
Datenstrukturen und Algorithmen

Exercise 12

FS 2019

1

Program of today

1 Feedback of last exercise

2 MaxFlow

3 Two Quizzes

4 Parallel Programming

5 Programming Tasks

2

1. Feedback of last exercise

3

Exercise Manual Max-Flow

s t

13/6

17/11 18/11 11/11

8/6
9/6

6/0

6/6

15/5

5/5

17/57/0
4/0

7/0

15/0

s t

s t

7

6

6

0

2

6

5

12

0

11

0 15

7

11

0

4

0

5

10

5

06
3

6

7 0

6

11

7 0

4

Exercise Manual Max-Flow

s t

13/6

17/11 18/11 11/11

8/6
9/6

6/0

6/6

15/5

5/5

17/57/0
4/0

7/0

15/0

s t

s t

7

6

6

0

2

6

5

12

0

11

0 15

7

11

0

4

0

5

10

5

06
3

6

7 0

6

11

7 0

4

Exercise Applying Maximum Flow

Vertex capacity: replace vertex with an in-vertex and and out-vertex.
Connect these vertices by an edge with this capacity.

5

Exercise Union-Find
class UnionFind{

std::vector<size_t> parents_;
public:

UnionFind(size_t size) : parents_(size, size) { };

size_t find(size_t index){
while(parents_[index] != parents_.size())

index = parents_[index];
return index;

}

void unite(size_t a, size_t b){
parents_[find(a)] = b;

}
};

6

Exercise Kruskal

class Edge{
public:

size_t u_, v_;
int c_;
Edge(size_t u, int v, int c) : u_(u), v_(v), c_(c) {}

bool operator<(const Edge& other) const {
return c_ < other.c_;

}
};

7

Exercise Kruskal
std::vector<Edge> edges;

...

UnionFind uf(n_ + 1);
sort(edges.begin(), edges.end());
for(auto e : edges){

size_t i=uf.find(e.u_);
size_t j=uf.find(e.v_);
if(i != j){

out.addEdge(e);
uf.unite(i, j);

}
}

8

2. MaxFlow

9

Flow

A Flow f : V × V → R fulfills the follow-
ing conditions:
Bounded Capacity:
For all u, v ∈ V : f(u, v) ≤ c(u, v).
Skew Symmetry:
For all u, v ∈ V : f(u, v) = −f(v, u).
Conservation of flow:
For all u ∈ V \ {s, t}:

∑
v∈V

f(u, v) = 0.

s

v1

v2

v3

v4

t

16/8

13/10

12/12

14/10

20/14

4/4

9/4
4/4 7/6

Value of the flow:
|f | = ∑

v∈V f(s, v).
Here |f | = 18.

10

Rest Network

Rest network Gf provided by the edges with positive rest capacity:

s

v1

v2

v3

v4

t

16/8

13/10

12/12

14/10

20/14

4/4

9/4
4/4 7/6

s

v1

v2

v3

v4

t
8

8

3

10

12

4

10

6

14

4

5

4
4 1 6

Rest networks provide the same kind of properties as flow networks with the exception of permitting antiparallel

edges

11

Augmenting Paths

expansion path p: simple path from s to t in the rest network Gf .
Rest capacity cf(p) = min{cf(u, v) : (u, v) edge in p}

12

Max-Flow Min-Cut Theorem

Theorem
Let f be a flow in a flow network G = (V, E, c) with source s and sink
t. The following statementsa are equivalent:

1 f is a maximal flow in G

2 The rest network Gf does not provide any expansion paths
3 It holds that |f | = c(S, T) for a cut (S, T) of G.

13

Algorithm Ford-Fulkerson(G, s, t)

Input: Flow network G = (V, E, c)
Output: Maximal flow f .

for (u, v) ∈ E do
f(u, v)← 0

while Exists path p : s t in rest network Gf do
cf (p)← min{cf (u, v) : (u, v) ∈ p}
foreach (u, v) ∈ p do

if (u, v) ∈ E then
f(u, v)← f(u, v) + cf (p)

else
f(v, u)← f(u, v)− cf (p)

14

Edmonds-Karp Algorithm

Choose in the Ford-Fulkerson-Method for finding a path in Gf the
expansion path of shortest possible length (e.g. with BFS)
Theorem
When the Edmonds-Karp algorithm is applied to some integer valued
flow network G = (V, E) with source s and sink t then the number of
flow increases applied by the algorithm is in O(|V | · |E|)
⇒ Overal asymptotic runtime: O(|V | · |E|2)

[Without proof]

15

Application: maximal bipartite matching
Given: bipartite undirected graph G = (V, E).
Matching M : M ⊆ E such that |{m ∈M : v ∈ m}| ≤ 1 for all
v ∈ V .
Maximal Matching M : Matching M , such that |M | ≥ |M ′| for each
matching M ′.

16

3. Two Quizzes

[Exam 2018.01], Tasks 4 and 5

17

http://lec.inf.ethz.ch/DA/2019/downloads/exams/2018/Exam_DA_2018_01.pdf

Shortest Path Question

s

t

s

t

Most important question: What is the corresponding state space?
18

Max Flow Question

Most important question: How to map this to a max-flow (matching)
setup?

19

4. Parallel Programming

20

Parallel Performance

Given

fixed amount of computing work W (number computing steps)
Sequential execution time T1

Parallel execution time on p CPUs
runtime speedup efficiency

perfection (linear) Tp = T1/p Sp = p Ep = 1
loss (sublinear) Tp > T1/p Sp < p Ep < 1
sorcery (superlinear) Tp < T1/p Sp > p Ep > 1

21

Amdahl vs. Gustafson

Amdahl Gustafson

p = 4 p = 4

22

Amdahl vs. Gustafson, or why do we care?

Amdahl Gustafson
pessimist optimist

strong scaling weak scaling

⇒ need to develop methods with small sequential protion as possible.

23

Amdahl vs. Gustafson, or why do we care?

Amdahl Gustafson
pessimist optimist

strong scaling weak scaling

⇒ need to develop methods with small sequential protion as possible.

23

Question

Each Node (task) takes 1 time unit.
Arrows depict dependencies.
Minimal execution time when number
of processors = ∞?

critical path

24

Question

Each Node (task) takes 1 time unit.
Arrows depict dependencies.
Minimal execution time when number
of processors = ∞?

critical path

24

Performance Model

p processors
Dynamic scheduling
Tp: Execution time on p processors

25

Performance Model

Tp: Execution time on p processors
T1: work: time for executing total work
on one processor
T1/Tp: Speedup

26

Performance Model

T∞: span: critical path, execution time
on ∞ processors. Longest path from
root to sink.
T1/T∞: Parallelism: wider is better
Lower bounds:

Tp ≥ T1/p Work law
Tp ≥ T∞ Span law

27

Greedy Scheduler

Greedy scheduler: at each time it schedules as many as availbale tasks.
Theorem
On an ideal parallel computer with p processors, a greedy scheduler
executes a multi-threaded computation with work T1 and span T∞ in
time

Tp ≤ T1/p + T∞

28

Beispiel
Assume p = 2.

Tp = 5 Tp = 4

29

5. Programming Tasks

30

C++11 Threads
void hello(int id){

std::cout << "hello from " << id << "\n";
}

int main(){
std::vector<std::thread> tv(3);
int id = 0;
for (auto & t:tv)

t = std::thread(hello, ++id);
std::cout << "hello from main \n";
for (auto & t:tv)

t.join();
return 0;

}

create threads

join

31

Nondeterministic Execution!

One execution:
hello from main
hello from 2
hello from 1
hello from 0

Other execution:
hello from 1
hello from main
hello from 0
hello from 2

Other execution:
hello from main
hello from 0
hello from hello from 1
2

32

Technical Details I
With allocating a thread, reference parameters are copied, except
explicitly std::ref is provided at the construction.

void calc(std::vector<int>& very_long_vector){
// doing funky stuff with very_long_vector

}
int main(){

std::vector<int> v(1000000000);
std::thread t1(calc, v); // bad idea, v is copied
// here v is unchanged
std::thread t2(calc, std::ref(v)); // good idea, v is not copied
// here v is modified
std::thread t2([&v]{calc(v)}; }); // also good idea
// here v is modified
// ...

33

Technical Details I
With allocating a thread, reference parameters are copied, except
explicitly std::ref is provided at the construction.

void calc(std::vector<int>& very_long_vector){
// doing funky stuff with very_long_vector

}
int main(){

std::vector<int> v(1000000000);
std::thread t1(calc, v); // bad idea, v is copied
// here v is unchanged
std::thread t2(calc, std::ref(v)); // good idea, v is not copied
// here v is modified
std::thread t2([&v]{calc(v)}; }); // also good idea
// here v is modified
// ...

33

Technical Details II
Threads cannot be copied.

{
std::thread t1(hello);
std::thread t2;
t2 = t1; // compiler error
t1.join();

}
{

std::thread t1(hello);
std::thread t2;
t2 = std::move(t1); // ok
t2.join();

}

34

Technical Details II
Threads cannot be copied.

{
std::thread t1(hello);
std::thread t2;
t2 = t1; // compiler error
t1.join();

}
{

std::thread t1(hello);
std::thread t2;
t2 = std::move(t1); // ok
t2.join();

}
34

Questions?

35

	Feedback of last exercise
	MaxFlow
	Two Quizzes
	Parallel Programming
	Programming Tasks

