Datenstrukturen und Algorithmen

Exercise 3

FS 2018

Program of today

Feedback of last exercise

Repetition theory

Throwing eggs

m What would be your strategy if you would have an arbitrary number
of eggs?

Throwing eggs

m What would be your strategy if you would have an arbitrary number
of eggs?

m Binary search. Worst case: log, n tries.

Throwing eggs

m What would be your strategy if you would have an arbitrary number
of eggs?

m Binary search. Worst case: log, n tries.

m What would you do if you only had one egg?

Throwing eggs

m What would be your strategy if you would have an arbitrary number
of eggs?

m Binary search. Worst case: log, n tries.

m What would you do if you only had one egg?

m Start from the bottom. n tries.

Throwing Eggs

Strategy using two eggs

m First approach: intervals of equal length: partition n into k
intervals: maximum number of trials

Throwing Eggs

Strategy using two eggs

m First approach: intervals of equal length: partition n into k
intervals: maximum number of trials f(k) =k +n/k —1
Minimize maximum number of trials:

Throwing Eggs

Strategy using two eggs

m First approach: intervals of equal length: partition n into k
intervals: maximum number of trials f(k) =k +n/k —1
Minimize maximum number of trials:
f(ky=1-n/k*=0 = k=/n.

n = 100 = 19 Trials. ©(y/n)

m Second approach: take first throw trial into account by
considering decreasing interval sizes. Choose smallest s such that
s+s—14+s—24+..+1=5(s+1)/2>100= s = 14.
Maximum number of trials: s € ©(y/n)

Asymptotically both approaches are equally good. Practically the second way is
better.

Selection algorithm

m What happens if many elements are equal?

m 99,99,...,99, Pivot 99, smaller partition is empty, larger n — 1
times 99

m May degrade runtime to n?
m Solution?

Selection algorithm

m On equality with pivot, alternate between partitions

Selection algorithm

m On equality with pivot, alternate between partitions
m Modify algorithm to return number of elements equal to pivot

2. Repetition theory

Quiz

Consider the following three sequences of snap-shots (steps) of the algorithms (a)
Insertion Sort, (b) Selection Sort and (c) Bubblesort. Below each sequence provide
the corresponding algorithm name.

541 3 2 541 3 2 541 3 2
1 45 3 2 4 1 3 2 5 4 51 3 2
1 25 3 4 1 32 45 1 45 3 2
1 2 3 5 4 1 2 3 45 1 3 45 2
1 2 3 45 1 2 3 45

Quiz

Consider the following three sequences of snap-shots (steps) of the algorithms (a)
Insertion Sort, (b) Selection Sort and (c) Bubblesort. Below each sequence provide
the corresponding algorithm name.

541 3 2 541 3 2 541 3 2
1 45 3 2 4 1 3 2 5 4 51 3 2
1 25 3 4 1 32 45 1 45 3 2
1 2 3 5 4 1 2 3 45 1 3 45 2
1 2 3 45 1 2 3 45

Quiz

Consider the following three sequences of snap-shots (steps) of the algorithms (a)
Insertion Sort, (b) Selection Sort and (c) Bubblesort. Below each sequence provide
the corresponding algorithm name.

541 3 2 541 3 2 541 3 2
1 45 3 2 4 1 3 2 5 4 51 3 2
1 25 3 4 1 32 45 1 45 3 2
1 2 3 5 4 1 2 3 45 1 3 45 2
1 2 3 45 1 2 3 45

selection bubblesort insertion

Quiz

Execute two further iterations of the algorithm Quicksort on the following array. The
first element of the (sub-)array serves as the pivot.

(11015 3 |6 9 |5 | 2 13
51638 9 15|10 13

Quiz

Execute two further iterations of the algorithm Quicksort on the following array. The
first element of the (sub-)array serves as the pivot.

(11015 3 |6 9 |5 | 2 13
51638 9 15|10 13

Quiz

Execute two further iterations of the algorithm Quicksort on the following array. The
first element of the (sub-)array serves as the pivot.

g | 710 15| 3 |6 9|5 |2 |13
2 | 7|5 3189 |15 1013
27,563 8 9/ 1510 13
2 3|5 7 8|9 1310 15

Heap and Array

Tree — Array:

m children(i) = {2i,2i + 1} 212
m parent(i) = [i/2] 20/[}\18
/2N /M\

Vater . 12
LN
’22'20'18'16'12‘15‘17'3|2|8|11|14‘ f 11 1 I\ /H\
1 2 4 5 8 9 10 11 12 8 (9] [10] 11 12
Kinder

Depends on the starting index!

LFor array that start at 0: {2i,2i + 1} — {20 +1,2i + 2}, |3/2] — [(i —1)/2]

Algorithm SiftDown(A, 7, m)

Input: Array A with heap structure for the children of i. Last element
m.
Output: Array A with heap structure for ¢ with last element m.

while 2: < m do
j < 2i; // j left child
if j <m and A[j] < A[j + 1] then
‘ j < j+1;,// jright child with greater key
if Ali] < A[j] then
swap(Ali], A[j])
i < j; // keep sinking
else
| i m; // sinking finished

Algorithm HeapSort(A, n)

Input: Array A with length n.

Output: A sorted.

for i < n/2 downto 1 do
SiftDown(A4, i, n);

for : < n downto 2 do
swap(A[1], A[i])
SiftDown(A, 1,7 — 1)

Mergesort

‘A R 'R B R B

5 26 1|8 4 3 9]

5 2|6 1|8 43 9]

2163 ls 51

2 5]1 6|4 8|3 9]
> — | >==<<
| 6] 3 |

o1
S

O < O

N <— N
(}J%
Q0 — 00

=t =

4 5

(@)

Split
Split
Split
Merge
Merge
Merge

Algorithm recursive 2-way Mergesort(A, [/,)

Input: Array A with lengthn. 1 <1 <r<n
Output: Array All, ..., r] sorted.
if [<r then

m <+ |(I+71)/2]
Mergesort(A, [, m)
Mergesort(A, m + 1,7)
Merge(A, 1, m,r)

// middle position
// sort lower half
// sort higher half
// Merge subsequences

Algorithm NaturalMergesort(A)

Input: Array A with length n > 0
Output: Array A sorted
repeat
r <0
while » < n do
[<r+1
m < [; while m < n and A[m + 1] > A[m] do m < m + 1
if m <n then
r< m+1; while r <nand A[r+1] > A[rjdo r < r+1
Merge(A, I, m, r);

else
r<n

until [=1

Quicksort (arbitrary pivot)

2

4

1

5

w

(=]

O

(=]

Algorithm Quicksort(A[/, ..., 7])

Input: Array A with lengthn. 1 <[<r <n.
Output: Array A, sorted between [and r.
if [<r then

Choose pivot p € A[l,...,r]
k < Partition(A[l,...,7],p)
Quicksort(A[l, ...,k —1])
Quicksort(A[k + 1,...,7])

Quicksort with logarithmic memory consumption

Input: Array A with length n. 1 <[<r <n.
Output: Array A, sorted between [and r.
while [< r do
Choose pivot p € AL, ...,]
k < Partition(A[l,...,7],p)
if k—1<r—Fkthen
Quicksort(A[l, ...,k —1])

[+ k+1
else
Quicksort(Alk +1,...,7])
r—k—1
The call of Quicksort(A[l, ..., r]) in the original algorithm has moved to iteration (tail recursion!): the if-statement

became a while-statement.

Stable and in-situ sorting algorithms

m Stable sorting algorithms don’t change the relative position of two elements.

N E ‘B

S~ not stable
2 4 5 6 6 8

Stable and in-situ sorting algorithms

m Stable sorting algorithms don’t change the relative position of two elements.

N E ‘B

S~ not stable
2 4 5 6 6 8

S~ stable

Stable and in-situ sorting algorithms

m Stable sorting algorithms don’t change the relative position of two elements.

N E ‘B

S~ not stable
2 4 5 6 6 8

S~ stable

m In-situ algorithms require only a constant amount of additional memory.

Which of the sorting algorithms are stable? Which are in-situ? (How) can we
make them stable / in-situ?

Questions?

	Feedback of last exercise
	Repetition theory

