Datenstrukturen und Algorithmen

Exercise 11

FS 2019

Program of today

Feedback of last exercise

Repetition theory
m Algorithm Jarnik, Prim, Dijkstra

Programming Task

1. Feedback of last exercise

Exercise : Labyrinth

m Robot has to stop to change direction
m Interpret as shortest path problem

Exercise 9.1: Labyrinth

m position X direction X speed

m Runtime?

Exercise Labyrinth

m Let n be the number of squares. Graph has |V| = 8n nodes
m Graph has at |E| < 20n edges
m Therefore, Dijkstra O(|E| + |V|log|V|) has runtime O(nlogn)

Closeness Centrality

m Given: an adjacency matrix for an undirected graph on n vertices.
m Output: the closeness centrality C'(v) of every vertex v.

Clo)= > d(v,u)

ueV\{v}

m Intuition: If many connected vertices are close to v, then C'(v) is
small.

m “How central is the vertex in its connected component?”

All Pairs Shortest Paths

template<typename Matrix>
void allPairsShortestPaths(unsigned n, Matrix& m){
for(unsigned k = 0; k < n; ++k) {
for(unsigned i = 0; i < n; ++i) {
for(unsigned j = i + 1; j < n; ++j) {
if(k ==1i || k == j)
continue;
if(m[il k] == 0 || m[k][j] == 0)
continue; // no connection via k
if(m[il [j] == 0 || m[il[k] + m[k][j] < m[i] (1)
m[i] [j] = m[jl1[i] = m[i][k] + m[k][j];
}
}
}
}

Closeness Centrality

vector<vector<unsigned> > adjacencies(n,vector<unsigned>(n, 0));
vector<string> names(n);
/] ...
allPairsShortestPaths(n, adjacencies);
for(unsigned i = 0; i < n; ++i) {
cout << names[i] << ": "; unsigned centrality = O0;
for(unsigned j = 0; j < n; ++j) {
if(j == i) continue;
centrality += adjacencies[i] [j];
}
cout << centrality << endl;

}

2. Repetition theory

Algorithm MST-Kruskal((G)

Input: Weighted Graph G = (V| E, ¢)
Output: Minimum spanning tree with edges A.

Sort edges by weight c(e;) < ... < ¢(en)
A0
for k. =1 tom do
if (V, AU {e}) acyclic then
A<+ E'U{e}

return (V, A, ¢)

Implementation Issues

Consider a set of sets i = A; C V. To identify cuts and circles:
membership of the both ends of an edge to sets?

e
»

Union-Find Algorithm MST-Kruskal(G)

Input: Weighted Graph G = (V| E, ¢)
Output: Minimum spanning tree with edges A.

Sort edges by weight c(e;) < ... < ¢(en)
A0
for k. =1 tom do

MakeSet(k)

for £ =1 tom do
(u,v) < eg
if Find(u) # Find(v) then
Union(Find(u), Find(v))
else

return (V, A, ¢)

Implementation Union-Find

Index
Parent

S—
N
[@)INTEN
QU Ot
Sy O
SIEEN
ot 00
w ©
-
oo

Operations:
m Make-Set(i): p[i] + i; return i

m Find(q): anil:ir(r]:[;] # 1) do i < pli]

m Union(4, j): plj] < i; return i

Optimization of the runtime for Find

Tree may degenerate. Example: Union(1,2), Union(2, 3),
Union(3,4), ...

Idea: always append smaller tree to larger tree. Additionally required:
size information g

Operations:
m Make-Set(i): pli] < 4 g[i] < 1; return i

if[%;[j] > g[i] then swap(i,)
) .. plil
m Union(4, j): ali] < gli] + gl

return ¢

Further improvement

Link all nodes to the root when Find is called.
Find(7):
Ji
while (p[i] # i) do i + pli]
while (j # i) do
t<+j
J < pli]
plt] ¢
return ¢
Amortised cost: amortised nearly constant (inverse of the
Ackermann-function).

MST algorithm of Jarnik, Prim, Dijkstra

Idea: start with some v € V' and grow the spanning tree from here by
the acceptance rule.

S+ {Uo}

for i < 1 to |V| do
Choose cheapest (u,v) mitu e S, v ¢S
// conceptual A < AU {(u,v)}
S < SuU{v} // (Coloring)

Remark: a union-Find data structure is not required. It suffices to
color nodes when they are added to S.

Running time

Trivially O(|V| - |E)).
Improvements (like with Dijkstra's ShortestPath)

m Memorize cheapest edge to S: for each v € V' \ S. deg™(v) many
updates for each new v € S. Costs: |V| many minima and updates:
O(IV[? + Svev deg™ (v)) = O([V[* + | E)

m With Minheap: costs |V| many minima = O(|V'|log |V]), | E]
Updates: O(|E|log|V]), Initialization O(|V]): O(|E| - log|V].)

m With a Fibonacci-Heap: O(|E| + |V - log |V]).

Fibonacci Heaps

Data structure for elements with key with operations

MakeHeap(): Return new heap without elements
Insert(H, z): Add x to H
Minimum(H): return a pointer to element m with minimal key

ExtractMin(H): return and remove (from H) pointer to the
element m

m Union(Hy, Hs): return a heap merged from H; and H,
m DecreaseKey(H, z, k): decrease the key of z in H to k
m Delete (H,x): remove element x from H

Implementation

Doubly linked lists of nodes with a marked-flag and number of
children. Pointer to minimal Element and number nodes.

|
N >

20

Simple Operations

MakeHeap (trivial)
m Minimum (trivial)
Insert(H, e)

Insert new element into root-list
If key is smaller than minimum, reset min-pointer.

m Union (Hy, Hy)

Concatenate root-lists of H; and Hs
Reset min-pointer.

m Delete(H, e)

DecreaseKey(H, e, —o0)
ExtractMin(H)

ExtractMin

Remove minimal node m from the root list
Insert children of m into the root list

Merge heap-ordered trees with the same degrees until all trees

have a different degree:
Array of degrees a[l,...,n| of elements, empty at beginning. For

each element e of the root list:

B Let g be the degree of e

B If alg] = nil: alg] < e.

If €' := ag] # nil: Merge e with €’ resutling in €’ and set alg] < nil.
Set ¢’ unmarked. Re-iterate with e < ¢’ having degree g + 1.

DecreaseKey (1, e, k)

Remove e from its parent node p (if existing) and decrease the
degree of p by one.
Insert(H, e)
Avoid too thin trees:
B If p = nil then done.
B If p is unmarked: mark p and done.

If p marked: unmark p and cut p from its parent pp. Insert (H, p).
Iterate with p < pp.

Runtimes

Binary Heap Fibonacci Heap
(worst-Case) (amortized)

MakeHeap O(1) O(1)
Insert O(logn) O(1)
Minimum O(1) O(1)
ExtractMin O©(logn) O©(logn)
Union O(n) O(1)
DecreaseKey O(logn) O(1)

Delete O(logn) O(logn)

3. Programming Task

Task Union Find

m Input: wnion operations to be performed, followed by queries if they
are located in the same set.

m Output: For each query, answer if they are in the same set.
m Make sure you can re-use your code in the next task.

Task Kruskal’s MST algorithm

m Edges have to be sorted.

Task Kruskal’s MST algorithm

m Edges have to be sorted.
m Create an Edge class that implements the comparison operator.
m Then use std::sort.

Questions?

	Feedback of last exercise
	Repetition theory
	Algorithm Jarnik, Prim, Dijkstra

	Programming Task

