Datenstrukturen und Algorithmen

Exercise 4

FS 2018

Program of today

- 1 Feedback of last exercise
- 2 Repetition theory
 - Amortized Analysis
 - Skip Lists
- 3 Programming Task

Sorting

Bubblesort	min	max
Comparisons	$\mathcal{O}(n^2)$	$\mathcal{O}(n^2)$
Sequence	any	any
Swaps	0	$\mathcal{O}(n^2)$
Sequence	$1, 2, \ldots, n$	$n, n-1, \ldots, 1$

Sorting

InsertionSort	min	max
Comparisons	$\mathcal{O}(n)$	$\mathcal{O}(n^2)$
Sequence	$1, 2, \ldots, n$	$n, n-1, \ldots, 1$
Swaps	0	$\mathcal{O}(n^2)$
Sequence	$1, 2, \ldots, n$	$n, n-1, \ldots, 1$
SelectionSort	min	max
SelectionSort Comparisons	$\mathcal{O}(n^2)$	$\mathcal{O}(n^2)$
Comparisons	$\mathcal{O}(n^2)$	$\mathcal{O}(n^2)$

Sorting

QuickSort	min	max
Comparisons	$\mathcal{O}(n \log n)$	$\mathcal{O}(n^2)$
Sequence	complex	$1,2,\ldots,n$
Swaps	$\mathcal{O}(n)$	$\mathcal{O}(n \log n)$
Sequence	$1, 2, \ldots, n$	complex

complex: Sequence must be made such that the pivot halves the sorting range. For example (n=7): 4,5,7,6,2,1,3

ļ

■ Which functions to implement for heapsort?

```
void sink(...);
void heapify(...);
void heapsort(...);
```

- heapify can be done inline
- Signature of the functions (for std::vector)?

```
void sink(vector<int>& A, size_t index, size_t size);
void heapify(vector<int>& A);
void heapsort(vector<int>& A);
```

Generic (e.g., for MyVector)?

```
template <typename X>
void sink(X& A, size t index, size t size);
template <typename X>
void heapify(X& A);
template <typename X>
void heapsort(X& A);
```

(

2. Repetition theory

Amortized Analysis

Three Methods

- Aggregate Analysis
- Account Method
- Potential Method

Supports operations insert and find. Idea:

- Collection of arrays A_i with Length 2^i
- Every array is either entirely empty or entirely full and stores items in a sorted order
- Between the arrays there is no further relationship

```
data \{1, 8, 10, 18, 20, 24, 36, 48, 50, 75, 99\}, n = 11
```

```
A_0: [50]

A_1: [8,99]

A_2: \emptyset

A_3: [1,10,18,20,24,36,48,75]
```

```
data \{1,8,10,18,20,24,36,48,50,75,99\}, n=11
A_0\colon \ [50]
A_1\colon \ [8,99]
A_2\colon \ \emptyset
A_3\colon \ [1,10,18,20,24,36,48,75]
```

Algorithm Find:

```
data \{1,8,10,18,20,24,36,48,50,75,99\}, n=11
A_0\colon \ \ [50]
A_1\colon \ \ [8,99]
A_2\colon \ \ \emptyset
A_3\colon \ \ [1,10,18,20,24,36,48,75]
```

Algorithm **Find**: Run through all arrays and make a binary search each Worst-case Runtime :

data
$$\{1, 8, 10, 18, 20, 24, 36, 48, 50, 75, 99\}$$
, $n=11$

$$A_0$$
: [50]
 A_1 : [8, 99]
 A_2 : \emptyset
 A_3 : [1, 10, 18, 20, 24, 36, 48, 75]

Algorithm **Find**: Run through all arrays and make a binary search each Worst-case Runtime : $\Theta(\log^2 n)$,

$$\log 1 + \log 2 + \log 4 + \dots + \log 2^k = \sum_{i=0}^k \log_2 2^i = \frac{k \cdot (k+1)}{2} \in \Theta(\log^2 n).$$

$$(k = \lfloor \log_2 n \rfloor)$$

Algorithm Insert(x):

■ New array $A_0' \leftarrow [x]$, $i \leftarrow 0$

- New array $A_0' \leftarrow [x]$, $i \leftarrow 0$
- while $A_i \neq \emptyset$, set $A'_{i+1} = \mathsf{Merge}(A_i, A'_i)$, $A_i \leftarrow \emptyset$, $i \leftarrow i+1$

- New array $A_0' \leftarrow [x]$, $i \leftarrow 0$
- while $A_i \neq \emptyset$, set $A'_{i+1} = \mathsf{Merge}(A_i, A'_i)$, $A_i \leftarrow \emptyset$, $i \leftarrow i+1$
- Set $A_i \leftarrow A_i'$

- New array $A_0' \leftarrow [x]$, $i \leftarrow 0$
- while $A_i \neq \emptyset$, set $A'_{i+1} = \mathsf{Merge}(A_i, A'_i)$, $A_i \leftarrow \emptyset$, $i \leftarrow i+1$
- Set $A_i \leftarrow A_i'$

Algorithm Insert(x):

- New array $A_0' \leftarrow [x]$, $i \leftarrow 0$
- while $A_i \neq \emptyset$, set $A'_{i+1} = \mathsf{Merge}(A_i, A'_i)$, $A_i \leftarrow \emptyset$, $i \leftarrow i+1$
- Set $A_i \leftarrow A_i'$

Insert(11)

```
A'_0 = [11], A'_1 = [11, 50], A'_2 = [8, 11, 50, 99]
A_0: [50]
A_1: [8, 99]
A_2: \emptyset
A_2: \emptyset
A_3: [1, 10, 18, 20, 24, 36, 48, 75]
A_3: [1, 10, 18, 20, 24, 36, 48, 75]
A_4: [1, 10, 18, 20, 24, 36, 48, 75]
```

Costs Insert

Notation in the following $n = 2^k$, $k = \log_2 n$

Assumption: creating new array A_i' with length 2^i (and, for i>0 subsequent merge of A_{i-1}' and A_{i-1}) has costs $\Theta(2^i)$

In the worst case inserting an element into the data structure provides $\log_2 n$ such operations. \Rightarrow Worst-case Costs Insert:

$$\sum_{i=0}^{k} 2^{i} = 2^{k+1} - 1 \in \Theta(n).$$

Aggregate Analysis

Observation: when you start with an empty container, an insertion sequence merges reaches level 0 each time, level 1 (with costs 2) every second time, level 2 (with costs 4) every fourth time, level 3 (with costs 8) every eighth time etc.

Aggregate Analysis

Observation: when you start with an empty container, an insertion sequence merges reaches level 0 each time, level 1 (with costs 2) every second time, level 2 (with costs 4) every fourth time, level 3 (with costs 8) every eighth time etc.

Total costs: $1 \cdot \frac{n}{1} + 2 \cdot \frac{n}{2} + 4 \cdot \frac{n}{4} + \dots + 2^k \cdot \frac{n}{2^k} = (k+1)n \in \Theta(n \log n)$. Amortized cost per operation: $\Theta((n \log n)/n) = \Theta(\log n)$.

Account Method

Every element i $(1 \le i \le n)$ pays $a_i = \log_2 n$ coins when it is inserted into the data structure. The element pays the allocation of the first array and every subsequent merge-step that can occur until the element has reached array A_{k+1} $(k = \lfloor \log_2 \rfloor n)$. The account provides enough credit to pay for all Merge operations of the n elements.

 \Rightarrow Amortized costs for insertion $\mathcal{O}(\log n)$

Potential Method

We know from the account method that each element on the way to higher levels requires $\log n$ coins, i.e. that an element on level i still needs to posess k-i coins. We use the potential

$$\Phi_i = \sum_{0 \le i \le k: A_i \ne \emptyset} (k - i) \cdot 2^i$$

Potential Method

For the change of the potential $\Phi_i - \Phi_{i-1}$ we only have to consider the lower l levels that are occupied at time point i-1 (in analogy to the binary counter). Let l be the smallest index such that array A_l is empty. After merging array $A_0 \dots A_{l-1}$ arrays $A_i, 0 \leq i < l$ are now empty and array A_l is now full. Therefore:

$$\Phi_i - \Phi_{i-1} = (k-l) \cdot 2^l - \sum_{i=0}^{l-1} (k-i) \cdot 2^i$$

Real costs:

$$t_i = \sum_{i=0}^{l} 2^i = 2^{l+1} - 1$$

Potential Method

$$\Phi_{i} - \Phi_{i-1} = (k-l) \cdot 2^{l} - \sum_{i=0}^{l-1} (k-i) \cdot 2^{i}$$

$$= (k-l) \cdot 2^{l} - k \cdot (2^{l}-1) + \sum_{i=0}^{l-1} i \cdot 2^{i}$$

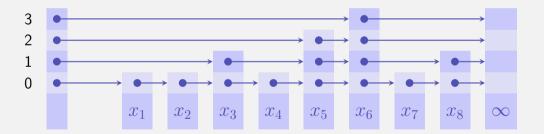
$$= (k-l) \cdot 2^{l} - k \cdot (2^{l}-1) + l \cdot 2^{l} - 2^{l+1} + 2$$

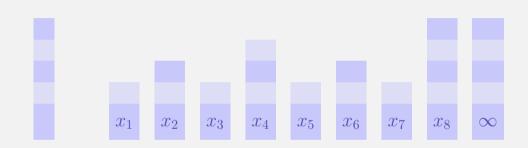
$$= k - 2^{l+1} + 2$$

$$\Phi_{i} - \Phi_{i-1} + t_{i} = k - 2^{l+1} + 2 + 2^{l+1} - 1 = k + 1 \in \Theta(\log n)$$

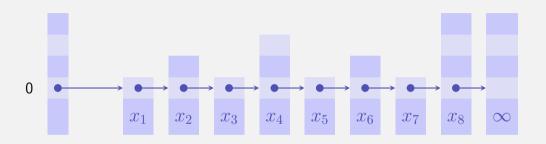
Randomized Skip List

Idea: insert a key with random height H with $\mathbb{P}(H=i)=\frac{1}{2^{i+1}}$.

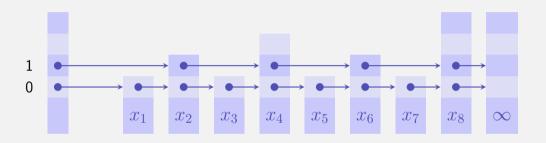




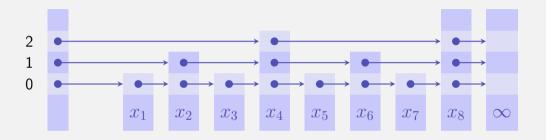
$$x_1 \le x_2 \le x_3 \le \dots \le x_9.$$



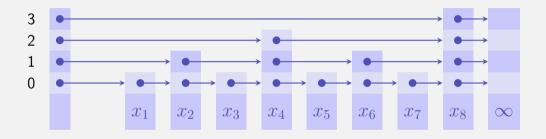
$$x_1 \le x_2 \le x_3 \le \dots \le x_9.$$



$$x_1 \le x_2 \le x_3 \le \dots \le x_9.$$

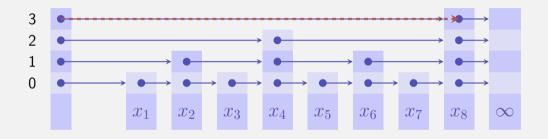


$$x_1 \le x_2 \le x_3 \le \dots \le x_9.$$



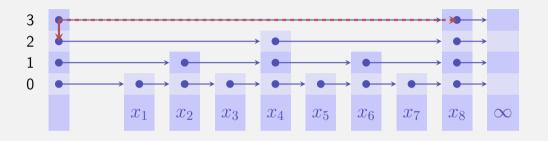
$$x_1 \le x_2 \le x_3 \le \dots \le x_9.$$

Example: search for a key x with $x_5 < x < x_6$.



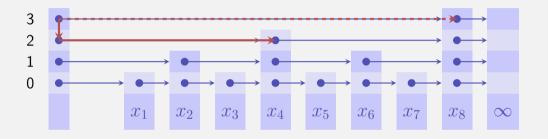
$$x_1 \le x_2 \le x_3 \le \dots \le x_9.$$

Example: search for a key x with $x_5 < x < x_6$.

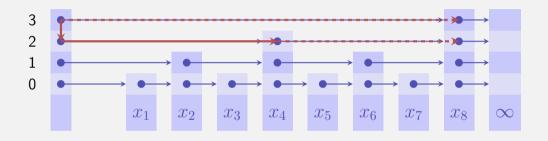


$$x_1 \le x_2 \le x_3 \le \dots \le x_9.$$

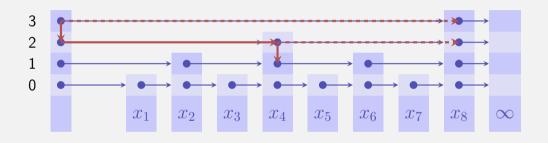
Example: search for a key x with $x_5 < x < x_6$.



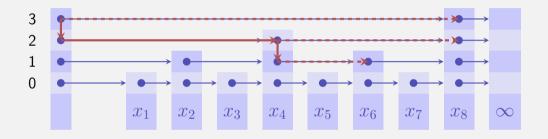
$$x_1 \le x_2 \le x_3 \le \dots \le x_9.$$



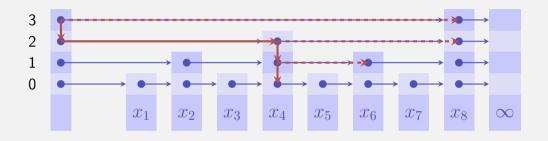
$$x_1 \le x_2 \le x_3 \le \dots \le x_9.$$



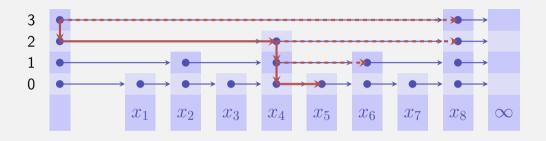
$$x_1 \le x_2 \le x_3 \le \dots \le x_9.$$



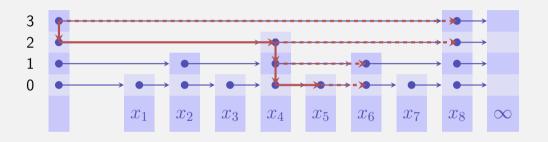
$$x_1 \le x_2 \le x_3 \le \dots \le x_9.$$



$$x_1 \le x_2 \le x_3 \le \dots \le x_9.$$



$$x_1 \le x_2 \le x_3 \le \dots \le x_9.$$



$$x_1 \le x_2 \le x_3 \le \dots \le x_9.$$

Example: search for a key x with $x_5 < x < x_6$.

2

Skip Lists Interface

```
template<tvpename T> class SkipList {
public:
 SkipList();
 ~SkipList();
 void insert(const T& value);
 void erase(const T& value);
 // iterator implementation ...
};
```

Partially implemented:

- A class Node saves an element value of type T and a std::vector called forward with pointers to successive nodes.
- First Node (without value): head.
- forward[0] points to the following element in the list.
- We use this in an already implemented iterator.

Types as Template Parameters

```
template <typename ElementType>
class vector{
       size t size;
       T* elem:
public:
        . . .
       vector(size t s):
       size{s}.
       elem{new ElementType[s]}{}
        . . .
       ElementType& operator[](size_t pos){
               return elem[pos];
```

Function Templates

```
template <typename T> // square number
T sq(T x)
       return x*x;
template <typename Container, typename F>
void apply(Container& c, F f){ // x <- f(x) forall x in c</pre>
       for(auto& x: c)
       x = f(x):
int main(){
       std::vector<int> v={1,2,3}:
       apply(v,sq<int>);
       output(v); // 1 4 9
```

Implementing insert and erase

insert(const T& value)

- create new node
- choose random number of levels
- for each level, find the first smaller node
- set pointers from previous nodes and new node

Implementing insert and erase

insert(const T& value)

- create new node
- choose random number of levels
- for each level, find the first smaller node
- set pointers from previous nodes and new node

erase(const T& value)

- find first smaller node
- check if next node has the according value
- set pointers accordingly
- delete node if necessary

Implementing insert and erase

insert(const T& value)

- create new node
- choose random number of levels
- for each level, find the first smaller node
- set pointers from previous nodes and new node

erase(const T& value)

- find first smaller node
- check if next node has the according value
- set pointers accordingly
- delete node if necessary

Warning: The same value can appear multiple times.

Recap dynamic allocated memory

Important: Every new needs its delete and only one!

Recap dynamic allocated memory

Important: Every new needs its delete and only one!

Therefore "Rule of three":

- constructor
- copy constructor
- destructor

Recap dynamic allocated memory

Important: Every new needs its delete and only one!

Therefore "Rule of three":

- constructor
- copy constructor
- destructor

being lazy "Rule of two":

- never copy (unsure)
- make copy constructor private (save)

Questions?