
11. Fundamental Data Structures

Abstract data types stack, queue, implementation variants for linked
lists, amortized analysis [Ottman/Widmayer, Kap. 1.5.1-1.5.2,
Cormen et al, Kap. 10.1.-10.2,17.1-17.3]
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Abstract Data Types

We recall

A stack is an abstract data type (ADR) with operations

push(x, S): Puts element x on the stack S.
pop(S): Removes and returns top most element of S or null
top(S): Returns top most element of S or null.
isEmpty(S): Returns true if stack is empty, false otherwise.
emptyStack(): Returns an empty stack.
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Implementation Push

top xn xn−1 x1 null

x

push(x, S):

1 Create new list element with x and pointer to the value of top.
2 Assign the node with x to top.

303



Implementation Push

top xn xn−1 x1 null

x

push(x, S):

1 Create new list element with x and pointer to the value of top.

2 Assign the node with x to top.

303



Implementation Push

top xn xn−1 x1 null

x

push(x, S):

1 Create new list element with x and pointer to the value of top.
2 Assign the node with x to top.

303



Implementation Pop

top xn xn−1 x1 null

r

pop(S):

1 If top=null, then return null
2 otherwise memorize pointer p of top in r.
3 Set top to p.next and return r
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Analysis

Each of the operations push, pop, top and isEmpty on a stack can
be executed in O(1) steps.
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Queue (fifo)

A queue is an ADT with the following operations

enqueue(x,Q): adds x to the tail (=end) of the queue.
dequeue(Q): removes x from the head of the queue and returns x
(null otherwise)
head(Q): returns the object from the head of the queue (null
otherwise)
isEmpty(Q): return true if the queue is empty, otherwise false
emptyQueue(): returns empty queue.
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Implementation Queue
x1 x2 xn−1 xn

head tail

null

x null

enqueue(x, S):

1 Create a new list element with x and pointer to null.
2 If tail 6= null, then set tail.next to the node with x.
3 Set tail to the node with x.
4 If head = null, then set head to tail.
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Invariants
x1 x2 xn−1 xn

head tail

null

With this implementation it holds that

either head = tail = null,
or head = tail 6= null and head.next = null
or head 6= null and tail 6= null and head 6= tail and
head.next 6= null.
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Implementation Queue
x1 x2 xn−1 xn

head tail

null

r

dequeue(S):

1 Store pointer to head in r. If r = null, then return r .
2 Set the pointer of head to head.next.
3 Is now head = null then set tail to null.
4 Return the value of r.
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Analysis

Each of the operations enqueue, dequeue, head and isEmpty on
the queue can be executed in O(1) steps.
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Implementation Variants of Linked Lists
List with dummy elements (sentinels).

x1 x2 xn−1 xn

head tail

Advantage: less special cases

Variant: like this with pointer of an element stored singly indirect.
(Example: pointer to x3 points to x2.)
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Implementation Variants of Linked Lists

Doubly linked list

null x1 x2 xn−1 xn null

head tail
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Overview

enqueue delete search concat
(A) Θ(1) Θ(n) Θ(n) Θ(n)
(B) Θ(1) Θ(n) Θ(n) Θ(1)
(C) Θ(1) Θ(1) Θ(n) Θ(1)
(D) Θ(1) Θ(1) Θ(n) Θ(1)

(A) = singly linked
(B) = Singly linked with dummy element at the beginning and the end
(C) = Singly linked with indirect element addressing
(D) = doubly linked
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priority queue

Priority Queue

Operations

insert(x,p,Q): Enter object x with priority p.
extractMax(Q): Remove and return object x with highest priority.
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Implementation Priority Queue

With a Max Heap

Thus

insert in O(?) and
extractMax in O(?).
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Multistack

Multistack adds to the stack operations below

multipop(s,S): remove the min(size(S), k) most recently inserted
objects and return them.

Implementation as with the stack. Runtime of multipop is O(k).
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Academic Question

If we execute on a stack with n elements a number of n times
multipop(k,S) then this costs O(n2)?

Certainly correct because each multipop may take O(n) steps.

How to make a better estimation?
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Idea (accounting)

Introduction of a cost model:

Each call of push costs 1 CHF and additional 1 CHF will be put to
account.
Each call to pop costs 1 CHF and will be paid from the account.

Account will never have a negative balance. Thus: maximal costs =
number of push operations times two.
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More Formal
Let ti denote the real costs of the operation i. Potential function
Φi ≥ 0 for the “account balance” after i operations. Φi ≥ Φ0 ∀i.
Amortized costs of the ith operation:

ai := ti + Φi − Φi−1.

It holds

n∑
i=1

ai =
n∑

i=1

(ti + Φi − Φi−1) =

(
n∑

i=1

ti

)
+ Φn − Φ0 ≥

n∑
i=1

ti.

Goal: find potential function that evens out expensive operations.
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Example stack

Potential function Φi = number element on the stack.

push(x, S): real costs ti = 1. Φi − Φi−1 = 1. Amortized costs
ai = 2.
pop(S): real costs ti = 1. Φi − Φi−1 = −1. Amortized costs
ai = 0.
multipop(k, S): real costs ti = k. Φi − Φi−1 = −k. amortized
costs ai = 0.

All operations have constant amortized cost! Therefore, on average
Multipop requires a constant amount of time. 14

14Note that we are not talking about the probabilistic mean but the (worst-case) average of the costs.
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Example Binary Counter

Binary counter with k bits. In the worst case for each count
operation maximally k bitflips. Thus O(n · k) bitflips for counting from
1 to n. Better estimation?

Real costs ti = number bit flips from 0 to 1 plus number of bit-flips
from 1 to 0.

...0 1111111︸ ︷︷ ︸
l Einsen

+1 = ...1 0000000︸ ︷︷ ︸
l Zeroes

.

⇒ ti = l + 1
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Example Binary Counter

...0 1111111︸ ︷︷ ︸
l Einsen

+1 = ...1 0000000︸ ︷︷ ︸
l Nullen

potential function Φi: number of 1-bits of xi.

⇒ Φi − Φi−1 = 1− l,

⇒ ai = ti + Φi − Φi−1 = l + 1 + (1− l) = 2.

Amortized constant cost for each count operation.
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12. Dictionaries

Dictionary, Self-ordering List, Implementation of Dictionaries with
Array / List /Skip lists. [Ottman/Widmayer, Kap. 3.3,1.7, Cormen et
al, Kap. Problem 17-5]
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Dictionary

ADT to manage keys from a set K with operations

insert(k,D): Insert k ∈ K to the dictionary D. Already exists⇒
error messsage.
delete(k,D): Delete k from the dictionary D. Not existing⇒
error message.
search(k,D): Returns true if k ∈ D, otherwise false
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Idea

Implement dictionary as sorted array

Worst case number of fundamental operations

Search

O(log n)

Insert

O(n)

Delete

O(n)
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Other idea

Implement dictionary as a linked list

Worst case number of fundamental operations

Search

O(n)

Insert

O(1)15

Delete

O(n)

15Provided that we do not have to check existence.
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Self Ordered Lists

Problematic with the adoption of a linked list: linear search time

Idea: Try to order the list elements such that accesses over time are
possible in a faster way

For example

Transpose: For each access to a key, the key is moved one
position closer to the front.
Move-to-Front (MTF): For each access to a key, the key is moved
to the front of the list.
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Transpose

Transpose:

k1 k2 k3 k4 k5 · · · kn−1 kn

kn kn−1kn−1 kn

Worst case: Alternating sequence of n accesses to kn−1 and kn.

Runtime: Θ(n2)
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Move-to-Front
Move-to-Front:

k1 k2 k3 k4 k5 · · · kn−1 kn

kn−1 k1 k2 k3 k4 kn−2 knkn kn−1 k1 k2 k3 kn−3 kn−2

Alternating sequence of n accesses to kn−1 and kn.

Runtime: Θ(n)

Also here we can provide a sequence of accesses with quadratic
runtime, e.g. access to the last element. But there is no obvious
strategy to counteract much better than MTF..

329



Move-to-Front
Move-to-Front:

k1 k2 k3 k4 k5 · · · kn−1 knkn−1 k1 k2 k3 k4 kn−2 kn

kn kn−1 k1 k2 k3 kn−3 kn−2

Alternating sequence of n accesses to kn−1 and kn.

Runtime: Θ(n)

Also here we can provide a sequence of accesses with quadratic
runtime, e.g. access to the last element. But there is no obvious
strategy to counteract much better than MTF..

329



Move-to-Front
Move-to-Front:

k1 k2 k3 k4 k5 · · · kn−1 knkn−1 k1 k2 k3 k4 kn−2 knkn kn−1 k1 k2 k3 kn−3 kn−2

Alternating sequence of n accesses to kn−1 and kn.

Runtime: Θ(n)

Also here we can provide a sequence of accesses with quadratic
runtime, e.g. access to the last element. But there is no obvious
strategy to counteract much better than MTF..

329



Move-to-Front
Move-to-Front:

k1 k2 k3 k4 k5 · · · kn−1 knkn−1 k1 k2 k3 k4 kn−2 knkn kn−1 k1 k2 k3 kn−3 kn−2

Alternating sequence of n accesses to kn−1 and kn. Runtime: Θ(n)

Also here we can provide a sequence of accesses with quadratic
runtime, e.g. access to the last element. But there is no obvious
strategy to counteract much better than MTF..

329



Move-to-Front
Move-to-Front:

k1 k2 k3 k4 k5 · · · kn−1 knkn−1 k1 k2 k3 k4 kn−2 knkn kn−1 k1 k2 k3 kn−3 kn−2

Alternating sequence of n accesses to kn−1 and kn. Runtime: Θ(n)

Also here we can provide a sequence of accesses with quadratic
runtime, e.g. access to the last element. But there is no obvious
strategy to counteract much better than MTF..

329



Analysis

Compare MTF with the best-possible competitor (algorithm) A. How
much better can A be?

Assumptions:

MTF and A may only move the accessed element.
MTF and A start with the same list.

Let Mk and Ak designate the lists after the kth step. M0 = A0.
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Analysis
Costs:

Access to x: position p of x in the list.
No further costs, if x is moved before p

Further costs q for each element that x is moved back starting
from p.

x

p q
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Amortized Analysis

Let an arbitrary sequence of search requests be given and let G(M)
k

and G
(A)
k the costs in step k for Move-to-Front and A, respectively.

Want estimation of
∑

k G
(M)
k compared with

∑
k G

(A)
k .

⇒ Amortized analysis with potential function Φ.
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Potential Function
Potential function Φ = Number of inversions of A vs. MTF.

Inversion = Pair x, y such that for the positions of a and y(
p(A)(x) < p(A)(y)

)
6=
(
p(M)(x) < p(M)(y)

)
Ak 1 2 3 4 5 6 7 8 9 10

Mk 4 1 2 10 6 5 3 7 8 9

#inversion = #crossings
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Estimating the Potential Function: MTF
Element i at position
pi := p(M)(i).

access costs C
(M)
k = pi.

xi: Number elements that are
in M before pi and in A after i .

MTF removes xi inversions.

pi − xi − 1: Number elements
that in M are before pi and in
A are before i.

MTF generates pi − 1− xi

inversions.

Ak 1 2 3 4 5 6 7 8 9 10

Mk 4 1 2 10 6 5 3 7 8 9

xipi − 1− xi

1 24 7 8 9610 3

Ak 1 2 3 4 5 6 7 8 9 10

Mk+1 5 4 1 2 10 6 3 7 8 9

xipi − 1− xi

1 24 3610 7 8 9
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Estimating the Potential Function: A

Wlog element i at position
p(A)(i).

X
(A)
k : number movements to

the back (otherwise 0).

access costs for i:
C

(A)
k = p(A)(i) ≥ p(M)(i)− xi.

A increases the number of
inversions maximally by X

(A)
k .

Ak 1 2 3 4 5 6 7 8 9 10

Mk+1 5 4 1 2 10 6 3 7 8 9

1 2 3 4 6 7 8 9 10

Ak+1 1 2 3 4 6 7 5 8 9 10

Mk+1 5 4 1 2 106 3 7 8 9

1 2 3 4 6 7 8 9 10
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Estimation

Φk+1 − Φk ≤ −xi + (pi − 1− xi) + X
(A)
k

Amortized costs of MTF in step k:

a
(M)
k = C

(M)
k + Φk+1 − Φk

≤ pi − xi + (pi − 1− xi) + X
(A)
k

= (pi − xi) + (pi − xi)− 1 + X
(A)
k

≤ C
(A)
k + C

(A)
k − 1 + X

(A)
k ≤ 2 · C(A)

k + X
(A)
k .
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Estimation

Summing up costs∑
k

G
(M)
k =

∑
k

C
(M)
k ≤

∑
k

a
(M)
k ≤

∑
k

2 · C(A)
k + X

(A)
k

≤ 2 ·
∑
k

C
(A)
k + X

(A)
k

= 2 ·
∑
k

G
(A)
k

In the worst case MTF requires at most twice as many operations as
the optimal strategy.
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Cool idea: skip lists

skip list

x1 x2 x3 x4 x5 x6 x7 x8 ∞

0
1
2
3

x1 ≤ x2 ≤ x3 ≤ · · · ≤ x9.

Example: search for a key x with x5 < x < x6.
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Analysis perfect skip list (worst cases)

Search in O(log n). Insert in O(n).
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Randomized Skip List

Idea: insert a key with random height H with P(H = i) = 1
2i+1 .

x1 x2 x3 x4 x5 x6 x7 x8 ∞
0
1
2
3
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Analysis Randomized Skip List

Theorem
The expected number of fundamental operations for Search, Insert
and Delete of an element in a randomized skip list is O(log n).

The lengthy proof that will not be presented in this courseobserves the length of a
path from a searched node back to the starting point in the highest level.
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