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1. Feedback of last exercise
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Exercise : Labyrinth

Robot has to stop to change direction
Interpret as shortest path problem
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Exercise 9.1: Labyrinth
position × direction × speed
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Exercise Labyrinth

Let n be the number of squares. Graph has |V | = 8n nodes
Graph has at |E| ≤ 20n edges
Therefore, Dijkstra O(|E|+ |V | log |V |) has runtime O(n log n)
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Closeness Centrality

Given: an adjacency matrix for an undirected graph on n vertices.
Output: the closeness centrality C(v) of every vertex v.

C(v) =
∑

u∈V \{v}
d(v, u)

Intuition: If many connected vertices are close to v, then C(v) is
small.
“How central is the vertex in its connected component?”
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All Pairs Shortest Paths
template<typename Matrix>
void allPairsShortestPaths(unsigned n, Matrix& m){

for(unsigned k = 0; k < n; ++k) {
for(unsigned i = 0; i < n; ++i) {

for(unsigned j = i + 1; j < n; ++j) {
if(k == i || k == j)

continue;
if(m[i][k] == 0 || m[k][j] == 0)

continue; // no connection via k
if(m[i][j] == 0 || m[i][k] + m[k][j] < m[i][j])

m[i][j] = m[j][i] = m[i][k] + m[k][j];
}

}
}

}
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Closeness Centrality

vector<vector<unsigned> > adjacencies(n,vector<unsigned>(n, 0));
vector<string> names(n);
// ...
allPairsShortestPaths(n, adjacencies);
for(unsigned i = 0; i < n; ++i) {

cout << names[i] << ": "; unsigned centrality = 0;
for(unsigned j = 0; j < n; ++j) {

if(j == i) continue;
centrality += adjacencies[i][j];

}
cout << centrality << endl;

}
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2. Repetition theory
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Algorithm MST-Kruskal(G)

Input: Weighted Graph G = (V, E, c)
Output: Minimum spanning tree with edges A.

Sort edges by weight c(e1) ≤ ... ≤ c(em)
A← ∅
for k = 1 to m do

if (V, A ∪ {ek}) acyclic then
A← E ′ ∪ {ek}

return (V, A, c)
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Implementation Issues

Consider a set of sets i ≡ Ai ⊂ V . To identify cuts and circles:
membership of the both ends of an edge to sets?
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Union-Find Algorithm MST-Kruskal(G)

Input: Weighted Graph G = (V, E, c)
Output: Minimum spanning tree with edges A.

Sort edges by weight c(e1) ≤ ... ≤ c(em)
A← ∅
for k = 1 to m do

MakeSet(k)

for k = 1 to m do
(u, v)← ek

if Find(u) 6= Find(v) then
Union(Find(u),Find(v)) // conceptual: A← A ∪ ek

else // conceptual: R← R ∪ ek

return (V, A, c)
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Implementation Union-Find

Index 1 2 3 4 5 6 7 8 9 10
Parent 1 1 1 6 5 6 5 5 3 10

Operations:

Make-Set(i): p[i]← i; return i

Find(i): while (p[i] 6= i) do i← p[i]
; return i

Union(i, j): p[j]← i; return i
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Optimization of the runtime for Find

Tree may degenerate. Example: Union(1, 2), Union(2, 3),
Union(3, 4), ...
Idea: always append smaller tree to larger tree. Additionally required:
size information g

Operations:

Make-Set(i): p[i]← i; g[i]← 1; return i

Union(i, j):
if g[j] > g[i] then swap(i, j)
p[j]← i
g[i]← g[i] + g[j]
return i
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Further improvement

Link all nodes to the root when Find is called.
Find(i):
j ← i
while (p[i] 6= i) do i← p[i]
while (j 6= i) do

t← j
j ← p[j]
p[t]← i

return i

Amortised cost: amortised nearly constant (inverse of the
Ackermann-function).
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MST algorithm of Jarnik, Prim, Dijkstra

Idea: start with some v ∈ V and grow the spanning tree from here by
the acceptance rule.

S ← {v0}
for i← 1 to |V | do

Choose cheapest (u, v) mit u ∈ S, v 6∈ S
// conceptual A← A ∪ {(u, v)}
S ← S ∪ {v} // (Coloring)

S

V \ S

Remark: a union-Find data structure is not required. It suffices to
color nodes when they are added to S.
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Running time

Trivially O(|V | · |E|).
Improvements (like with Dijkstra’s ShortestPath)

Memorize cheapest edge to S: for each v ∈ V \ S. deg+(v) many
updates for each new v ∈ S. Costs: |V | many minima and updates:
O(|V |2 + ∑

v∈V deg+(v)) = O(|V |2 + |E|)
With Minheap: costs |V | many minima = O(|V | log |V |), |E|
Updates: O(|E| log |V |), Initialization O(|V |): O(|E| · log |V |.)
With a Fibonacci-Heap: O(|E|+ |V | · log |V |).
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Fibonacci Heaps

Data structure for elements with key with operations

MakeHeap(): Return new heap without elements
Insert(H, x): Add x to H

Minimum(H): return a pointer to element m with minimal key
ExtractMin(H): return and remove (from H) pointer to the
element m

Union(H1, H2): return a heap merged from H1 and H2

DecreaseKey(H, x, k): decrease the key of x in H to k

Delete (H, x): remove element x from H
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Implementation

Doubly linked lists of nodes with a marked-flag and number of
children. Pointer to minimal Element and number nodes.
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Simple Operations
MakeHeap (trivial)
Minimum (trivial)
Insert(H, e)

1 Insert new element into root-list
2 If key is smaller than minimum, reset min-pointer.

Union (H1, H2)
1 Concatenate root-lists of H1 and H2
2 Reset min-pointer.

Delete(H, e)
1 DecreaseKey(H, e,−∞)
2 ExtractMin(H)
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ExtractMin

1 Remove minimal node m from the root list
2 Insert children of m into the root list
3 Merge heap-ordered trees with the same degrees until all trees
have a different degree:
Array of degrees a[1, . . . , n] of elements, empty at beginning. For
each element e of the root list:

a Let g be the degree of e
b If a[g] = nil: a[g]← e.
c If e′ := a[g] 6= nil: Merge e with e′ resutling in e′′ and set a[g]← nil.

Set e′′ unmarked. Re-iterate with e← e′′ having degree g + 1.
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DecreaseKey (H, e, k)

1 Remove e from its parent node p (if existing) and decrease the
degree of p by one.

2 Insert(H, e)
3 Avoid too thin trees:

a If p = nil then done.
b If p is unmarked: mark p and done.
c If p marked: unmark p and cut p from its parent pp. Insert (H, p).

Iterate with p← pp.
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Runtimes

Binary Heap Fibonacci Heap
(worst-Case) (amortized)

MakeHeap Θ(1) Θ(1)
Insert Θ(log n) Θ(1)
Minimum Θ(1) Θ(1)
ExtractMin Θ(log n) Θ(log n)
Union Θ(n) Θ(1)
DecreaseKey Θ(log n) Θ(1)
Delete Θ(log n) Θ(log n)
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3. Programming Task
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Task Union Find

Input: union operations to be performed, followed by queries if they
are located in the same set.
Output: For each query, answer if they are in the same set.
Make sure you can re-use your code in the next task.
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Task Kruskal’s MST algorithm

Edges have to be sorted.

Create an Edge class that implements the comparison operator.
Then use std::sort.
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Task Kruskal’s MST algorithm

Edges have to be sorted.
Create an Edge class that implements the comparison operator.
Then use std::sort.
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Questions?
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