
Datenstrukturen und Algorithmen

Exercise 3

FS 2018

1



Program of today

1 Feedback of last exercise

2 Repetition theory

2



Throwing eggs

What would be your strategy if you would have an arbitrary number
of eggs?

Binary search. Worst case: log2 n tries.

What would you do if you only had one egg?

Start from the bottom. n tries.

3



Throwing eggs

What would be your strategy if you would have an arbitrary number
of eggs?

Binary search. Worst case: log2 n tries.

What would you do if you only had one egg?

Start from the bottom. n tries.

3



Throwing eggs

What would be your strategy if you would have an arbitrary number
of eggs?

Binary search. Worst case: log2 n tries.

What would you do if you only had one egg?

Start from the bottom. n tries.

3



Throwing eggs

What would be your strategy if you would have an arbitrary number
of eggs?

Binary search. Worst case: log2 n tries.

What would you do if you only had one egg?
Start from the bottom. n tries.

3



Throwing Eggs
Strategy using two eggs

First approach: intervals of equal length: partition n into k
intervals: maximum number of trials

f(k) = k + n/k − 1
Minimize maximum number of trials:
f ′(k) = 1− n/k2 = 0 ⇒ k =

√
n.

n = 100⇒ 19 Trials. Θ(
√

n)
Second approach: take first throw trial into account by
considering decreasing interval sizes. Choose smallest s such that
s + s− 1 + s− 2 + ... + 1 = s(s + 1)/2 ≥ 100⇒ s = 14.
Maximum number of trials: s ∈ Θ(

√
n)

Asymptotically both approaches are equally good. Practically the second way is
better.

4



Throwing Eggs
Strategy using two eggs

First approach: intervals of equal length: partition n into k
intervals: maximum number of trials f(k) = k + n/k − 1
Minimize maximum number of trials:

f ′(k) = 1− n/k2 = 0 ⇒ k =
√

n.
n = 100⇒ 19 Trials. Θ(

√
n)

Second approach: take first throw trial into account by
considering decreasing interval sizes. Choose smallest s such that
s + s− 1 + s− 2 + ... + 1 = s(s + 1)/2 ≥ 100⇒ s = 14.
Maximum number of trials: s ∈ Θ(

√
n)

Asymptotically both approaches are equally good. Practically the second way is
better.

4



Throwing Eggs
Strategy using two eggs

First approach: intervals of equal length: partition n into k
intervals: maximum number of trials f(k) = k + n/k − 1
Minimize maximum number of trials:
f ′(k) = 1− n/k2 = 0 ⇒ k =

√
n.

n = 100⇒ 19 Trials. Θ(
√

n)
Second approach: take first throw trial into account by
considering decreasing interval sizes. Choose smallest s such that
s + s− 1 + s− 2 + ... + 1 = s(s + 1)/2 ≥ 100⇒ s = 14.
Maximum number of trials: s ∈ Θ(

√
n)

Asymptotically both approaches are equally good. Practically the second way is
better.

4



Selection algorithm

What happens if many elements are equal?
99, 99, . . . , 99, Pivot 99, smaller partition is empty, larger n− 1
times 99
May degrade runtime to n2

Solution?

5



Selection algorithm

On equality with pivot, alternate between partitions

Modify algorithm to return number of elements equal to pivot

6



Selection algorithm

On equality with pivot, alternate between partitions
Modify algorithm to return number of elements equal to pivot

6



2. Repetition theory

7



Quiz
Consider the following three sequences of snap-shots (steps) of the algorithms (a)
Insertion Sort, (b) Selection Sort and (c) Bubblesort. Below each sequence provide
the corresponding algorithm name.

5 4 1 3 2
1 4 5 3 2
1 2 5 3 4
1 2 3 5 4
1 2 3 4 5

selection

5 4 1 3 2
4 1 3 2 5
1 3 2 4 5
1 2 3 4 5

bubblesort

5 4 1 3 2
4 5 1 3 2
1 4 5 3 2
1 3 4 5 2
1 2 3 4 5

insertion

8



Quiz
Consider the following three sequences of snap-shots (steps) of the algorithms (a)
Insertion Sort, (b) Selection Sort and (c) Bubblesort. Below each sequence provide
the corresponding algorithm name.

5 4 1 3 2
1 4 5 3 2
1 2 5 3 4
1 2 3 5 4
1 2 3 4 5

selection

5 4 1 3 2
4 1 3 2 5
1 3 2 4 5
1 2 3 4 5

bubblesort

5 4 1 3 2
4 5 1 3 2
1 4 5 3 2
1 3 4 5 2
1 2 3 4 5

insertion

8



Quiz
Consider the following three sequences of snap-shots (steps) of the algorithms (a)
Insertion Sort, (b) Selection Sort and (c) Bubblesort. Below each sequence provide
the corresponding algorithm name.

5 4 1 3 2
1 4 5 3 2
1 2 5 3 4
1 2 3 5 4
1 2 3 4 5

selection

5 4 1 3 2
4 1 3 2 5
1 3 2 4 5
1 2 3 4 5

bubblesort

5 4 1 3 2
4 5 1 3 2
1 4 5 3 2
1 3 4 5 2
1 2 3 4 5

insertion

8



Quiz

Execute two further iterations of the algorithm Quicksort on the following array. The
first element of the (sub-)array serves as the pivot.

8 7 10 15 3 6 9 5 2 13
2 7 5 6 3 8 9 15 10 13

2 7 5 6 3 8 9 15 10 13
2 3 5 6 7 8 9 13 10 15

9



Quiz

Execute two further iterations of the algorithm Quicksort on the following array. The
first element of the (sub-)array serves as the pivot.

8 7 10 15 3 6 9 5 2 13
2 7 5 6 3 8 9 15 10 13

2 7 5 6 3 8 9 15 10 13
2 3 5 6 7 8 9 13 10 15

9



Quiz

Execute two further iterations of the algorithm Quicksort on the following array. The
first element of the (sub-)array serves as the pivot.

8 7 10 15 3 6 9 5 2 13
2 7 5 6 3 8 9 15 10 13
2 7 5 6 3 8 9 15 10 13
2 3 5 6 7 8 9 13 10 15

9



Heap and Array

Tree → Array:
children(i) = {2i, 2i + 1}
parent(i) = bi/2c

22

1

20

2

18

3

16

4

12

5

15

6

17

7

3

8

2

9

8

10

11

11

14

12

Vater

Kinder

22

20

16

3 2

12

8 11

18

15

14

17

[1]

[2] [3]

[4] [5] [6] [7]

[8] [9] [10] [11] [12]

Depends on the starting index1

1For array that start at 0: {2i, 2i + 1} → {2i + 1, 2i + 2}, bi/2c → b(i− 1)/2c
10



Algorithm SiftDown(A, i, m)
Input: Array A with heap structure for the children of i. Last element

m.
Output: Array A with heap structure for i with last element m.
while 2i ≤ m do

j ← 2i; // j left child
if j < m and A[j] < A[j + 1] then

j ← j + 1; // j right child with greater key

if A[i] < A[j] then
swap(A[i], A[j])
i← j; // keep sinking

else
i← m; // sinking finished

11



Algorithm HeapSort(A, n)

Input: Array A with length n.
Output: A sorted.
for i← n/2 downto 1 do

SiftDown(A, i, n);

// Now A is a heap.
for i← n downto 2 do

swap(A[1], A[i])
SiftDown(A, 1, i− 1)

// Now A is sorted.

12



Mergesort

5 2 6 1 8 4 3 9
Split

5 2 6 1 8 4 3 9
Split

5 2 6 1 8 4 3 9
Split

5 2 6 1 8 4 3 9
Merge

2 5 1 6 4 8 3 9
Merge

1 2 5 6 3 4 8 9
Merge

1 2 3 4 5 6 8 9

13



Algorithm recursive 2-way Mergesort(A, l, r)

Input: Array A with length n. 1 ≤ l ≤ r ≤ n
Output: Array A[l, . . . , r] sorted.
if l < r then

m← b(l + r)/2c // middle position
Mergesort(A, l, m) // sort lower half
Mergesort(A, m + 1, r) // sort higher half
Merge(A, l, m, r) // Merge subsequences

14



Algorithm NaturalMergesort(A)
Input: Array A with length n > 0
Output: Array A sorted
repeat

r ← 0
while r < n do

l ← r + 1
m ← l; while m < n and A[m + 1] ≥ A[m] do m ← m + 1
if m < n then

r ← m + 1; while r < n and A[r + 1] ≥ A[r ] do r ← r + 1
Merge(A, l, m, r);

else
r ← n

until l = 1

15



Quicksort (arbitrary pivot)

2 4 5 6 8 3 7 9 1

2 1 3 6 8 5 7 9 4

1 2 3 4 5 8 7 9 6

1 2 3 4 5 6 7 9 8

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

16



Algorithm Quicksort(A[l, . . . , r])

Input: Array A with length n. 1 ≤ l ≤ r ≤ n.
Output: Array A, sorted between l and r.
if l < r then

Choose pivot p ∈ A[l, . . . , r]
k ← Partition(A[l, . . . , r], p)
Quicksort(A[l, . . . , k − 1])
Quicksort(A[k + 1, . . . , r])

17



Quicksort with logarithmic memory consumption
Input: Array A with length n. 1 ≤ l ≤ r ≤ n.
Output: Array A, sorted between l and r.
while l < r do

Choose pivot p ∈ A[l, . . . , r]
k ← Partition(A[l, . . . , r], p)
if k − l < r − k then

Quicksort(A[l, . . . , k − 1])
l← k + 1

else
Quicksort(A[k + 1, . . . , r])
r ← k − 1

The call of Quicksort(A[l, . . . , r]) in the original algorithm has moved to iteration (tail recursion!): the if-statement
became a while-statement.

18



Stable and in-situ sorting algorithms

Stable sorting algorithms don’t change the relative position of two elements.
5 2 6 6 8 4

not stable
2 4 5 6 6 8

5 2 6 6 8 4
stable

2 4 5 6 6 8

In-situ algorithms require only a constant amount of additional memory.
Which of the sorting algorithms are stable? Which are in-situ? (How) can we
make them stable / in-situ?

19



Stable and in-situ sorting algorithms

Stable sorting algorithms don’t change the relative position of two elements.
5 2 6 6 8 4

not stable
2 4 5 6 6 8

5 2 6 6 8 4
stable

2 4 5 6 6 8

In-situ algorithms require only a constant amount of additional memory.
Which of the sorting algorithms are stable? Which are in-situ? (How) can we
make them stable / in-situ?

19



Stable and in-situ sorting algorithms

Stable sorting algorithms don’t change the relative position of two elements.
5 2 6 6 8 4

not stable
2 4 5 6 6 8

5 2 6 6 8 4
stable

2 4 5 6 6 8

In-situ algorithms require only a constant amount of additional memory.
Which of the sorting algorithms are stable? Which are in-situ? (How) can we
make them stable / in-situ?

19



Questions?

20


	Feedback of last exercise
	Repetition theory

