
Datenstrukturen und Algorithmen

Exercises 9-10

FS 2019

1

Program of today

1 Feedback of last exercises

2 Recap Theory

3 Programming Task

2

1. Feedback of last exercises

3

Levenshtein Distance
// D[n,m] = distance between x and y
// D[i,j] = distance between strings x[1..i] and y[1..j]
vector<vector<unsigned>> D(n+1,vector<unsigned>(m+1,0));
for (unsigned j = 0; j <=m; ++j)

D[0][j] = j;
for (unsigned i = 1; i <= n; ++i){

D[i][0] = i;
for (unsigned j = 1; j <=m; ++j){

unsigned q = D[i-1][j-1] + (x[i-1]!=y[j-1]);
q = std::min(q,D[i][j-1]+1);
q = std::min(q,D[i-1][j]+1);
D[i][j] = q;

}
}
return D[n][m];

4

Traveling Salesman

see master solution with detailed comments

5

Depth-first-search and Breadth-first-search
A

B

C D

E

FG

H

Starting at A
DFS: A, B, C, D, E, F, H, G
BFS: A, B, F, C, H, D, G, E

There is no starting vertex where the DFS ordering equals the BFS
ordering.

6

Depth-first-search and Breadth-first-search
A

B

C D

E

FG

H

Starting at A
DFS: A, B, C, D, E, F, H, G
BFS: A, B, F, C, H, D, G, E
There is no starting vertex where the DFS ordering equals the BFS
ordering.

6

Depth-first-search and Breadth-first-search

Star: DFS ordering equals BFS ordering

A

B

C D

E

Starting at A
DFS: A, B, C, D, E
BFS: A, B, C, D, E

Starting at C
DFS: C, A, B, D, E
BFS: C, A, B, D, E

7

Depth-first-search and Breadth-first-search

Star: DFS ordering equals BFS ordering

A

B

C D

E

Starting at A
DFS: A, B, C, D, E
BFS: A, B, C, D, E

Starting at C
DFS: C, A, B, D, E
BFS: C, A, B, D, E

7

Topological Sorting

A B

C

D

E

Graph with cycles

Two minimal cycles sharing an
edge
Remove edge =⇒ cycle-free
Topological Sorting by
“removing” elements with
in-degree 0

8

Topological Sorting

A B

C

D

E

Graph with cycles
Two minimal cycles sharing an
edge

Remove edge =⇒ cycle-free
Topological Sorting by
“removing” elements with
in-degree 0

8

Topological Sorting

A B

C

D

E

Graph with cycles
Two minimal cycles sharing an
edge
Remove edge =⇒ cycle-free

Topological Sorting by
“removing” elements with
in-degree 0

8

Topological Sorting

A B

C

D

E

Graph with cycles
Two minimal cycles sharing an
edge
Remove edge =⇒ cycle-free
Topological Sorting by
“removing” elements with
in-degree 0

8

Topological Sorting

A B

C

D

E

A Graph with cycles
Two minimal cycles sharing an
edge
Remove edge =⇒ cycle-free
Topological Sorting by
“removing” elements with
in-degree 0

8

Topological Sorting

A B

C

D

E

A B
Graph with cycles
Two minimal cycles sharing an
edge
Remove edge =⇒ cycle-free
Topological Sorting by
“removing” elements with
in-degree 0

8

Topological Sorting

A B

C

D

E

A B

C

Graph with cycles
Two minimal cycles sharing an
edge
Remove edge =⇒ cycle-free
Topological Sorting by
“removing” elements with
in-degree 0

8

Topological Sorting

A B

C

D

E

A B

C E

Graph with cycles
Two minimal cycles sharing an
edge
Remove edge =⇒ cycle-free
Topological Sorting by
“removing” elements with
in-degree 0

8

Huffman Code- Frequencies: Hashmap!

std::map<char, int> m;
char x; int n = 0;
while (in.get(x)){

++m[x]; ++n;
}
std::cout << "n = " << n << " characters" << std::endl;

9

Huffman Code - Nodes: SharedPointers on a Heap

struct comparator {
bool operator()(const SharedNode a, const SharedNode b) const {

return a->frequency > b->frequency;
}

};
...

// build heap
std::priority_queue<SharedNode, std::vector<SharedNode>, comparator> q;
for (auto y: m){

q.push(std::make_shared<Node>(y.first, y.second));
}

10

Huffman Code – Tree: SharedPointers in Tree

// build code tree
SharedNode left;
while (!q.empty()){

left = q.top();q.pop();
if (!q.empty()){

auto right = q.top();q.pop();
q.push(std::make_shared<Node>(left, right));

}
}

11

2. Recap Theory

12

Adjacency Matrix Product
1 2

4

3

5

B := A2
G =

0 1 1 1 0
0 0 0 0 0
0 1 0 1 1
0 0 0 0 0
0 0 1 0 1

2

=

0 1 0 1 1
0 0 0 0 0
0 0 1 0 1
0 0 0 0 0
0 1 1 1 2

13

Interpretation

Theorem
Let G = (V, E) be a graph and k ∈ N. Then the element a

(k)
i,j of the

matrix (a(k)
i,j)1≤i,j≤n = Ak

G provides the number of paths with length k
from vi to vj .

14

Graphs and Relations

Graph G = (V, E) with adjacencies AG =̂ Relation E ⊆ V × V over
V

reflexive ⇔ ai,i = 1 for all i = 1, . . . , n.
symmetric ⇔ ai,j = aj,i for all i, j = 1, . . . , n (undirected)
transitive ⇔ (u, v) ∈ E, (v, w) ∈ E ⇒ (u, w) ∈ E.

Equivalence relation ⇔ collection of complete, undirected graphs
where each element has a loop.
Reflexive transitive closure of G ⇔ Reachability relation E∗:
(v, w) ∈ E∗ iff ∃ path from node v to w.

15

Algorithm ReflexiveTransitiveClosure(AG)

Input: Adjacency matrix AG = (aij)n
i,j=1

Output: Reflexive transitive closure B = (bij)n
i,j=1 of G

B ← AG

for k ← 1 to n do
akk ← 1 // Reflexivity
for i← 1 to n do

for j ← 1 to n do
bij ← max{bij, bik · bkj} // All paths via vk

return B

= Warshall algorithm. Cf algorithm Floyd-Warshall: shortest paths for
all point pairs

16

Quiz: Topological Sorting

In how many ways can the following directed graphs be topologically
sorted each?

A B

C D
number sortings

?

A B

C D
number sortings

?

A B

C D
number sortings

?

17

Quiz: Topological Sorting

In how many ways can the following directed graphs be topologically
sorted each?

A B

C D
number sortings

2

A B

C D
number sortings

1

A B

C D
number sortings

0

17

Dijkstra ShortestPath Basic Idea

Set V of nodes is partitioned into
the set M of nodes for which a shortest
path from s is already known,
the set R = ⋃

v∈M N+(v) \M of nodes
where a shortest path is not yet known
but that are accessible directly from M ,
the set U = V \ (M ∪R) of nodes that
have not yet been considered.

s

2

2

5

3

5

2

1

2

18

Algorithm Dijkstra

Initial: PL(n)←∞ für alle Knoten.

Set PL(s)← 0
Start with M = {s}. Set k ← s.
While a new node k is added and this is not the target node

1 For each neighbour node n of k:
compute path length x to n via k
If PL(n) =∞, than add n to R
If x < PL(n) <∞, then set PL(n)← x and adapt R .

2 Choose as new node k the node with smallest path length in R.

19

General Weighted Graphs

Relaxing Step as with Dijkstra:

Relax(u, v) (u, v ∈ V , (u, v) ∈ E)
if ds(v) > ds(u) + c(u, v) then

ds(v)← ds(u) + c(u, v)
return true

return false
s

u

v

ds(u)

ds(v)

Problem: cycles with negative weights can shorten the path, a
shortest path is not guaranteed to exist.

20

Dynamic Programming Approach (Bellman)

Induction over number of edges ds[i, v]: Shortest path from s to v via
maximally i edges.

ds[i, v] = min{ds[i− 1, v], min
(u,v)∈E

(ds[i− 1, u] + c(u, v))

ds[0, s] = 0, ds[0, v] =∞ ∀v 6= s.

21

DP Induction for all shortest paths

dk(u, v) = Minimal weight of a path u v with intermediate nodes
in V k

Induktion

dk(u, v) = min{dk−1(u, v), dk−1(u, k) + dk−1(k, v)}(k ≥ 1)
d0(u, v) = c(u, v)

22

DP Algorithm Floyd-Warshall(G)

Input: Acyclic Graph G = (V, E, c)
Output: Minimal weights of all paths d
d0 ← c
for k ← 1 to |V | do

for i← 1 to |V | do
for j ← 1 to |V | do

dk(vi, vj) = min{dk−1(vi, vj), dk−1(vi, vk) + dk−1(vk, vj)}

Runtime: Θ(|V |3)
Remark: Algorithm can be executed with a single matrix d (in place).

23

Algorithm Johnson(G)
Input: Weighted Graph G = (V, E, c)
Output: Minimal weights of all paths D.

New node s. Compute G′ = (V ′, E ′, c′)
if BellmanFord(G′, s) = false then return “graph has negative cycles”
foreach v ∈ V ′ do

h(v)← d(s, v) // d aus BellmanFord Algorithmus

foreach (u, v) ∈ E ′ do
c̃(u, v)← c(u, v) + h(u)− h(v)

foreach u ∈ V do
d̃(u, ·)← Dijkstra(G̃′, u)
foreach v ∈ V do

D(u, v)← d̃(u, v) + h(v)− h(u)

24

Comparison of the approaches

Algorithm Runtime
Dijkstra (Heap) cv ≥ 0 1:n O(|E| log |V |)
Dijkstra (Fibonacci-Heap) cv ≥ 0 1:n O(|E|+ |V | log |V |) ∗
Bellman-Ford 1:n O(|E| · |V |)
Floyd-Warshall n:n Θ(|V |3)
Johnson n:n O(|V | · |E| · log |V |)
Johnson (Fibonacci-Heap) n:n O(|V |2 log |V |+ |V | · |E|) ∗

* amortized

Johnson is better than Floyd-Warshall for sparse graphs (|E| ≈ Θ(|V |)).

25

3. Programming Task

26

Closeness Centrality

Given: an adjacency matrix for an undirected graph on n vertices.
Output: the closeness centrality C(v) of every vertex v.

C(v) =
∑

u∈V \{v}
d(v, u)

Intuition: If many connected vertices are close to v, then C(v) is
small.
“How central is the vertex in its connected component?”

27

Closeness Centrality

Given: an adjacency matrix for an undirected graph on n vertices.
Output: the closeness centrality C(v) of every vertex v.

C(v) =
∑

u∈V \{v}
d(v, u)

Intuition: If many connected vertices are close to v, then C(v) is
small.
“How central is the vertex in its connected component?”

27

All Pairs Shortest Paths

We require d(u, v) for all vertex pairs (u, v).
=⇒ compute all shortest paths using Floyd-Warshall.

template<typename Matrix>
void allPairsShortestPaths(unsigned n, Matrix& m)
{

// your code here

Simply overwrite m with the distance values.
Attention: initially 0 means “no edge”.
Undirected graph: m[i][j] == m[j][i]

28

Closeness Centrality

vector<vector<unsigned> > adjacencies(n,
vector<unsigned>(n, 0));

vector<string> names(n);
// ...
allPairsShortestPaths(n, adjacencies);
for(unsigned i = 0; i < n; ++i) {

cout << names[i] << ": ";
unsigned centrality = 0;
// your code here
cout << centrality << endl;

}

29

Closeness Centrality: Input Data

A graph that stems from collaborations on scientific papers.
The vertices of the graph are the co-authors of the
mathematician Paul Erdős.
There is an edge between them if the authors have jointly
published a paper.
Source: https://oakland.edu/enp/thedata/

30

https://oakland.edu/enp/thedata/

Closeness Centrality: Output

vertices: 511
ABBOTT, HARVEY LESLIE : 1625
ACZEL, JANOS D. : 1681
AGOH, TAKASHI : 2132
AHARONI, RON : 1578
AIGNER, MARTIN S. : 1589
AJTAI, MIKLOS : 1492
ALAOGLU, LEONIDAS* : 0
ALAVI, YOUSEF : 1561
...

Where does the 0 come from?
31

Questions?

32

	Feedback of last exercises
	Recap Theory
	Programming Task

