Datenstrukturen und Algorithmen

Exercises 9-10

FS 2019

Program of today

1 Feedback of last exercises

2 Recap Theory

3 Programming Task

1. Feedback of last exercises

Levenshtein Distance

```
// D[n,m] = distance between x and y
// D[i,j] = distance between strings x[1..i] and y[1..j]
vector<vector<unsigned>> D(n+1,vector<unsigned>(m+1,0));
for (unsigned j = 0; j \leq m; ++j)
 D[0][j] = j;
for (unsigned i = 1; i \le n; ++i)
 D[i][0] = i;
 for (unsigned j = 1; j \leq m; ++j)
   unsigned q = D[i-1][j-1] + (x[i-1]!=y[j-1]);
   q = std::min(q,D[i][j-1]+1);
   q = std::min(q,D[i-1][j]+1);
   D[i][j] = a:
 }
}
return D[n][m];
```

Traveling Salesman

see master solution with detailed comments

Starting at A (C) DFS: A, B, C, D, E, F, H, GBFS: A, B, F, C, H, D, G, E

Starting at A (C) DFS: A, B, C, D, E, F, H, GBFS: A, B, F, C, H, D, G, EThere is no starting workers the

There is no starting vertex where the DFS ordering equals the BFS ordering.

Star: DFS ordering equals BFS ordering

Starting at ADFS: A, B, C, D, EBFS: A, B, C, D, E

Star: DFS ordering equals BFS ordering

Starting at ADFS: A, B, C, D, EBFS: A, B, C, D, E Starting at CDFS: C, A, B, D, EBFS: C, A, B, D, E

Graph with cycles

Graph with cyclesTwo minimal cycles sharing an edge

- Graph with cycles
- Two minimal cycles sharing an edge
- $\blacksquare Remove edge \implies cycle-free$

- Graph with cycles
- Two minimal cycles sharing an edge
- $\blacksquare Remove edge \implies cycle-free$
- Topological Sorting by "removing" elements with in-degree 0

- Graph with cycles
- Two minimal cycles sharing an edge
- $\blacksquare Remove edge \implies cycle-free$
- Topological Sorting by "removing" elements with in-degree 0

- Graph with cycles
- Two minimal cycles sharing an edge
- $\blacksquare Remove edge \implies cycle-free$
- Topological Sorting by "removing" elements with in-degree 0

- Graph with cycles
- Two minimal cycles sharing an edge
- $\blacksquare Remove edge \implies cycle-free$
- Topological Sorting by "removing" elements with in-degree 0

- Graph with cycles
- Two minimal cycles sharing an edge
- $\blacksquare Remove edge \implies cycle-free$
- Topological Sorting by "removing" elements with in-degree 0

Huffman Code- Frequencies: Hashmap!

Huffman Code - Nodes: SharedPointers on a Heap

```
struct comparator {
bool operator()(const SharedNode a, const SharedNode b) const {
       return a->frequency > b->frequency;
}
}:
. . .
// build heap
std::priority_queue<SharedNode, std::vector<SharedNode>, comparator>
for (auto y: m){
       q.push(std::make_shared<Node>(y.first, y.second));
}
```

Huffman Code – Tree: SharedPointers in Tree

```
// build code tree
SharedNode left;
while (!q.empty()){
    left = q.top();q.pop();
    if (!q.empty()){
        auto right = q.top();q.pop();
        q.push(std::make_shared<Node>(left, right));
    }
}
```

2. Recap Theory

Adjacency Matrix Product

$$B := A_G^2 = \begin{pmatrix} 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix}^2 = \begin{pmatrix} 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 2 \end{pmatrix}$$

Theorem

Let G = (V, E) be a graph and $k \in \mathbb{N}$. Then the element $a_{i,j}^{(k)}$ of the matrix $(a_{i,j}^{(k)})_{1 \le i,j \le n} = A_G^k$ provides the number of paths with length k from v_i to v_j .

Graphs and Relations

Graph G = (V, E) with adjacencies $A_G \cong$ Relation $E \subseteq V \times V$ over V

reflexive ⇔ a_{i,i} = 1 for all i = 1,...,n.
symmetric ⇔ a_{i,j} = a_{j,i} for all i, j = 1,...,n (undirected)
transitive ⇔ (u, v) ∈ E, (v, w) ∈ E ⇒ (u, w) ∈ E.

Equivalence relation \Leftrightarrow collection of complete, undirected graphs where each element has a loop.

Reflexive transitive closure of $G \Leftrightarrow Reachability relation E^*$: $(v, w) \in E^*$ iff \exists path from node v to w.

Algorithm ReflexiveTransitiveClosure(A_G)

Input: Adjacency matrix $A_G = (a_{ij})_{i,j=1}^n$ **Output:** Reflexive transitive closure $B = (b_{ij})_{i,j=1}^n$ of G

 $\begin{array}{c|c} B \leftarrow A_G \\ \text{for } k \leftarrow 1 \text{ to } n \text{ do} \\ & a_{kk} \leftarrow 1 \\ \text{for } i \leftarrow 1 \text{ to } n \text{ do} \\ & & & \\ & for \ j \leftarrow 1 \text{ to } n \text{ do} \\ & & \\ & & & \\ & b_{ij} \leftarrow \max\{b_{ij}, b_{ik} \cdot b_{kj}\} \end{array}$ // All paths via v_k

return B

= Warshall algorithm. Cf algorithm Floyd-Warshall: shortest paths for all point pairs

Quiz: Topological Sorting

In how many ways can the following directed graphs be topologically sorted each?

Quiz: Topological Sorting

In how many ways can the following directed graphs be topologically sorted each?

Dijkstra ShortestPath Basic Idea

Set \boldsymbol{V} of nodes is partitioned into

- the set M of nodes for which a shortest path from s is already known,
- the set R = ∪_{v∈M} N⁺(v) \ M of nodes where a shortest path is not yet known but that are accessible directly from M,
 the set U = V \ (M ∪ R) of nodes that

have not yet been considered.

Algorithm Dijkstra

Initial: $PL(n) \leftarrow \infty$ für alle Knoten.

- Set $PL(s) \leftarrow 0$
- Start with $M = \{s\}$. Set $k \leftarrow s$.

 \blacksquare While a new node k is added and this is not the target node

- **1** For each neighbour node n of k:
 - \blacksquare compute path length x to n via k
 - If $PL(n) = \infty$, than add n to R
 - If $x < \mathrm{PL}(n) < \infty,$ then set $\mathrm{PL}(n) \leftarrow x$ and adapt R .

2 Choose as new node k the node with smallest path length in R.

General Weighted Graphs

Relaxing Step as with Dijkstra:

$$\begin{array}{l} \mathsf{Relax}(u,v) \ (u,v \in V, \ (u,v) \in E) \\ \mathsf{if} \ d_s(v) > d_s(u) + c(u,v) \ \mathsf{then} \\ \ d_s(v) \leftarrow d_s(u) + c(u,v) \\ \ \mathsf{return} \ \mathsf{true} \end{array}$$

return false

Problem: cycles with negative weights can shorten the path, a shortest path is not guaranteed to exist.

Dynamic Programming Approach (Bellman)

Induction over number of edges $d_s[i, v]$: Shortest path from s to v via maximally i edges.

$$d_s[i, v] = \min\{d_s[i-1, v], \min_{(u,v)\in E}(d_s[i-1, u] + c(u, v)) \\ d_s[0, s] = 0, d_s[0, v] = \infty \ \forall v \neq s.$$

DP Induction for all shortest paths

 $d^k(u,v) = \mbox{Minimal weight of a path } u \rightsquigarrow v$ with intermediate nodes in V^k

Induktion

$$d^{k}(u,v) = \min\{d^{k-1}(u,v), d^{k-1}(u,k) + d^{k-1}(k,v)\}(k \ge 1)$$

$$d^{0}(u,v) = c(u,v)$$

DP Algorithm Floyd-Warshall(*G***)**

```
Input: Acyclic Graph G = (V, E, c)

Output: Minimal weights of all paths d

d^0 \leftarrow c

for k \leftarrow 1 to |V| do

for i \leftarrow 1 to |V| do

d^k(v_i, v_j) = \min\{d^{k-1}(v_i, v_j), d^{k-1}(v_i, v_k) + d^{k-1}(v_k, v_j)\}
```

Runtime: $\Theta(|V|^3)$

Remark: Algorithm can be executed with a single matrix d (in place).

Algorithm Johnson(G)

Input: Weighted Graph G = (V, E, c)**Output:** Minimal weights of all paths D.

New node *s*. Compute G' = (V', E', c')if BellmanFord(G', s) = false then return "graph has negative cycles" foreach $v \in V'$ do $\lfloor h(v) \leftarrow d(s, v) // d$ aus BellmanFord Algorithmus foreach $(u, v) \in E'$ do $\lfloor \tilde{c}(u, v) \leftarrow c(u, v) + h(u) - h(v)$ foreach $u \in V$ do

Comparison of the approaches

Algorithm			Runtime
Dijkstra (Heap)	$c_v \ge 0$	1:n	$\mathcal{O}(E \log V)$
Dijkstra (Fibonacci-Heap)	$c_v \ge 0$	1:n	$\mathcal{O}(E + V \log V)^{*}$
Bellman-Ford		1:n	$\mathcal{O}(E \cdot V)$
Floyd-Warshall		n:n	$\Theta(V ^3)$
Johnson		n:n	$\mathcal{O}(V \cdot E \cdot \log V)$
Johnson (Fibonacci-Heap)		n:n	$\mathcal{O}(V ^2 \log V + V \cdot E) *$

* amortized

Johnson is better than Floyd-Warshall for sparse graphs ($|E| \approx \Theta(|V|)$).

3. Programming Task

Given: an adjacency matrix for an *undirected* graph on n vertices.
Output: the *closeness centrality* C(v) of every vertex v.

$$C(v) = \sum_{u \in V \setminus \{v\}} d(v, u)$$

- Given: an adjacency matrix for an *undirected* graph on *n* vertices.
- Output: the *closeness centrality* C(v) of every vertex v.

$$C(v) = \sum_{u \in V \setminus \{v\}} d(v, u)$$

- Intuition: If many connected vertices are close to v, then C(v) is small.
- "How central is the vertex in its connected component?"

All Pairs Shortest Paths

• We require d(u, v) for all vertex pairs (u, v).

 $\blacksquare \implies$ compute all shortest paths using Floyd-Warshall.

```
template<typename Matrix>
void allPairsShortestPaths(unsigned n, Matrix& m)
{
    // your code here
```

- Simply overwrite m with the distance values.
- Attention: initially 0 means "no edge".
- Undirected graph: m[i][j] == m[j][i]

Closeness Centrality

```
vector<vector<unsigned> > adjacencies(n,
                  vector<unsigned>(n, 0));
vector<string> names(n);
// ...
allPairsShortestPaths(n, adjacencies);
for(unsigned i = 0; i < n; ++i) {</pre>
  cout << names[i] << ": ";</pre>
 unsigned centrality = 0;
 // your code here
  cout << centrality << endl;</pre>
}
```

Closeness Centrality: Input Data

- A graph that stems from collaborations on scientific papers.
- The vertices of the graph are the co-authors of the mathematician Paul Erdős.
- There is an edge between them if the authors have jointly published a paper.
- Source: https://oakland.edu/enp/thedata/

Closeness Centrality: Output

vertices: 511 ABBOTT, HARVEY LESLIE : 1625 ACZEL, JANOS D. : 1681 AGOH, TAKASHI : 2132 : 1578 AHARONI, RON AIGNER. MARTIN S. : 1589 AJTAI, MIKLOS : 1492 ALAOGLU, LEONIDAS* : 0 ALAVI, YOUSEF : 1561

• • •

Where does the 0 come from?

Questions?