
Datenstrukturen und Algorithmen

Exercise 13

FS 2019

1

Program of today

1 Feedback of last exercise

2 Repetition theory

3 Next Exercise

2

1. Feedback of last exercise

3

Exercise Applying Maximum Flow
We have collectors, drivers, and trucks

collectors trucks drivers

4

Exercise Applying Maximum Flow
We have collectors, drivers, and trucks

collectors trucks drivers

4

Exercise Applying Maximum Flow
We have collectors, drivers, and trucks

collectors trucks drivers

s t

all edges: capacity 1
4

Exercise Applying Maximum Flow
We have collectors, drivers, and trucks

collectors trucks drivers

s t

all edges: capacity 1
4

Exercise: Sum of a vector
void sum_par(Iterator beg, Iterator end, int& result) {

const int nThreads = std::thread::hardware_concurrency();
std::vector<std::thread> myThreads;
std::vector<int> sums(nThreads, 0);
const int partSize = (end-beg)/nThreads;

for(int i=0; i<nThreads-1; ++i){
myThreads.emplace_back(

std::thread(sum_ser, beg, beg + partSize, std::ref(sums[i])));
beg += partSize;

}
// ...
for(auto& t:myThreads) t.join();
sum_ser(sums.begin(), sums.end(), result);

}
5

Exercise: Sum of a vector

– False Sharing!

void sum_ser(
Iterator from,
Iterator to,
int& result) {

int local = 0;
for(;from != to; ++from)

local += *from;
result = local;

}

void sum_ser(
Iterator from,
Iterator to,
int& result) {

result = 0;
for(;from != to; ++from)

result += *from;
}

Difference?

execution time: 0.468879 ms execution time: 0.944031 ms

6

Exercise: Sum of a vector

– False Sharing!

void sum_ser(
Iterator from,
Iterator to,
int& result) {

int local = 0;
for(;from != to; ++from)

local += *from;
result = local;

}

void sum_ser(
Iterator from,
Iterator to,
int& result) {

result = 0;
for(;from != to; ++from)

result += *from;
}

Difference?

execution time: 0.468879 ms execution time: 0.944031 ms

6

Exercise: Sum of a vector

– False Sharing!

void sum_ser(
Iterator from,
Iterator to,
int& result) {

int local = 0;
for(;from != to; ++from)

local += *from;
result = local;

}

void sum_ser(
Iterator from,
Iterator to,
int& result) {

result = 0;
for(;from != to; ++from)

result += *from;
}

Difference?

execution time: 0.468879 ms execution time: 0.944031 ms
6

Exercise: Sum of a vector – False Sharing!
void sum_ser(

Iterator from,
Iterator to,
int& result) {

int local = 0;
for(;from != to; ++from)

local += *from;
result = local;

}

void sum_ser(
Iterator from,
Iterator to,
int& result) {

result = 0;
for(;from != to; ++from)

result += *from;
}

Difference?

execution time: 0.468879 ms execution time: 0.944031 ms
6

Exercise: Mergesort (2-threads)

void mergesort_par(std::vector<int> & v) {
int n = v.size();
int partSize = n / 2;

std::thread t1(mergesort, std::ref(v), 0, partSize-1);
std::thread t2(mergesort, std::ref(v), partSize, n-1);
t1.join();
t2.join();
merge(v, 0, partSize-1, n-1);

}

analogously with n threads

7

Exercise: Mergesort Recursively

void mergesort_par(std::vector<int> & v, int cutoff, int l, int r) {
if (r-l < cutoff){ // sequential base case

mergesort(v, l, r);
} else {

int m = (l+r)/2 ;
std::thread t (mergesort_par,std::ref(v),cutoff,l,m);
mergesort_par(v,cutoff,m+1,r); // avoid forking another thread
t.join();
merge(v,l,m,r);

}
}

8

2. Repetition theory

9

Race Conditions

Data Race (low-level Race-Conditions) Erroneous program behavior
caused by insufficiently synchronized accesses of a shared resource by
multiple threads, e.g. Simultaneous read/write or write/write of the
same memory location
Bad Interleaving (High Level Race Condition) Erroneous program
behavior caused by an unfavorable execution order of a multithreaded
algorithm, even if that makes use of otherwise well synchronized
resources.

10

Memory Models

When and if effects of memory operations become visible for threads,
depends on hardware, runtime system and programming language.
A memory model (e.g. that of C++) provides minimal guarantees for
the effect of memory operations

leaving open possibilities for optimisation
containing guidelines for writing thread-safe programs

For instance, C++ provides guarantees when synchronisation with a
mutex is used.

11

Counter Problem

std::vector<std::thread> tv(10);
int counter {0};
for (auto & t:tv)

t = std::thread([&]{
for (int i =0; i<100000; ++i){counter++;} // race!!

});
for (auto & t:tv)

t.join();
std::cout << "count= "<< counter << std::endl;

12

Counter Solution 1

std::vector<std::thread> tv(10);
std::mutex lock;
int counter {0};
for (auto & t:tv)

t = std::thread([&]{
for (int i =0; i<100000; ++i){

mutex.lock(); counter++; mutex.unlock(); // synchronized!
}});

for (auto & t:tv)
t.join();

std::cout << "count= "<< counter << std::endl;

13

Counter Solution II

std::vector<std::thread> tv(10);
std::atomic<int> counter {0};
for (auto & t:tv)

t = std::thread([&]{
for (int i =0; i<100000; ++i){counter++;} // atomic!!

});
for (auto & t:tv)

t.join();
std::cout << "count= "<< counter << std::endl;

14

Quiz:What’s wrong with this code?

void exchangeSecret(Person & a, Person & b) {
a.getMutex()->lock();
b.getMutex()->lock();
Secret s = a.getSecret();
b.setSecret(s);
a.getMutex()->unlock();
b.getMutex()->unlock()

}

15

Deadlock

Thread 1:
exchangeSecret(p1, p2);

Thread 2:
exchangeSecret(p2, p1);

How to resolve?

16

Deadlock

Thread 1:
exchangeSecret(p1, p2);

Thread 2:
exchangeSecret(p2, p1);

How to resolve?

16

Possible Solution
void exchangeSecret(Person & a, Person & b) {

std::mutex* first;
std::mutex* second;
if (a.name < b.name){

first = a.getMutex(); second = b.getMutex();
} else {

first = b.getMutex(); second = a.getMutex();
}
first->lock();
second->lock();
Secret s = a.getSecret();
b.setSecret(s);
first->unlock();
second->unlock();

}
17

Deadlocks and Races

Not easy to spot
Hard to debug
Might happen only very rarely
Testing usually not good enough
Reasoning about code is required

Lesson learned: Need to be careful when programming with locks!

18

3. Next Exercise

19

Dining Philosophers

Philosophers only think and eat. Each needs two forks to eat.
Philosophers = threads, forks = locks.

20

Dining Philosophers - pseudocode

while(true) {
think();
acquire_fork_on_left_side();
acquire_fork_on_right_side();
eat();
release_fork_on_right_side();
release_fork_on_left_side();

}

Problems with this code?

21

Dining Philosophers - deadlock

Solutions?
22

Dining Philosophers

Resolve cyclic dependency
For instance: Philosoph five takes first the right fork.
General solution: Define lock order. Then, always lock in that order.

23

Locking Datastructures

Coarse-grained Locking: Few locks (one typically) per object. Every
object operation acquires the lock first.
Fine-grained Locking: Multiple locks, that protect a less. Usually one
per element

24

Coarse-grained Locking - Example

class List {
std::mutex m;

public:
void push_back(int amount) {

std::lock_guard<std::mutex> guard(m);
...
};

void pop_front() {
std::lock_guard<std::mutex> guard(m);
...
};

};

25

Fine-grained Locking - Linked List

Consider a single linked list. How to do fine grained locking?

First idea: One lock per list item. When changing the element, the
lock must be held. (For instance when changing the next pointer due
to an insertion)
But is this enough?

26

Fine-grained Locking - Linked List

Consider a single linked list. How to do fine grained locking?
First idea: One lock per list item. When changing the element, the
lock must be held. (For instance when changing the next pointer due
to an insertion)
But is this enough?

26

Fine-grained locking - Linked List

a b c d

AB

Thread B:
delete b

Thread A:
delete c

27

Fine-grained locking - Linked List

a c d

C not deleted

28

Fine-grained locking - Hand-over-hand locking
Solution? Also lock the next element.

a b d e

BB

29

Fine-grained locking - Linked List

Is locking necessary when traversing?

Yes, the element we are currently looking at can be deleted.

Lock order?
Acquire next lock before releasing current one. This is called
hand-over-hand locking
Implementation hint: Don’t use lock_guard, but call directly lock
and unlock.

30

Fine-grained locking - Linked List

Is locking necessary when traversing?
Yes, the element we are currently looking at can be deleted.

Lock order?
Acquire next lock before releasing current one. This is called
hand-over-hand locking
Implementation hint: Don’t use lock_guard, but call directly lock
and unlock.

30

Fine-grained locking - Linked List

Is locking necessary when traversing?
Yes, the element we are currently looking at can be deleted.

Lock order?

Acquire next lock before releasing current one. This is called
hand-over-hand locking
Implementation hint: Don’t use lock_guard, but call directly lock
and unlock.

30

Fine-grained locking - Linked List

Is locking necessary when traversing?
Yes, the element we are currently looking at can be deleted.

Lock order?
Acquire next lock before releasing current one. This is called
hand-over-hand locking
Implementation hint: Don’t use lock_guard, but call directly lock
and unlock.

30

Fine-grained locking - Linked List

a b d e
B

31

Fine-grained locking - Linked List

a b d e
B B

32

Fine-grained locking - Linked List

a b d e

B

33

Fine-grained locking - Linked List

a b d e

B B

34

Condition variables

Condition variables allow a thread to wait efficiently on a specific
condition.
Once the condition has changed (or could have been changed), the
changing thread notifies the waiting one(s).

35

Condition Variables
class Buffer {
...
public:

void put(int x){
guard g(m);
buf.push(x);
cond.notify_one();

}
int get(){

guard g(m);
cond.wait(g, [&]{return !buf.empty();});
int x = buf.front(); buf.pop();
return x;

}
};

36

Questions?

37

	Feedback of last exercise
	Repetition theory
	Next Exercise

