated but unsuccess-
ful attempt to acquire a resource that was
recently (transiently) free.

Livelock: competing processes are able
to detect a potential deadlock but make
no progress while trying to resolve it.
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Politelock
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Producer-Consumer Problem

Two (or more) processes, producers and consumers of data should
become decoupled by some data structure.

Fundamental Data structure for building pipelines in software.

t1 t2
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Sequential implementation (unbounded buffer)
class BufferS {

std::queue<int> buf;
public:

void put(int x){
buf.push(x);

}

int get(){
while (buf.empty()){} // wait until data arrive
int x = buf.front();
buf.pop();
return x;

}
};

not thread-safe
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How about this?
class Buffer {

std::recursive_mutex m;
using guard = std::lock_guard<std::recursive_mutex>;
std::queue<int> buf;

public:
void put(int x){ guard g(m);

buf.push(x);
}
int get(){ guard g(m);

while (buf.empty()){}
int x = buf.front();
buf.pop();
return x;

}
};

Deadlock
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How about this?
class Buffer {

std::recursive_mutex m;
using guard = std::lock_guard<std::recursive_mutex>;
std::queue<int> buf;

public:
void put(int x){ guard g(m);

buf.push(x);
}
int get(){ guard g(m);

while (buf.empty()){}
int x = buf.front();
buf.pop();
return x;

}
};

Deadlock
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Well, then this?
void put(int x){

guard g(m);
buf.push(x);

}
int get(){

m.lock();
while (buf.empty()){

m.unlock();
m.lock();

}
int x = buf.front();
buf.pop();
m.unlock();
return x;

}

Ok this works, but it wastes CPU
time.
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Better?
void put(int x){

guard g(m);
buf.push(x);

}
int get(){

m.lock();
while (buf.empty()){

m.unlock();
std::this_thread::sleep_for(std::chrono::milliseconds(10));
m.lock();

}
int x = buf.front(); buf.pop();
m.unlock();
return x;

}

Ok a little bit better, limits reactiv-
ity though.
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Moral

We do not want to implement waiting on a condition ourselves.

There already is a mechanism for this: condition variables.

The underlying concept is called Monitor.
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Monitor

Monitor abstract data structure equipped
with a set of operations that run in mutual
exclusion and that can be synchronized.

Invented by C.A.R. Hoare and Per Brinch
Hansen (cf. Monitors – An Operating Sys-
tem Structuring Concept, C.A.R. Hoare
1974)

C.A.R. Hoare,
*1934

Per Brinch Hansen
(1938-2007)
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Monitors vs. Locks
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Monitor and Conditions

Monitors provide, in addition to mutual exclusion, the following
mechanism:

Waiting on conditions: If a condition does not hold, then

Release the monitor lock
Wait for the condition to become true
Check the condition when a signal is raised

Signalling: Thread that might make the condition true:

Send signal to potentially waiting threads
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Condition Variables
#include <mutex>
#include <condition_variable>
...

class Buffer {
std::queue<int> buf;

std::mutex m;
// need unique_lock guard for conditions
using guard = std::unique_lock<std::mutex>;
std::condition_variable cond;

public:
...

};
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Condition Variables
class Buffer {
...
public:

void put(int x){
guard g(m);
buf.push(x);
cond.notify_one();

}
int get(){

guard g(m);
cond.wait(g, [&]{return !buf.empty();});
int x = buf.front(); buf.pop();
return x;

}
};
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Technical Details

A thread that waits using cond.wait runs at most for a short time
on a core. After that it does not utilize compute power and
“sleeps”.
The notify (or signal-) mechanism wakes up sleeping threads that
subsequently check their conditions.

cond.notify_one signals one waiting thread
cond.notify_all signals all waiting threads. Required when waiting
thrads wait potentially on different conditions.
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Technical Details

Many other programming langauges
offer the same kind of mechanism.
The checking of conditions (in a loop!)
has to be usually implemented by the
programmer.

Java Example
synchronized long get() {

long x;
while (isEmpty())

try {
wait ();
} catch (InterruptedException e) { }

x = doGet();
return x;

}

synchronized put(long x){
doPut(x);
notify ();

}
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By the way, using a bounded buffer..
class Buffer {

...
CircularBuffer<int,128> buf; // from lecture 6

public:
void put(int x){ guard g(m);

cond.wait(g, [&]{return !buf.full();});
buf.put(x);
cond.notify_all();

}
int get(){ guard g(m);

cond.wait(g, [&]{return !buf.empty();});
cond.notify_all();
return buf.get();

}
};
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30. Parallel Programming IV

Futures, Read-Modify-Write Instructions, Atomic Variables, Idea of
lock-free programming

[C++ Futures: Williams, Kap. 4.2.1-4.2.3] [C++ Atomic: Williams,
Kap. 5.2.1-5.2.4, 5.2.7] [C++ Lockfree: Williams, Kap. 7.1.-7.2.1]
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Futures: Motivation

Up to this point, threads have been functions without a result:
void action(some parameters){

...
}

std::thread t(action, parameters);
...
t.join();
// potentially read result written via ref−parameters
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Futures: Motivation

Now we would like to have the following
T action(some parameters){

...
return value;

}

std::thread t(action, parameters);
...
value = get_value_from_thread();

main

action

da
ta
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We can do this already!

We make use of the producer/consumer pattern, implemented
with condition variables
Start the thread with reference to a buffer
We get the result from the buffer.
Synchronisation is already implemented
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Reminder
template <typename T>
class Buffer {

std::queue<T> buf;
std::mutex m;
std::condition_variable cond;

public:
void put(T x){ std::unique_lock<std::mutex> g(m);

buf.push(x);
cond.notify_one();

}
T get(){ std::unique_lock<std::mutex> g(m);

cond.wait(g, [&]{return (!buf.empty());});
T x = buf.front(); buf.pop(); return x;

}
};
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Application
void action(Buffer<int>& c){

// some long lasting operation ...
c.put(42);

}

int main(){
Buffer<int> c;
std::thread t(action, std::ref(c));
t.detach(); // no join required for free running thread
// can do some more work here in parallel
int val = c.get();
// use result
return 0;

}

main

action

da
ta
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With features of C++11

int action(){
// some long lasting operation
return 42;

}

int main(){
std::future<int> f = std::async(action);
// can do some work here in parallel
int val = f.get();
// use result
return 0;

}

main

action

da
ta
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30.2 Read-Modify-Write
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Example: Atomic Operations in Hardware
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Read-Modify-Write

Concept of Read-Modify-Write: The effect of reading, modifying and
writing back becomes visible at one point in time (happens
atomically).
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Psudocode for CAS – Compare-And-Swap

bool CAS(int& variable, int& expected, int desired){
if (variable == expected){

variable = desired;
return true;

}
else{

expected = variable;
return false;

}
}

at
om

ic
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Application example CAS in C++11
We build our own (spin-)lock:

class Spinlock{
std::atomic<bool> taken {false};

public:
void lock(){

bool old = false;
while (!taken.compare_exchange_strong(old=false, true)){}

}
void unlock(){

bool old = true;
assert(taken.compare_exchange_strong(old, false));

}
};
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30.3 Lock-Free Programming

Ideas
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Lock-free programming

Data structure is called

lock-free: at least one thread always makes progress in bounded
time even if other algorithms run concurrently. Implies
system-wide progress but not freedom from starvation.
wait-free: all threads eventually make progress in bounded time.
Implies freedom from starvation.
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Progress Conditions

Non-Blocking Blocking

Everyone makes
progress

Wait-free Starvation-free

Someone makes
progress

Lock-free Deadlock-free
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Implication

Programming with locks: each thread can block other threads
indefinitely.
Lock-free: failure or suspension of one thread cannot cause
failure or suspension of another thread !
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Lock-free programming: how?

Beobachtung:

RMW-operations are implemented wait-free by hardware.
Every thread sees his result of a CAS or TAS in bounded time.

Idea of lock-free programming: read the state of a data sructure and
change the data structure atomically if and only if the previously read
state remained unchanged meanwhile.
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Example: lock-free stack

Simplified variant of a stack in the following

pop prüft nicht, ob der Stack leer ist
pop gibt nichts zurück
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(Node)

Nodes:
struct Node {

T value;

Node<T>∗ next;
Node(T v, Node<T>∗ nxt): value(v), next(nxt) {}

};

value
next

value
next

value
next

value
next
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(Blocking Version)
template <typename T>
class Stack {

Node<T> ∗top=nullptr;
std::mutex m;

public:
void push(T val){ guard g(m);

top = new Node<T>(val, top);
}
void pop(){ guard g(m);

Node<T>∗ old_top = top;
top = top−>next;
delete old_top;

}
};

value
next

value
next

value
next

value
next

top
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Lock-Free
template <typename T>
class Stack {

std::atomic<Node<T>∗> top {nullptr};
public:

void push(T val){
Node<T>∗ new_node = new Node<T> (val, top);
while (!top.compare_exchange_weak(new_node−>next, new_node));

}
void pop(){

Node<T>∗ old_top = top;
while (!top.compare_exchange_weak(old_top, old_top−>next));
delete old_top;

}
};
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Push

void push(T val){
Node<T>∗ new_node = new Node<T> (val, top);
while (!top.compare_exchange_weak(new_node−>next, new_node));

}

2 Threads:

top

new

new
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Pop
void pop(){

Node<T>∗ old_top = top;
while (!top.compare_exchange_weak(old_top, old_top−>next));
delete old_top;

}

2 Threads:

top

old

old old
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Lock-Free Programming – Limits

Lock-Free Programming is complicated.
If more than one value has to be changed in an algorithm
(example: queue), it is becoming even more complicated: threads
have to “help each other” in order to make an algorithm lock-free.
The ABA problem can occur if memory is reused in an algorithm.
A solution of this problem can be quite expensive.
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