
Vor und Nachname (Druckbuchstaben):

Legi Nummer:

Unterschrift:

252-0024-00L
Parallele Programmierung
ETH/CS: FS 2014
Basisprüfung
Samstag, 09.08.14
120 Minuten

This exam contains 21 pages (including this cover page) and 8 problems. Check to see if any pages
are missing. Enter all requested information on the top of this page, and put your Legi number on
the top of every page, in case the pages become separated.

The only written aids you are allowed are 4 sides (2 A4 pages) of hand-written notes. You may not
use additional notes, your books, or any calculator on this exam.

Read ahead, take five minutes to read through the questions.

The following rules apply:

• Organize your work, in a reasonably neat and coher-
ent way, in the space provided. Work scattered all over
the page without a clear ordering will receive very little
credit.

• Mysterious or unsupported answers will not re-
ceive full credit on problems where we ask you
to show your working. A correct answer, unsup-
ported by calculations, explanation, or algebraic work
will receive no credit; an incorrect answer supported
by substantially correct calculations and explanations
might still receive partial credit.

• If you need more space, use the back of the pages or the
blank pages; clearly indicate when you have done this.
As a guideline, you should be able to answer the
questions within the provided space.

• Provide your answers either in English or German. Do
not use a red pen!

Problem Points Score

1 17

2 8

3 10

4 8

5 10

6 14

7 22

8 17

Total: 106

Parallele Programmierung - Basisprüfung - Seite 2 von 21 Samstag, 09.08.14

1. Short Questions

(a) (4 points) A single-threaded program you are developing is not fast enough. We assume
that the program consists of a sequential part (that takes 60% of the execution time) and
a parallel part (that takes the rest 40% of execution time). You have two options to make
it faster:

1. Optimize the sequential part so that its time is cut down to half

2. parallelize the parallel part (assume that it scales perfectly)

Both approaches require the same effort. Under what conditions would you choose the
second option? Justify your answer.

Solution: If t is the original execution time, then the first option cuts the time down to
t1 = 0.4t+ 0.6t

2 = 0.7t. The second option results in an execution time of t2 = 0.4t
C +0.6t,

where C is the number of cores. if t2 < t1, then we can select the second option.
That is, C > 4 cores. So we need to have more cores than 4 to take the second
option. (Grading: 1pt for just giving Amdahl’s law, 1pt for each formula, 1pt for the
conclusion of which to prefer based on number of cores.)

(b) (2 points) Consider you have to build an application that handles all incoming requests
in a web server. For processing requests you have a choice between threads and tasks.
Which one would you use and why?

Solution: (Grading: 2pt for correct answer AND reasonable argumentation.)

Tasks: fast context switch, cheap to create, can create many of them to enable fine-
grained parallelism, matches with short lifetime of web requests.

Threads: more expensive to create, reuse a pool of threads (sized to match no. of
cores), apply work stealing to achieve load balancing.

Non-answers: “can take advantage of parallel processing” (too vague), “tasks threads
share address space” (applies to both tasks and threads).

(c) (2 points) Name two approaches to reduce lock contention and briefly explain the effect
each of them have.

Solution: (Grading: 1pt for each correct argument)

1. Reduce duration that locks are held, e.g. using smaller synchronized blocks;

2. Reduce frequency of lock requests, e.g. via lock splitting or striping;

3. Replace exclusive locks with coordination mechanisms that permit greater con-
currency, e.g. Reader/Writer locks, non-blocking data structures etc.

4. Split up a lock into smaller locks (fine-grained locking)

5. Avoiding locks entirely: lock-free data-structures, replication, immutability etc.

Also accepted: conditions instead of busy-wait, transactional memory, fairness model,
faster lock implementation (if sufficiently justified).

Parallele Programmierung - Basisprüfung - Seite 3 von 21 Samstag, 09.08.14

(d) (3 points) Explain in words what a barrier is and describe its interface. eschreiben Sie in
Ihren eigenen Worten was eine Barriere (eng.: barrier) ist und wann Sie dieses Konstrukt
benutzen würden. (Verwenden Sie ggf. ein Beispiel).

Solution: Barrier: rendezvous for arbitrary number of threads. Alternative defini-
tion: A barrier is a way of forcing asynchronous threads to act almost as if they were
synchronous.

Interface: init(N), await(), reset()

If they do not mention reset, it’s OK.

1p for correct definition, 2p for mentioning the API or pseudo-code of how to use.

(e) (3 points) In Java there are two types of thread-safe collections: synchronized (Collec-
tions.synchronizedMap) and concurrent (e.g. ConcurrentHashMap). Explain the differ-
ence and give a benefit of concurrent over synchronized.

Solution: Synchronized (i.e. lock based wrappers of single-threaded implementa-
tions) Concurrent (i.e. designed for concurrency)

“A concurrent collection allows multiple threads to be reading/modifying it in parallel,
whereas a synchronized collection does not. On the other hand, it is hard to make
compound operations atomic (e.g., of the flavor read-modify- write), since you cannot
use client-side locking”
2p for explaining the difference; 1p for stating the advantage of concurrent over syn-
chronized.

Parallele Programmierung - Basisprüfung - Seite 4 von 21 Samstag, 09.08.14

(f) (3 points) Briefly compare and contrast shared vs. isolated mutability.

Solution: In the former, state is shared and modified by multiple threads and needs
to be protected by synchronization primitives. With the latter, state is still mutable
but it is now private to each thread/task and they cooperate with message passing
(see lecture 17, slide 7 onwards).

2. (8 points) Controlling Lights

Assume you have 4 Lights (L) and 4 Buttons (B) arranged in a circle as in the figure below.
The lights are represented by the Light class, whose fields are protected by the intrinsic lock
(see for example setColor()).

L3

B3

L4

L1

L2

B2

B1B4

Create a function tryPressButton() that presses the button only when both neighbor lights
are GREEN. Note that there are hints in the comments of the code below. Other threads
can operate on the Light objects (e.g., by calling setColor()). Explain your synchronization
scheme using a few sentences.

Parallele Programmierung - Basisprüfung - Seite 5 von 21 Samstag, 09.08.14

enum Color { // Different colors

GREEN ,

RED ,

...

}

public class Light {

// for simplicity , fields are public

public int id; // light number (1, 2, 3, 4);

public Color color; // current color;

// class is protected by the intrinsic lock

public void synchronized setColor(Color c) {this.color = c;}

...

}

// You can use the following functions:

// get the i light. Assume this function is thread -safe

public static Light getLight(int i) { ... }

// get the i button. Assume this function is thread -safe

public static Button getButton(int i) { ... }

// You need to complete this function:

public void tryPressButton(i) {

// Get the ith Button

// You can use b.press () to press it

Button b = getButton(i);

// get the ith Light

Light li = getLight(i);

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

Parallele Programmierung - Basisprüfung - Seite 6 von 21 Samstag, 09.08.14

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

}

Explanation of synchronization scheme:

Solution:

public static void tryPressButton(int i) {

Button b = getButton(i);

Light l1 = getLight(i);

Light l2 = getLight(i+1 % 4);

Light fst , snd;

if (l1.id > l2.id) {

fst = l1;

snd = l2;

} else {

fst = l2;

snd = l1;

}

synchronized (fst) {

synchronized (snd) {

if (fst.color == Color.GREEN &&

snd.color == Color.GREEN)

b.press ();

}

}

}

Parallele Programmierung - Basisprüfung - Seite 7 von 21 Samstag, 09.08.14

3. Iterative algorithm

(a) (7 points) Assume you have an initial array A0 of size N, and an algorithm that takes R
repetitions, and in each produces a new version of the array based on the old version. Each
element in the new array depends only in the old array and the location of the element
(fn function in the pseudocode example below).

Pseudocode:

for (r=0; r<R; r++) { // r: repetitions

for (i=0; i<N; i++) { // i: array element

Ar+1[i] = fn(Ar,i) // compute ith element

}

}

This algorithm can be parallelized as follows:

for (r=0; r<R; r++) {

create T threads

give each thread a part of the output array to compute

wait untill all threads are finished

}

Where each thread works as follows:

// perform the computation for the given part of the array

for (/* thread ’s part of the array */) {

Ar+1[i] = fn(Ar,i)

}

Spawning the threads at each step, however, has overhead. Describe the modifications
needed to provide a correct version of the above code, where the threads are spawned
only in the beginning. You can use the skeleton below.

Algorithm:

allocate all arrays

...

...

create T threads

...

...

give each thread a part of the output array to compute

...

...

wait until all threads finish

...

...

Parallele Programmierung - Basisprüfung - Seite 8 von 21 Samstag, 09.08.14

Each thread:

...

...

...

...

...

...

Solution: (Grading: full points if barrier mentioned, minus points if something else
wrong, partial points for stating reuse of threads (2pt), otherwise zero.)

Algorithm:

allocate all arrays

create barrier initialized at T

create T threads

give each thread a part of the array

wait until all threads finish

Thread:

for (r=0; r<R; r++) { // r: repetitions

for (/* part of the array */) { // i: array element

A_{r+1}[i] = fn(A_r ,i) // compute ith element

}

barrier ();

}

(b) (3 points) Assume that f(Ar, x) takes time k for x ∈ 1, 2, . . . , n etc. And f(Ar, x = 0)
takes time 20× k. Would that cause a problem? Justify your answer and briefly describe
a solution to the problem if one exists.

Solution: Problem: load balancing (1pt). Solution: dynamic scheduling (2pt).

We defined fixed costs so static scheduling is also fine – i.e. assign proportionally
less work to the thread processing the first element and adjust among the remaining
threads. Not accepted: calculate f(Ar, x = 0) sequentially and only then compute the
rest in parallel.

Parallele Programmierung - Basisprüfung - Seite 9 von 21 Samstag, 09.08.14

4. Data and pipeline parallelism Assume you have functions f(), g(), h() that take a single
Integer argument, and return an Integer. Also assume that they only access their argument
and no other data when executed.

For example:

public Integer f(Integer x) {

// only access x, and no other data

}

You want to compute f(g(h(x))) for each element x on a large array.

(a) (2 points) Describe in a few sentences how can you build a parallel version of this com-
putation using the data parallel model.

Solution: This is a map. An acceptable answer is also to split the array and distribute
chunks to threads.

(b) (2 points) Describe in a few sentences how can you build a parallel version of this com-
putation using a pipeline.

Solution: One thread per function.

(c) (2 points) What is the maximum speedup you can get when using the pipeline version
and why? (only consider the stages where the pipeline is full)

Solution: We have three stages. At best, if the they take the same time we can get
a speedup of 3.

(d) (2 points) Can you combine the pipeline and data parallel versions? Give an example.

Solution: Yes. each pipeline stage in parallel, or multiple pipelines.

Parallele Programmierung - Basisprüfung - Seite 10 von 21 Samstag, 09.08.14

5. (10 points) Matching Parentheses

In this task we are concerned with the problem of matching parentheses. We would like to
count the number of unmatched open and closing parentheses in a string. For convenience, the
string is represented by an array where 0 is an open parenthesis and 1 is a closing parenthesis.
Some examples and the expected output are shown below.

String Array Result

([0] open = 1, closed = 0
)([1,0] open = 1, closed = 1
()([0,1,0] open = 1, closed = 0
()() [0,1,0,1] open = 0, closed = 0
(((()) [0,0,0,0,1,1] open = 2, closed = 0
))()()([1,1,0,1,0,1,0] open = 1, closed = 2

Sketch how you would implement a method matchParenParallel(int[] array) that takes
the entire array and computes its result in parallel. You can assume there is already a method
for matching parentheses sequentially (as shown below) which you are free to use as a subroutine
if you wish.

public static Pair <Integer , Integer > matchParentheses(

int[] array , int start , int end) {

int open = 0, closed = 0;

for (int i = start ; i < end; i++) {

// (Details of how this is implemented don’t matter .)

}

return Pair.of(open , closed);

}

You can provide pseudocode, text, and/or drawings in your explanation. If you use any frame-
works (e.g. raw threads, Java standard library, MapReduce) make sure it is clear from your
explanation how these would be used.

Solution: Some possible answers include:

• Fork-join Basically you will keep dividing the array in half, processing it in separate
tasks until it falls below a certain minimum size. When the array is below the
minimum size, you call matchParentheses on it to get the answer. Otherwise, you
combine the two results of the two children, as follows. Let the result be a 3-tuple:
(closed, openL, openR) where closed means a matched pair “(. . .)”, openL is “(”
and openR is “)” then:

// Balanced pairs -> can be eliminated (which is why we subtract).

newClosed = min(tupleL.openL, tupleR.openR)

// Same number as before, plus the new matched pairs.

closed = newClosed + tupleL.closed + tupleR.closed

// Accumulate unmatched parentheses, but deduct the count above.

openL = tupleL.openL + tupleR.openL - newClosed

Parallele Programmierung - Basisprüfung - Seite 11 von 21 Samstag, 09.08.14

openR = tupleL.openR + tupleR.openR - newClosed

return (closed, openL, openR)

• (Static) work partitioning Divied the array into N parts, where N is the number
of processors or something larger if the array is too small (so chunks stay above a
minimum size). Then you would call matchParentheses on each of these in parallel,
and then combine the results, left to right.

• Map-Reduce It is more clumsy, since mapping tasks emit using key-value pairs.
Probably you would have a single key for the output, and so a single reduce task
would handle the list of results associated with that key. This list would have to
include an identifier to associate each result with its position in the original array.
(Some people tried this, but very few of those answers were correct or even detailed
enough.)

Grading:

• -6pt: no merge

• -4pt: wrong merge (no adjust, missing
join/barrier)

• -2pt: adjust is not fully correct

• -4pt: inefficient but correct (e.g. prun-

ing)

• -2pt: no cutoff / sequential call

• -3pt: not explaining how framework is
used

• -1pt: one thread per element

6. Data parallelism Java 8 introduced a new framework to transform a collection of elements.
As a reminder of some of what the API offers:

interface Stream <T> {

/* Returns the count of elements in this stream. */

long count ();

/* Returns only elements that match the given predicate. */

Stream <T> filter(Predicate <? super T> predicate);

/* Transforms a stream by applying the given function to every

element. */

<R> Stream <R> map(Function <? super T,? extends R> mapper);

...

}

(a) (2 points) Explain one pro and one con of the design of this API. (As a comparison point
you can consider normal for-loops and threads.)

Solution: (Grading: 1pt each for mentioning an advantage and disadvantage.)

Pros: declarative, no storage, functional, easy to parallelize.

Parallele Programmierung - Basisprüfung - Seite 12 von 21 Samstag, 09.08.14

Cons: less flexibility than for-loop (e.g. using neighbouring elements), operators must
be stateless.

There is also more in-depth discussion here: http://docs.oracle.com/javase/8/

docs/api/java/util/stream/package-summary.html

Parallele Programmierung - Basisprüfung - Seite 13 von 21 Samstag, 09.08.14

(b) (4 points) A bank has faulty ATM machines which sometimes writes a transaction multi-
ple times to the log and so they wrote a routine to drop an element when it is equal to its
neighbour. For this they used the new Streams API and their solution is fine when run
sequentially, but doesn’t work when parallelized. Explain the problem in 2-3 sentences.

List <String > accounts = Arrays.asList(new String []{ "C3",

"B2", "B2", "A1", "C3", "D4", "D4", "D4" });

// Expected output: ["C3", "B2", "A1", "C3", "D4"]

String last = null;

List <String > result =

accounts.parallelStream ()

.filter(x -> {

if (x.equals(last)) {

return false; // drop

} else {

last = x;

return true; // keep

}

})

.collect (); // create a collection from the string

Solution: Problem: code depends on the order of execution (1p), however when
stream execution is parallelized there is a race condition (1p) to access the shared
state which leads to non-deterministic results (1p). More generally, the streams model
has the limitation that operators should be stateless (1p).

Note 1: just wrapping all uses of the last variable in synchronized blocks does not
fix the problem. The variable itself needs to be thread-local and you still need to take
care of merging boundaries.

Note 2: filter does not delete or modify the underlying collection so that is not a
valid ground for explaining why data races can occur.

(Also: some mentioned you cannot parallelize due to the dependency between loop
iterations, yet they answered part (c) correctly ;-)

Parallele Programmierung - Basisprüfung - Seite 14 von 21 Samstag, 09.08.14

(c) (8 points) Lets simplify the previous problem; you just need to detect that there are
duplicates, without removing them. Using the fork-join framework write a function which
does the following: given a list/array, return true if any pairs of elements are equal,
otherwise return false. (Pseudo-code is fine and you can use the spawn and sync keywords
as in the lecture.)

Solution: Spawn until you reach single elements and compare if these are equal. Can
exit early if this is true. After this, sync on the two sub-halves and at every merge
step check if the boundary elements are equal.

Grading: we checked sanity of the algorithm, cutoff, split/spawn, merge/join.

• -1pt: not using the most efficient solution (checks against all elements)

• -1pt: for not merging the results

• -1pt: no base case

• -1pt: does not check the boundary elements

• -1pt: bad recursion step

• 1pt for just explaining the fork-join paradigm, but not applying it to the problem
at hand

7. Implementing Locks

(a) (4 points) When waiting in a synchronization primitive, there is the possibility to spin or
suspend execution. Explain these two options and the trade-off on performance.

Solution: (Grading: 2p for explaining both options; another 2p each for a suitable
justification of when each is appropriate. Common reason for not receiving full points
was not mentioning queue/notification and latency implications.)

Busy-wait: continuously check a value until it changes. Wastes CPU execution cycles.

Suspend execution while you wait. Relies on a notification mechanism, so typically
support from the OS scheduler is required. Does not waste CPU time but they have
higher wakeup latency.

(For more, see the beginning of lecture 12, which explains busy-wait and the implica-
tions for uncontended vs. contended access.)

Parallele Programmierung - Basisprüfung - Seite 15 von 21 Samstag, 09.08.14

(b) (8 points) You are building a new machine which only provides hardware support for a
single thread synchronization primitive: compare-and-swap (CAS). As a reminder, this is
an atomic operation and its signature and semantics are described below.

[NOTE: Java use different naming ... add a note that compare-and-swap and compare-
and-set are one and the same]

class AtomicBoolean {

/**

* Atomically sets the value to the given updated value

* only if both the current value and the expected values

* are equal.

*

* @param expect the expected value

* @param update the new value

* @return True if successful; False return indicates that

* the actual value was not equal to the expected value.

*/

boolean compareAndSet(boolean expect , boolean update);

/* Returns the current value. */

public final boolean get();

/* Unconditionally sets to the given value. */

public final void set(boolean newValue);

...

}

Your task is to implement the code for a simple spinlock using only this atomic operation
and nothing else. The lock you implement does not need to be reentrant and you can
assume the client code uses the lock correctly (e.g. no double release or release by a thread
not holding the lock).

class SpinLock {

// Define any new members you need here.

private final AtomicBoolean locked = new AtomicBoolean ();

...

...

public void acquire () {

...

...

...

...

}

public void release () {

...

...

Parallele Programmierung - Basisprüfung - Seite 16 von 21 Samstag, 09.08.14

...

...

}

}

Solution:

class SpinLock {

private final AtomicBoolean locked = new

AtomicBoolean ();

public void acquire () {

while (! locked.compareAndSet(/* expect */ false ,

/* update */ true)) {

/* spin */

}

}

public void release () {

locked.set(false);

}

}

(c) (10 points) After benchmarking your implementation, you realize that spinning is ineffi-
cient when you have to wait for a long time. The hardware designers tell you they can
add two more primitives to make the lock more efficient:

• atomicSleep is an atomic operation which corresponds to the following pseudo-code:

// Note: SuspendLock is discussed below

void atomicSleep(SuspendLock l, AtomicBoolean val ,

boolean x) {

atomic { // atomically:

val.set(x); // set value to x

suspend(l); // stop (suspend) the thread.

// the thread is now sleeping on lock l.

}

}

• wakeUp is non-atomic with the following pseudo-code:

void wakeUp(SuspendLock l) {

wakeup_thread(l); // wake up a thread sleeping on lock l

}

Your second task is to reimplement the lock more efficiently using these operations. You
may recognize this matches the basic design of a mutex. (The same assumptions hold as
in the previous part.)

Parallele Programmierung - Basisprüfung - Seite 17 von 21 Samstag, 09.08.14

class SuspendLock {

// Define any new members you need here.

...

...

...

...

...

...

public void acquire () {

...

...

...

...

...

...

...

...

...

...

}

public void release () {

...

...

...

...

...

...

}

}

Solution:

// Note: value does not have to be atomic I think. It’s

just a value that

// signifies if the lock is taken. It is prortected by the

guard spinlock.

class SuspendLock {

private final AtomicBoolean guard = new AtomicBoolean ();

private final AtomicBoolean value = new AtomicBoolean ();

public void acquire () {

while (true) {

while (!guard.compareAndSet(false , true)) { /* spin

*/ }

if (value) {

Parallele Programmierung - Basisprüfung - Seite 18 von 21 Samstag, 09.08.14

atomicSleep(this , guard , false);

} else {

lock.value = true;

lock.guard = false;

return;

}

}

}

public void release () {

while (! guard.compareAndSet(false , true)) { /* spin */

}

lock.value = false;

wakeUp(this);

lock.guard = false;

}

}

Parallele Programmierung - Basisprüfung - Seite 19 von 21 Samstag, 09.08.14

8. OpenCL

(a) (2 points) Recall Flynn’s taxonomy; under what class would you place (i) sequential CPUs
and (ii) GPUs?

Solution: Sequential CPU: SISD – Single Instruction, Single Data (1p) Vector GPUs
are SIMD – Single Instruction, Multiple Data (1p)

(b) (3 points) Compare CPUs and GPUs in terms of throughput and latency. Justify these
performance characteristics in terms of architectural differences.

Solution: CPU:

• Rich instruction sets with support for loops, conditions.

• Fewer execution units but highly tuned for single-threaded performance (e.g.
out-of-order and speculative execution).

• Optimised for low latency access to cached data sets.

GPU:

• Data-flow architecture, inherently SIMD – a single operation can operate on
many elements in parallel.

• Architecture tolerant of memory latency.

• More transistors dedicated to computation.

• Throughput-oriented (aim for peak performance).

For a very thorough discussion of this topic see this document: Palacios, Jonathan,
and Josh Triska. “A Comparison of Modern GPU and CPU Architectures: And the
Common Convergence of Both.” (2011). http://cours.do.am/ParadigmeAgent/

final.pdf

2p for CPU and 2p for GPU. 1p each for mentioning any these or other well-justified
answers.

Parallele Programmierung - Basisprüfung - Seite 20 von 21 Samstag, 09.08.14

(c) (5 points) GPUs have several different types of memory as shown in the figure below.
Explain what each of these are by discussing access rights, where these are physically
located and the impact on access latency.

Note: In your answer you should mention: private, local, global, constant and host mem-
ory.

. .

. .

. .

. .

. .

. .

. .

Private

Memory

Private

Memory

WorkItem M WorkItem 1

Compute Unit 1

Private

Memory

Private

Memory

WorkItem M WorkItem 1

Compute Unit N

Local Memory Local Memory

Global / Constant Memory Data Cache

Compute Device

Global Memory

Compute Device Memory

Figure 1: GPU Memory Hierarchy

Solution:

• Private Memory: Per work-item

• Local Memory: Shared within work-groups

• Global / Constant Memory: Not synchronized, latter is read-only

• Host Memory: On the CPU

1p for explaining each of these. (For more, see also: lecture 21, slides 5 and 6)

(d) (3 points) Assume you are writing an algorithm that requires a tree reduction. The input
array is too large to fit within a single work-group and the final result needs to written
to global memory. How would you make sure the tree reduction is thread safe. Hint: you
can assume the reduction operation is associative and commutative.

Solution: Each work-group performs a partial reduction a barrier is used to ensure
all work items have finished the first item in the work group writes the partial result
to memory. A new kernel (launched from the host, once all work-groups have fin-
ished) collects the partial results and performs the final reduction. (This can then be
performed in a loop if necessary).

Parallele Programmierung - Basisprüfung - Seite 21 von 21 Samstag, 09.08.14

(e) (4 points) Below is a simple OpenCL kernel that uses a 2D grid of work-groups. It reads
from global memory and fills a chunk of local memory. Finally, the work-item computes
the final result by adding the values read from two local memory addresses.

Give an explanation for why the memory fence is needed in this code.

__kernel void fill_tiles(__global float* a,

__global float* b,

__global float* c)

{

// find our coordinates in the grid

int row = get_global_id (1);

int col = get_global_id (0);

// allocate local memory shared among the workgroup

__local float aTile[TILE_DIM_Y][TILE_DIM_X];

__local float bTile[TILE_DIM_Y][TILE_DIM_X];

// define the coordinates of this workitem thread

// in the 2D tile

int y = get_local_id (1);

int x = get_local_id (0);

aTile[y][x] = a[row*N + col];

bTile[y][x] = b[row*N + col];

barrier(CLK_LOCAL_MEM_FENCE);

// Note the change in tile location in bTile!

c[row*N + col] = aTile[x][y] + bTile[y][x];

}

Solution: Work-items need to be synchronized before writing to global memory as
values in local memory might not be visible to all work-items. For example, the part
of local memory that is read by one work-item might not have been filled yet.

(4 points: barrier, local memory fence, global memory fence and then an explanation.)

