Datenstrukturen und Algorithmen

Exercises 9-10

FS 2019

Program of today

1 Feedback of last exercises

2 Recap Theory

3 Programming Task

1. Feedback of last exercises

Levenshtein Distance

```
// D[n,m] = distance between x and y
// D[i,j] = distance between strings x[1..i] and y[1..j]
vector<vector<unsigned>> D(n+1,vector<unsigned>(m+1,0));
for (unsigned j = 0; j <=m; ++j)
    D[0][j] = j;
for (unsigned i = 1; i <= n; ++i){
    D[i][0] = i;
    for (unsigned j = 1; j <=m; ++j){
        unsigned q = D[i-1][j-1] + (x[i-1]!=y[j-1]);
        q = std::min(q,D[i][j-1]+1);
        q = std::min(q,D[i-1][j]+1);
        D[i][j] = q;
    }
}
return D[n] [m] ;
```


Traveling Salesman

see master solution with detailed comments

Depth-first-search and Breadth-first-search

Starting at A

DFS: A, B, C, D, E, F, H, G
BFS: A, B, F, C, H, D, G, E

Depth-first-search and Breadth-first-search

Starting at A

DFS: A, B, C, D, E, F, H, G
BFS: A, B, F, C, H, D, G, E
There is no starting vertex where the DFS ordering equals the BFS ordering.

Depth-first-search and Breadth-first-search

Star: DFS ordering equals BFS ordering

Starting at A
DFS: A, B, C, D, E
BFS: A, B, C, D, E

Depth-first-search and Breadth-first-search

Star: DFS ordering equals BFS ordering

Starting at A
DFS: A, B, C, D, E
BFS: A, B, C, D, E

Starting at C
DFS: C, A, B, D, E
BFS: C, A, B, D, E

Topological Sorting

■ Graph with cycles

Topological Sorting

■ Graph with cycles

- Two minimal cycles sharing an edge

Topological Sorting

- Graph with cycles

■ Two minimal cycles sharing an edge
■ Remove edge \Longrightarrow cycle-free

Topological Sorting

■ Graph with cycles
■ Two minimal cycles sharing an edge
■ Remove edge \Longrightarrow cycle-free

- Topological Sorting by "removing" elements with in-degree 0

Topological Sorting

■ Graph with cycles
■ Two minimal cycles sharing an edge
■ Remove edge \Longrightarrow cycle-free

- Topological Sorting by "removing" elements with in-degree 0

Topological Sorting

■ Graph with cycles

- Two minimal cycles sharing an edge
■ Remove edge \Longrightarrow cycle-free
■ Topological Sorting by "removing" elements with in-degree 0

Topological Sorting

■ Graph with cycles

- Two minimal cycles sharing an edge
■ Remove edge \Longrightarrow cycle-free
- Topological Sorting by "removing" elements with in-degree 0

Topological Sorting

■ Graph with cycles

- Two minimal cycles sharing an edge
■ Remove edge \Longrightarrow cycle-free
■ Topological Sorting by "removing" elements with in-degree 0

Huffman Code- Frequencies: Hashmap!

```
std::map<char, int> m;
char x; int n = 0;
while (in.get(x)){
    ++m[x]; ++n;
}
std::cout << "n = " << n << " characters" << std::endl;
```


Huffman Code - Nodes: SharedPointers on a Heap

```
struct comparator {
    bool operator()(const SharedNode a, const SharedNode b) const {
                        return a->frequency > b->frequency;
    }
};
// build heap
std::priority_queue<SharedNode, std::vector<SharedNode>, comparator>
for (auto y: m){
    q.push(std::make_shared<Node>(y.first, y.second));
}
```


Huffman Code - Tree: SharedPointers in Tree

```
// build code tree
SharedNode left;
while (!q.empty()){
    left = q.top();q.pop();
    if (!q.empty()){
    auto right = q.top();q.pop();
    q.push(std::make_shared<Node>(left, right));
    }
}
```


2. Recap Theory

Adjacency Matrix Product

$$
B:=A_{G}^{2}=\left(\begin{array}{lllll}
0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1
\end{array}\right)^{2}=\left(\begin{array}{lllll}
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 2
\end{array}\right)
$$

Interpretation

Theorem

Let $G=(V, E)$ be a graph and $k \in \mathbb{N}$. Then the element $a_{i, j}^{(k)}$ of the matrix $\left(a_{i, j}^{(k)}\right)_{1 \leq i, j \leq n}=A_{G}^{k}$ provides the number of paths with length k from v_{i} to v_{j}.

Graphs and Relations

Graph $G=(V, E)$ with adjacencies $A_{G} \widehat{=}$ Relation $E \subseteq V \times V$ over V

- reflexive $\Leftrightarrow a_{i, i}=1$ for all $i=1, \ldots, n$.

■ symmetric $\Leftrightarrow a_{i, j}=a_{j, i}$ for all $i, j=1, \ldots, n$ (undirected)
■ transitive $\Leftrightarrow(u, v) \in E,(v, w) \in E \Rightarrow(u, w) \in E$.

Equivalence relation \Leftrightarrow collection of complete, undirected graphs where each element has a loop.
Reflexive transitive closure of $G \Leftrightarrow$ Reachability relation E^{*} : $(v, w) \in E^{*}$ iff \exists path from node v to w.

Algorithm ReflexiveTransitiveClosure $\left(A_{G}\right)$

Input: Adjacency matrix $A_{G}=\left(a_{i j}\right)_{i, j=1}^{n}$
Output: Reflexive transitive closure $B=\left(b_{i j}\right)_{i, j=1}^{n}$ of G
$B \leftarrow A_{G}$
for $k \leftarrow 1$ to n do

$$
\begin{aligned}
& a_{k k} \leftarrow 1 \\
& \text { for } i \leftarrow 1 \text { to } n \text { do } \\
& \quad \text { for } j \leftarrow 1 \text { to } n \text { do } \\
& \quad \quad b_{i j} \leftarrow \max \left\{b_{i j}, b_{i k} \cdot b_{k j}\right\}
\end{aligned}
$$

// Reflexivity
return B
$=$ Warshall algorithm. Cf algorithm Floyd-Warshall: shortest paths for all point pairs

Quiz: Topological Sorting

In how many ways can the following directed graphs be topologically sorted each?

number sortings

number sortings

number sortings
?

Quiz: Topological Sorting

In how many ways can the following directed graphs be topologically sorted each?

number sortings

number sortings

number sortings
0

Dijkstra ShortestPath Basic Idea

Set V of nodes is partitioned into
■ the set M of nodes for which a shortest path from s is already known,
■ the set $R=\cup_{v \in M} N^{+}(v) \backslash M$ of nodes where a shortest path is not yet known but that are accessible directly from M,

- the set $U=V \backslash(M \cup R)$ of nodes that have not yet been considered.

Algorithm Dijkstra

Initial: $\mathrm{PL}(n) \leftarrow \infty$ für alle Knoten.

- Set $\mathrm{PL}(s) \leftarrow 0$
- Start with $M=\{s\}$. Set $k \leftarrow s$.
- While a new node k is added and this is not the target node

1 For each neighbour node n of k :

- compute path length x to n via k
- If $\operatorname{PL}(n)=\infty$, than add n to R
- If $x<\operatorname{PL}(n)<\infty$, then set $\operatorname{PL}(n) \leftarrow x$ and adapt R.

2 Choose as new node k the node with smallest path length in R.

General Weighted Graphs

Relaxing Step as with Dijkstra:

```
\(\operatorname{Relax}(u, v)(u, v \in V,(u, v) \in E)\)
if \(d_{s}(v)>d_{s}(u)+c(u, v)\) then
    \(d_{s}(v) \leftarrow d_{s}(u)+c(u, v)\)
    return true
return false
```


Problem: cycles with negative weights can shorten the path, a shortest path is not guaranteed to exist.

Dynamic Programming Approach (Bellman)

Induction over number of edges $d_{s}[i, v]$: Shortest path from s to v via maximally i edges.

$$
\begin{aligned}
& d_{s}[i, v]=\min \left\{d_{s}[i-1, v], \min _{(u, v) \in E}\left(d_{s}[i-1, u]+c(u, v)\right)\right. \\
& d_{s}[0, s]=0, d_{s}[0, v]=\infty \forall v \neq s .
\end{aligned}
$$

DP Induction for all shortest paths

$d^{k}(u, v)=$ Minimal weight of a path $u \rightsquigarrow v$ with intermediate nodes in V^{k}

Induktion

$$
\begin{aligned}
& d^{k}(u, v)=\min \left\{d^{k-1}(u, v), d^{k-1}(u, k)+d^{k-1}(k, v)\right\}(k \geq 1) \\
& d^{0}(u, v)=c(u, v)
\end{aligned}
$$

DP Algorithm Floyd-Warshall(G)

Input: Acyclic Graph $G=(V, E, c)$
Output: Minimal weights of all paths d
$d^{0} \leftarrow c$
for $k \leftarrow 1$ to $|V|$ do for $i \leftarrow 1$ to $|V|$ do
for $j \leftarrow 1$ to $|V|$ do
$d^{k}\left(v_{i}, v_{j}\right)=\min \left\{d^{k-1}\left(v_{i}, v_{j}\right), d^{k-1}\left(v_{i}, v_{k}\right)+d^{k-1}\left(v_{k}, v_{j}\right)\right\}$

Runtime: $\Theta\left(|V|^{3}\right)$
Remark: Algorithm can be executed with a single matrix d (in place).

Algorithm Johnson(G)

Input: Weighted Graph $G=(V, E, c)$
Output: Minimal weights of all paths D.
New node s. Compute $G^{\prime}=\left(V^{\prime}, E^{\prime}, c^{\prime}\right)$
if BellmanFord $\left(G^{\prime}, s\right)=$ false then return "graph has negative cycles"
foreach $v \in V^{\prime}$ do
$h(v) \leftarrow d(s, v) / / d$ aus BellmanFord Algorithmus
foreach $(u, v) \in E^{\prime}$ do

$$
\tilde{c}(u, v) \leftarrow c(u, v)+h(u)-h(v)
$$

foreach $u \in V$ do
$\tilde{d}(u, \cdot) \leftarrow \operatorname{Dijkstra}\left(\tilde{G}^{\prime}, u\right)$
foreach $v \in V$ do

$$
D(u, v) \leftarrow \tilde{d}(u, v)+h(v)-h(u)
$$

Comparison of the approaches

Algorithm
Dijkstra (Heap) $\quad c_{v} \geq 0 \quad$ 1:n $\quad \mathcal{O}(|E| \log |V|)$

Dijkstra (Fibonacci-Heap) $\quad c_{v} \geq 0$ 1:n
Bellman-Ford
Floyd-Warshall
Johnson
Johnson (Fibonacci-Heap)

* amortized

Johnson is better than Floyd-Warshall for sparse graphs $(|E| \approx \Theta(|V|))$.

Runtime

$\mathcal{O}(|E| \log |V|)$
$\mathcal{O}(|E|+|V| \log |V|)^{*}$
$\mathcal{O}(|E| \cdot|V|)$
$\Theta\left(|V|^{3}\right)$
$\mathcal{O}(|V| \cdot|E| \cdot \log |V|)$
$\mathcal{O}\left(|V|^{2} \log |V|+|V| \cdot|E|\right)$

3. Programming Task

Closeness Centrality

- Given: an adjacency matrix for an undirected graph on n vertices.
- Output: the closeness centrality $C(v)$ of every vertex v.

$$
C(v)=\sum_{u \in V \backslash\{v\}} d(v, u)
$$

Closeness Centrality

■ Given: an adjacency matrix for an undirected graph on n vertices.

- Output: the closeness centrality $C(v)$ of every vertex v.

$$
C(v)=\sum_{u \in V \backslash\{v\}} d(v, u)
$$

■ Intuition: If many connected vertices are close to v, then $C(v)$ is small.
■ "How central is the vertex in its connected component?"

All Pairs Shortest Paths

■ We require $d(u, v)$ for all vertex pairs (u, v).
■ \Longrightarrow compute all shortest paths using Floyd-Warshall.
template<typename Matrix>
void allPairsShortestPaths(unsigned n, Matrix\& m) \{
// your code here

- Simply overwrite m with the distance values.

■ Attention: initially 0 means "no edge".
■ Undirected graph: $m[i][j]==m[j][i]$

Closeness Centrality

```
vector<vector<unsigned> > adjacencies(n,
vector<unsigned>(n, 0));
vector<string> names(n);
//
allPairsShortestPaths(n, adjacencies);
for(unsigned i = 0; i < n; ++i) {
    cout << names[i] << ": ";
    unsigned centrality = 0;
    // your code here
    cout << centrality << endl;
}
```


Closeness Centrality: Input Data

- A graph that stems from collaborations on scientific papers.
- The vertices of the graph are the co-authors of the mathematician Paul Erdős.
- There is an edge between them if the authors have jointly published a paper.
■ Source: https://oakland.edu/enp/thedata/

Closeness Centrality: Output

```
vertices: 511
ABBOTT, HARVEY LESLIE : 1625
ACZEL, JANOS D. : 1681
AGOH, TAKASHI : 2132
AHARONI, RON
: }157
AIGNER, MARTIN S.
AJTAI, MIKLOS
ALAOGLU, LEONIDAS*
ALAVI, YOUSEF
```

Where does the 0 come from?

Questions?

