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Landau Notation

Prove or disprove the following statements, where f,g: N — R™.
(a) f € O(g) if and only if g € Q(f).

(e) log,(n) € ©(log,(n)) for all constants a,b € N\ {1}

(g) If fi,f2 € O(g) and f(n) := fi(n) - fa(n), then f € O(9g).



Landau Notation

Sorting functions: if function f is left to function g, then f € O(g).
216 log(n'), log®(n), v/, nlogn, (3), n®+n, %, nl, n"



Sum of elements in two-dimensional array

Problems / Questions?



2. Repetition theory
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Induction: what is required?

m Prove statements, for example 3" i = ”<”2+1).

m Base clause:
m The given (in)equality holds for one or more base cases.

meg Y i=1= w

m Induction hypothesis: we assume that the statement holds for some
n

m Induction step (n — n + 1):

m From the validity of the statement for n (induction hypothesis) it follows

the one for n + 1.
m eg.: ZnJrl 1=n-+1-+ Zn ,=n-+ 1+ n(n+l) (n+2)2(n+1).




Induction: Example

1_,rn+1

n T
m Show > 7' = 5.
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Induction: Example

no a . 1—r"tt
m Show Z’L’:OT = 1 -

m Base clause:
° ol
n=0: Y r'=1= 1177; :

m Induction step (n — n + 1):

n+1 n
Z rl = T,n+1 + Z rl
=0 =0

1 — Tn—i—l Tn+1 . Tn+2 € 1 + TH—H

n+1 _

1—r



[Besides..]

It can be shown easily in a direct manner

rn+1

r—1 _gr
(7“—1)-27“1=Z7“2+1—Zri
i=0 ‘
n+1 . ) n+1

—Zr —Zr —Zr'—l—Zr

=0
— 7’L+1_1

1=



Analysis

How many calls to £()7?

for(unsigned i = 1; i <= n/3; i += 3)
for(unsigned j = 1; j <= i; ++j)
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Analysis

How many calls to £()7?

for(unsigned i =
for (unsigned j

£O;

1; i <= n/3; i += 3)
=1; j <= 1; ++j)

The code fragment implies ©(n?) calls to £(): the outer loop is
executed n/9 times and the inner loop contains ¢ calls to £ ()
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Analysis

How many calls to £ ()7

for(unsigned i =
for(unsigned j
£0;
for(unsigned k = 1; k <= n; k *= 2)
£0;

0; i < mn; ++i) {
= 100; j*j >= 1; --j)

}

We can ignore the first inner loop because it contains only a constant

number of calls to £ ()
The second inner loop contains |logy(n)| + 1 calls to £(). Summing

up yields ©(nlog(n)) calls.
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How many calls to £()7?

void g(unsigned n) {
for (unsigned i = 0; i<n ; ++i) {
g(i)
}
£0O;
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Analysis

How many calls to £()?

void g(unsigned n) {
for (unsigned i = 0; i<n ; ++i) {
g(i)
}
£O;
}

Hypothesis: T'(n) = 2".
Induction step:

n—1
T(n)=1+ ;}21
=1+2"—-1=2"



3. Programming Task



The Problem of Selection

Input

m unsorted array A = (A4, ..., A,) with pairwise different values
m Number 1 < k <n.

Output A[i] with [{j : A[j] < A[i]}| =k —1

Special cases

k = 1. Minimum: Algorithm with n comparison operations trivial.

k = n: Maximum: Algorithm with n comparison operations trivial.
k = |n/2]: Median.
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Use a pivot

Choose a pivot p
Partition A in two parts, thereby determining the rank of p.
Recursion on the relevant part. If £ = r then found.

<|<|<s|l<sl<s|p|>|>|>]>

1 r n



Algorithmus Partition(A[l..7], p)

Input: Array A, that contains the sentinel p in the interval [[, 7] at least once.
Output: Array A partitioned around p. Returns position of p.
while [ < r do
while A[l] < p do
l<1+1
while A[r] > p do
r<nr—1
swap(A[l], A[r])
if A[l] = A[r] then
l<1+1

return [ — 1



Algorithm Quickselect (A[l..7|, k)

Input: Array A with length n. Indices 1 <[ < k < r < n, such that for all
z € All.r]: {JlAl] < 2} > T and [{jlA[j] <z} <.

Output: Value z € A[l..r] with [{j]|A[j] < z}| > k and
{ile < Al Z2n—k+1
if |=r then
- return A[l];

x < RandomPivot(A[l..r])
m < Partition(A[l..r], z)
if © <m then

- return QuickSelect(A[l..m — 1], k)
else if © > m then

- return QuickSelect(A[m + 1..r], k)
else
return A[l|



Algorithm RandomPivot (A|l..7])

Input: Array A with length n. Indices 1 <[ <i<r<n
Output: Random “good” pivot = € All..r]
repeat
choose a random pivot = € A[l..r]
P+
for j =1 tor do
 if A[j] <z thenp <« p+1

until {%J <p< [%W
return

This algorithm is only of theoretical interest and delivers a good pivot in 2 expected
iterations. Practically, in algorithm QuickSelect a uniformly chosen random pivot
can be chosen.
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Questions or Suggestions?
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