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1. Feedback of last exercises

3



Levenshtein Distance
// D[n,m] = distance between x and y
// D[i,j] = distance between strings x[1..i] and y[1..j]
vector<vector<unsigned>> D(n+1,vector<unsigned>(m+1,0));
for (unsigned j = 0; j <=m; ++j)

D[0][j] = j;
for (unsigned i = 1; i <= n; ++i){

D[i][0] = i;
for (unsigned j = 1; j <=m; ++j){

unsigned q = D[i-1][j-1] + (x[i-1]!=y[j-1]);
q = std::min(q,D[i][j-1]+1);
q = std::min(q,D[i-1][j]+1);
D[i][j] = q;

}
}
return D[n][m];
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Traveling Salesman

see master solution with detailed comments
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Depth-first-search and Breadth-first-search
A

B

C D

E

FG

H

Starting at A
DFS: A, B, C, D, E, F, H, G
BFS: A, B, F, C, H, D, G, E

There is no starting vertex where the DFS ordering equals the BFS
ordering.
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Depth-first-search and Breadth-first-search

Star: DFS ordering equals BFS ordering

A

B

C D

E

Starting at A
DFS: A, B, C, D, E
BFS: A, B, C, D, E

Starting at C
DFS: C, A, B, D, E
BFS: C, A, B, D, E
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Topological Sorting

A B

C

D

E

Graph with cycles

Two minimal cycles sharing an
edge
Remove edge =⇒ cycle-free
Topological Sorting by
“removing” elements with
in-degree 0
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Topological Sorting

A B
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Graph with cycles
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in-degree 0

8



Topological Sorting
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Topological Sorting

A B

C

D

E

A B

C E

Graph with cycles
Two minimal cycles sharing an
edge
Remove edge =⇒ cycle-free
Topological Sorting by
“removing” elements with
in-degree 0
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Huffman Code- Frequencies: Hashmap!

std::map<char, int> m;
char x; int n = 0;
while (in.get(x)){

++m[x]; ++n;
}
std::cout << "n = " << n << " characters" << std::endl;

9



Huffman Code - Nodes: SharedPointers on a Heap

struct comparator {
bool operator()(const SharedNode a, const SharedNode b) const {

return a->frequency > b->frequency;
}

};
...

// build heap
std::priority_queue<SharedNode, std::vector<SharedNode>, comparator> q;
for (auto y: m){

q.push(std::make_shared<Node>(y.first, y.second));
}
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Huffman Code – Tree: SharedPointers in Tree

// build code tree
SharedNode left;
while (!q.empty()){

left = q.top();q.pop();
if (!q.empty()){

auto right = q.top();q.pop();
q.push(std::make_shared<Node>(left, right));

}
}
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2. Recap Theory
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Adjacency Matrix Product
1 2

4

3

5

B := A2
G =



0 1 1 1 0
0 0 0 0 0
0 1 0 1 1
0 0 0 0 0
0 0 1 0 1



2

=



0 1 0 1 1
0 0 0 0 0
0 0 1 0 1
0 0 0 0 0
0 1 1 1 2
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Interpretation

Theorem
Let G = (V, E) be a graph and k ∈ N. Then the element a

(k)
i,j of the

matrix (a(k)
i,j )1≤i,j≤n = Ak

G provides the number of paths with length k
from vi to vj .
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Graphs and Relations

Graph G = (V, E) with adjacencies AG =̂ Relation E ⊆ V × V over
V

reflexive ⇔ ai,i = 1 for all i = 1, . . . , n.
symmetric ⇔ ai,j = aj,i for all i, j = 1, . . . , n (undirected)
transitive ⇔ (u, v) ∈ E, (v, w) ∈ E ⇒ (u, w) ∈ E.

Equivalence relation ⇔ collection of complete, undirected graphs
where each element has a loop.
Reflexive transitive closure of G ⇔ Reachability relation E∗:
(v, w) ∈ E∗ iff ∃ path from node v to w.

15



Algorithm ReflexiveTransitiveClosure(AG)

Input: Adjacency matrix AG = (aij)n
i,j=1

Output: Reflexive transitive closure B = (bij)n
i,j=1 of G

B ← AG

for k ← 1 to n do
akk ← 1 // Reflexivity
for i← 1 to n do

for j ← 1 to n do
bij ← max{bij, bik · bkj} // All paths via vk

return B

= Warshall algorithm. Cf algorithm Floyd-Warshall: shortest paths for
all point pairs
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Quiz: Topological Sorting

In how many ways can the following directed graphs be topologically
sorted each?

A B

C D
number sortings

?

A B

C D
number sortings

?

A B

C D
number sortings

?
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Dijkstra ShortestPath Basic Idea

Set V of nodes is partitioned into
the set M of nodes for which a shortest
path from s is already known,
the set R = ⋃

v∈M N+(v) \M of nodes
where a shortest path is not yet known
but that are accessible directly from M ,
the set U = V \ (M ∪R) of nodes that
have not yet been considered.

s

2

2

5

3

5

2

1

2
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Algorithm Dijkstra

Initial: PL(n)←∞ für alle Knoten.

Set PL(s)← 0
Start with M = {s}. Set k ← s.
While a new node k is added and this is not the target node

1 For each neighbour node n of k:
compute path length x to n via k
If PL(n) =∞, than add n to R
If x < PL(n) <∞, then set PL(n)← x and adapt R .

2 Choose as new node k the node with smallest path length in R.
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General Weighted Graphs

Relaxing Step as with Dijkstra:

Relax(u, v) (u, v ∈ V , (u, v) ∈ E)
if ds(v) > ds(u) + c(u, v) then

ds(v)← ds(u) + c(u, v)
return true

return false
s

u

v

ds(u)

ds(v)

Problem: cycles with negative weights can shorten the path, a
shortest path is not guaranteed to exist.
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Dynamic Programming Approach (Bellman)

Induction over number of edges ds[i, v]: Shortest path from s to v via
maximally i edges.

ds[i, v] = min{ds[i− 1, v], min
(u,v)∈E

(ds[i− 1, u] + c(u, v))

ds[0, s] = 0, ds[0, v] =∞ ∀v 6= s.
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DP Induction for all shortest paths

dk(u, v) = Minimal weight of a path u v with intermediate nodes
in V k

Induktion

dk(u, v) = min{dk−1(u, v), dk−1(u, k) + dk−1(k, v)}(k ≥ 1)
d0(u, v) = c(u, v)
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DP Algorithm Floyd-Warshall(G)

Input: Acyclic Graph G = (V, E, c)
Output: Minimal weights of all paths d
d0 ← c
for k ← 1 to |V | do

for i← 1 to |V | do
for j ← 1 to |V | do

dk(vi, vj) = min{dk−1(vi, vj), dk−1(vi, vk) + dk−1(vk, vj)}

Runtime: Θ(|V |3)
Remark: Algorithm can be executed with a single matrix d (in place).
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Algorithm Johnson(G)
Input: Weighted Graph G = (V, E, c)
Output: Minimal weights of all paths D.

New node s. Compute G′ = (V ′, E ′, c′)
if BellmanFord(G′, s) = false then return “graph has negative cycles”
foreach v ∈ V ′ do

h(v)← d(s, v) // d aus BellmanFord Algorithmus

foreach (u, v) ∈ E ′ do
c̃(u, v)← c(u, v) + h(u)− h(v)

foreach u ∈ V do
d̃(u, ·)← Dijkstra(G̃′, u)
foreach v ∈ V do

D(u, v)← d̃(u, v) + h(v)− h(u)
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Comparison of the approaches

Algorithm Runtime
Dijkstra (Heap) cv ≥ 0 1:n O(|E| log |V |)
Dijkstra (Fibonacci-Heap) cv ≥ 0 1:n O(|E|+ |V | log |V |) ∗
Bellman-Ford 1:n O(|E| · |V |)
Floyd-Warshall n:n Θ(|V |3)
Johnson n:n O(|V | · |E| · log |V |)
Johnson (Fibonacci-Heap) n:n O(|V |2 log |V |+ |V | · |E|) ∗

* amortized

Johnson is better than Floyd-Warshall for sparse graphs (|E| ≈ Θ(|V |)).
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3. Programming Task
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Closeness Centrality

Given: an adjacency matrix for an undirected graph on n vertices.
Output: the closeness centrality C(v) of every vertex v.

C(v) =
∑

u∈V \{v}
d(v, u)

Intuition: If many connected vertices are close to v, then C(v) is
small.
“How central is the vertex in its connected component?”
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All Pairs Shortest Paths

We require d(u, v) for all vertex pairs (u, v).
=⇒ compute all shortest paths using Floyd-Warshall.

template<typename Matrix>
void allPairsShortestPaths(unsigned n, Matrix& m)
{

// your code here

Simply overwrite m with the distance values.
Attention: initially 0 means “no edge”.
Undirected graph: m[i][j] == m[j][i]
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Closeness Centrality

vector<vector<unsigned> > adjacencies(n,
vector<unsigned>(n, 0));

vector<string> names(n);
// ...
allPairsShortestPaths(n, adjacencies);
for(unsigned i = 0; i < n; ++i) {

cout << names[i] << ": ";
unsigned centrality = 0;
// your code here
cout << centrality << endl;

}
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Closeness Centrality: Input Data

A graph that stems from collaborations on scientific papers.
The vertices of the graph are the co-authors of the
mathematician Paul Erdős.
There is an edge between them if the authors have jointly
published a paper.
Source: https://oakland.edu/enp/thedata/
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Closeness Centrality: Output

vertices: 511
ABBOTT, HARVEY LESLIE : 1625
ACZEL, JANOS D. : 1681
AGOH, TAKASHI : 2132
AHARONI, RON : 1578
AIGNER, MARTIN S. : 1589
AJTAI, MIKLOS : 1492
ALAOGLU, LEONIDAS* : 0
ALAVI, YOUSEF : 1561
...

Where does the 0 come from?
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Questions?
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