11. Fundamental Data Structures

Abstract data types stack, queue, implementation variants for linked lists, amortized analysis [Ottman/Widmayer, Kap. 1.5.1-1.5.2, Cormen et al, Kap. 10.1.-10.2,17.1-17.3]

Abstract Data Types

We recall

A stack is an abstract data type (ADR) with operations

Abstract Data Types

We recall

A stack is an abstract data type (ADR) with operations

push(x, S): Puts element x on the stack S.

A *stack* is an abstract data type (ADR) with operations

push(x, S): Puts element x on the stack S.
pop(S): Removes and returns top most element of S or null

A *stack* is an abstract data type (ADR) with operations

push(x, S): Puts element x on the stack S.

pop(S): Removes and returns top most element of S or **null**

top(S): Returns top most element of S or **null**.

A *stack* is an abstract data type (ADR) with operations

push(x, S): Puts element x on the stack S.

pop(S): Removes and returns top most element of S or **null**

top(S): Returns top most element of S or **null**.

isEmpty(S): Returns **true** if stack is empty, **false** otherwise.

A *stack* is an abstract data type (ADR) with operations

push(x, S): Puts element x on the stack S.

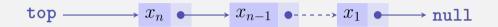
pop(S): Removes and returns top most element of S or **null**

top(S): Returns top most element of S or **null**.

isEmpty(S): Returns **true** if stack is empty, **false** otherwise.

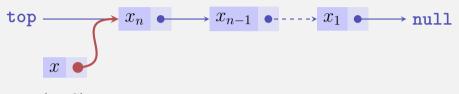
emptyStack(): Returns an empty stack.

Implementation Push



push(x, S):

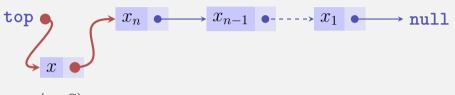
Implementation Push



push(x, S):

1 Create new list element with x and pointer to the value of top.

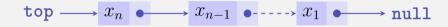
Implementation Push



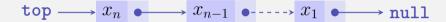
push(x, S):

1 Create new list element with x and pointer to the value of top.

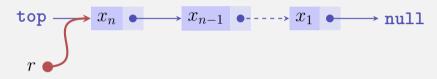
2 Assign the node with x to top.



pop(S):

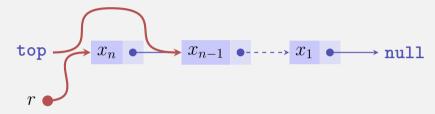


pop(S):
If top=null, then return null



 $\mathbf{pop}(S)$:

- I If top=null, then return null
- **2** otherwise memorize pointer p of top in r.



 $\mathbf{pop}(S)$:

- I If top=null, then return null
- **2** otherwise memorize pointer p of top in r.
- **3** Set top to p.next and return r

Each of the operations push, pop, top and isEmpty on a stack can be executed in $\mathcal{O}(1)$ steps.

A queue is an ADT with the following operations

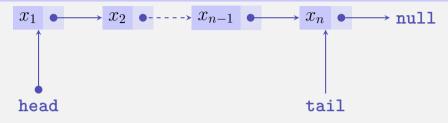
• enqueue(x, Q): adds x to the tail (=end) of the queue.

- enqueue(x, Q): adds x to the tail (=end) of the queue.
- dequeue(Q): removes x from the head of the queue and returns x (null otherwise)

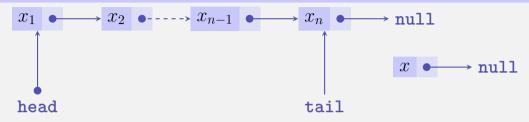
- enqueue(x, Q): adds x to the tail (=end) of the queue.
- dequeue(Q): removes x from the head of the queue and returns x (null otherwise)
- head(Q): returns the object from the head of the queue (null otherwise)

- enqueue(x, Q): adds x to the tail (=end) of the queue.
- dequeue(Q): removes x from the head of the queue and returns x (null otherwise)
- head(Q): returns the object from the head of the queue (null otherwise)
- **isEmpty**(Q): return **true** if the queue is empty, otherwise **false**

- enqueue(x, Q): adds x to the tail (=end) of the queue.
- dequeue(Q): removes x from the head of the queue and returns x (null otherwise)
- head(Q): returns the object from the head of the queue (null otherwise)
- **isEmpty**(Q): return **true** if the queue is empty, otherwise **false**
- emptyQueue(): returns empty queue.

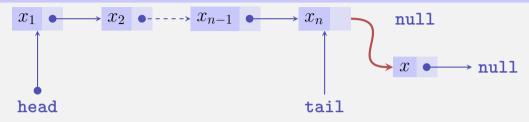


enqueue(x, S):



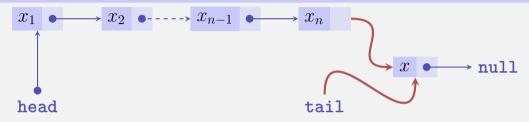
enqueue(x, S):

1 Create a new list element with *x* and pointer to **null**.



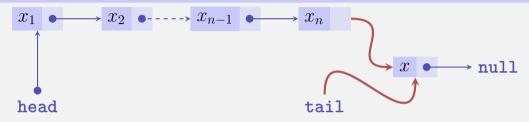
enqueue(x, S):

Create a new list element with x and pointer to null.
If tail ≠ null, then set tail.next to the node with x.



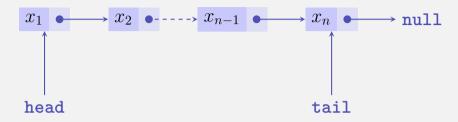
enqueue(x, S):

- **1** Create a new list element with x and pointer to **null**.
- **2** If tail \neq null, then set tail.next to the node with x.
- **3** Set tail to the node with x.

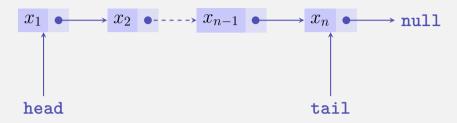


enqueue(x, S):

- **1** Create a new list element with *x* and pointer to **null**.
- **2** If tail \neq null, then set tail.next to the node with x.
- **3** Set tail to the node with x.
- If head = null, then set head to tail.

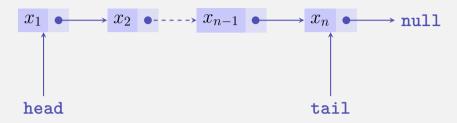


With this implementation it holds that



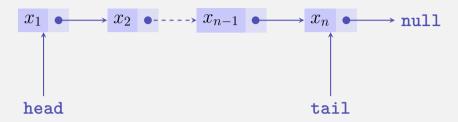
With this implementation it holds that

• either head = tail = null,



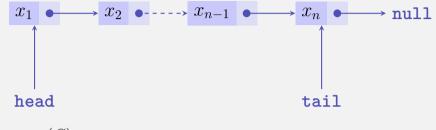
With this implementation it holds that

- either head = tail = null,
- Or head = tail \neq null and head.next = null

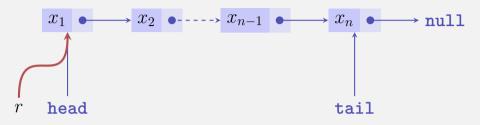


With this implementation it holds that

- either head = tail = null,
- Or head = tail \neq null and head.next = null
- Or head ≠ null and tail ≠ null and head ≠ tail and head.next ≠ null.

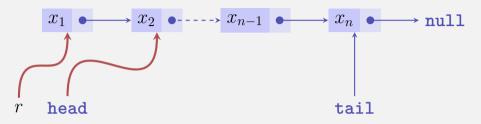


dequeue(S):



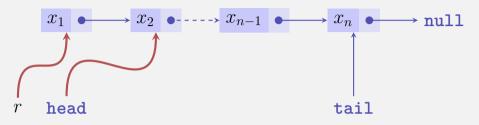
 $extbf{dequeue}(S)$:

1 Store pointer to head in r. If r = null, then return r.



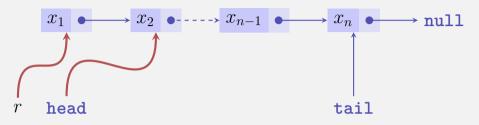
 $extbf{dequeue}(S)$:

- **1** Store pointer to head in r. If r = null, then return r.
- 2 Set the pointer of head to head.next.



 $extbf{dequeue}(S)$:

- **1** Store pointer to head in r. If r = null, then return r.
- 2 Set the pointer of head to head.next.
- 3 Is now head = null then set tail to null.



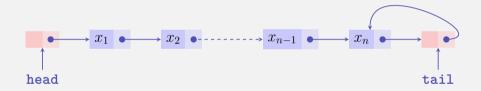
 $extbf{dequeue}(S)$:

- **1** Store pointer to head in r. If r = null, then return r.
- 2 Set the pointer of head to head.next.
- **3** Is now head = null then set tail to null.
- 4 Return the value of r.

Each of the operations enqueue, dequeue, head and isEmpty on the queue can be executed in $\mathcal{O}(1)$ steps.

Implementation Variants of Linked Lists

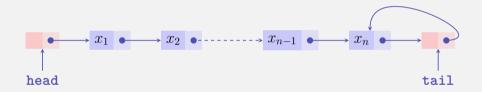
List with dummy elements (sentinels).



Advantage: less special cases

Implementation Variants of Linked Lists

List with dummy elements (sentinels).



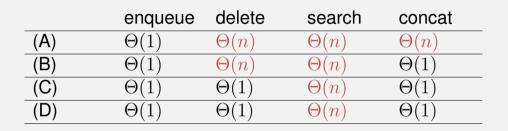
Advantage: less special cases

Variant: like this with pointer of an element stored singly indirect. (Example: pointer to x_3 points to x_2 .)

Implementation Variants of Linked Lists

Doubly linked list

Overview



- (A) = singly linked
- (B) = Singly linked with dummy element at the beginning and the end
- (C) = Singly linked with indirect element addressing
- (D) = doubly linked

Priority Queue

Operations

insert(x, p, Q): Enter object x with priority p.

extractMax(Q): Remove and return object x with highest priority.

Implementation Priority Queue

With a Max Heap

Thus

■ insert in O(?) and
■ extractMax in O(?).

Implementation Priority Queue

With a Max Heap

Thus

• insert in $\mathcal{O}(\log n)$ and • extractMax in $\mathcal{O}(?)$.

Implementation Priority Queue

With a Max Heap

Thus

• insert in $\mathcal{O}(\log n)$ and • extractMax in $\mathcal{O}(\log n)$.

Multistack adds to the stack operations below

multipop(s,S): remove the min(size(S), k) most recently inserted objects and return them.

Implementation as with the stack. Runtime of multipop is $\mathcal{O}(k)$.

If we execute on a stack with n elements a number of n times multipop(k,S) then this costs $\mathcal{O}(n^2)$?

If we execute on a stack with n elements a number of n times multipop(k,S) then this costs $\mathcal{O}(n^2)$?

Certainly correct because each multipop may take $\mathcal{O}(n)$ steps.

If we execute on a stack with n elements a number of n times multipop(k,S) then this costs $\mathcal{O}(n^2)$?

Certainly correct because each multipop may take O(n) steps. How to make a better estimation? Introduction of a cost model:

- Each call of push costs 1 CHF and additional 1 CHF will be put to account.
- Each call to pop costs 1 CHF and will be paid from the account.

Account will never have a negative balance. Thus: maximal costs = number of push operations times two.

More Formal

Let t_i denote the real costs of the operation *i*. Potential function $\Phi_i \ge 0$ for the "account balance" after *i* operations. $\Phi_i \ge \Phi_0 \ \forall i$. Amortized costs of the *i*th operation:

$$a_i := t_i + \Phi_i - \Phi_{i-1}.$$

It holds

$$\sum_{i=1}^{n} a_i = \sum_{i=1}^{n} (t_i + \Phi_i - \Phi_{i-1}) = \left(\sum_{i=1}^{n} t_i\right) + \Phi_n - \Phi_0 \ge \sum_{i=1}^{n} t_i.$$

Goal: find potential function that evens out expensive operations.

Example stack

Potential function Φ_i = number element on the stack.

- **push**(x, S): real costs $t_i = 1$. $\Phi_i \Phi_{i-1} = 1$. Amortized costs $a_i = 2$.
- $\operatorname{pop}(S)$: real costs $t_i = 1$. $\Phi_i \Phi_{i-1} = -1$. Amortized costs $a_i = 0$.
- multipop(k, S): real costs $t_i = k$. $\Phi_i \Phi_{i-1} = -k$. amortized costs $a_i = 0$.

All operations have *constant amortized cost*! Therefore, on average Multipop requires a constant amount of time. ¹⁴

¹⁴Note that we are not talking about the probabilistic mean but the (worst-case) average of the costs.

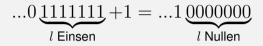
Example Binary Counter

Binary counter with k bits. In the worst case for each count operation maximally k bitflips. Thus $O(n \cdot k)$ bitflips for counting from 1 to n. Better estimation?

Real costs t_i = number bit flips from 0 to 1 plus number of bit-flips from 1 to 0.

$$\dots \underbrace{1111111}_{l \text{ Einsen}} + 1 = \dots \underbrace{10000000}_{l \text{ Zeroes}}.$$
$$\Rightarrow t_i = l + 1$$

Example Binary Counter



potential function Φ_i : number of 1-bits of x_i .

$$\Rightarrow \Phi_i - \Phi_{i-1} = 1 - l,$$

$$\Rightarrow a_i = t_i + \Phi_i - \Phi_{i-1} = l + 1 + (1 - l) = 2.$$

Amortized constant cost for each count operation.

12. Dictionaries

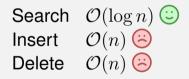
Dictionary, Self-ordering List, Implementation of Dictionaries with Array / List /Skip lists. [Ottman/Widmayer, Kap. 3.3,1.7, Cormen et al, Kap. Problem 17-5] ADT to manage keys from a set $\ensuremath{\mathcal{K}}$ with operations

- insert(k, D): Insert $k \in \mathcal{K}$ to the dictionary D. Already exists \Rightarrow error messsage.
- delete(k, D): Delete k from the dictionary D. Not existing \Rightarrow error message.
- **search**(k, D): Returns true if $k \in D$, otherwise false

Search Insert Delete

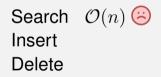
Search $\mathcal{O}(\log n)$ \bigcirc Insert Delete



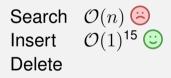


> Search Insert Delete

¹⁵Provided that we do not have to check existence.



¹⁵Provided that we do not have to check existence.



¹⁵Provided that we do not have to check existence.

Search $\mathcal{O}(n)$ Insert $\mathcal{O}(1)^{15}$ \bigcirc Delete $\mathcal{O}(n)$

¹⁵Provided that we do not have to check existence.

Problematic with the adoption of a linked list: linear search time

Idea: Try to order the list elements such that accesses over time are possible in a faster way

For example

- Transpose: For each access to a key, the key is moved one position closer to the front.
- Move-to-Front (MTF): For each access to a key, the key is moved to the front of the list.

$$k_1$$
 k_2 k_3 k_4 k_5 \cdots k_{n-1} k_n

Worst case: Alternating sequence of *n* accesses to k_{n-1} and k_n .

$$k_1$$
 k_2 k_3 k_4 k_5 \cdots k_n k_{n-1}

Worst case: Alternating sequence of *n* accesses to k_{n-1} and k_n .

$$k_1$$
 k_2 k_3 k_4 k_5 \cdots k_{n-1} k_n

Worst case: Alternating sequence of *n* accesses to k_{n-1} and k_n .

$$k_1$$
 k_2 k_3 k_4 k_5 \cdots k_{n-1} k_n

Worst case: Alternating sequence of n accesses to k_{n-1} and k_n . Runtime: $\Theta(n^2)$

Move-to-Front:

$$k_1$$
 k_2 k_3 k_4 k_5 \cdots k_{n-1} k_n

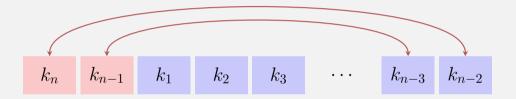
Alternating sequence of *n* accesses to k_{n-1} and k_n .

Move-to-Front:

$$k_{n-1}$$
 k_1 k_2 k_3 k_4 \cdots k_{n-2} k_n

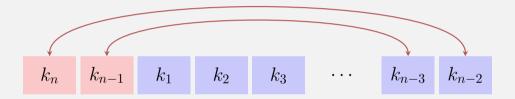
Alternating sequence of *n* accesses to k_{n-1} and k_n .

Move-to-Front:



Alternating sequence of *n* accesses to k_{n-1} and k_n .

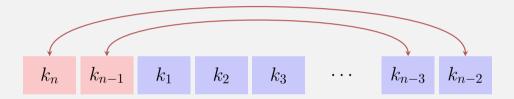
Move-to-Front:



Alternating sequence of *n* accesses to k_{n-1} and k_n . Runtime: $\Theta(n)$

Move-to-Front

Move-to-Front:



Alternating sequence of *n* accesses to k_{n-1} and k_n . Runtime: $\Theta(n)$ Also here we can provide a sequence of accesses with quadratic runtime, e.g. access to the last element. But there is no obvious strategy to counteract much better than MTF. Compare MTF with the best-possible competitor (algorithm) A. How much better can A be?

Assumptions:

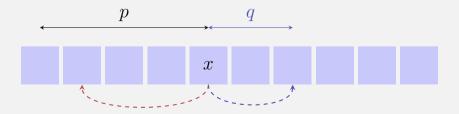
- MTF and A may only move the accessed element.
- MTF and A start with the same list.

Let M_k and A_k designate the lists after the kth step. $M_0 = A_0$.

Analysis

Costs:

- Access to x: position p of x in the list.
- **\blacksquare** No further costs, if x is moved before p
- Further costs q for each element that x is moved back starting from p.

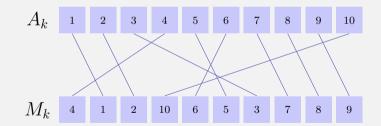


Let an arbitrary sequence of search requests be given and let $G_k^{(M)}$ and $G_k^{(A)}$ the costs in step k for Move-to-Front and A, respectively. Want estimation of $\sum_k G_k^{(M)}$ compared with $\sum_k G_k^{(A)}$.

 \Rightarrow Amortized analysis with potential function Φ .

Potential Function

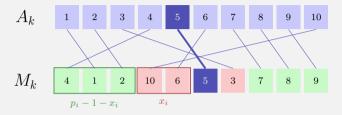
Potential function Φ = Number of inversions of A vs. MTF. Inversion = Pair x, y such that for the positions of a and y $(p^{(A)}(x) < p^{(A)}(y)) \neq (p^{(M)}(x) < p^{(M)}(y))$

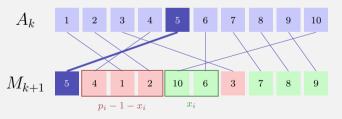


#inversion = #crossings

Estimating the Potential Function: MTF

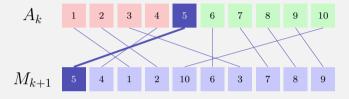
- Element *i* at position $p_i := p^{(M)}(i)$.
- access costs $C_k^{(M)} = p_i$.
- x_i: Number elements that are in M before p_i and in A after i.
- MTF removes x_i inversions.
- p_i x_i 1: Number elements that in M are before p_i and in A are before i.
- MTF generates $p_i 1 x_i$ inversions.

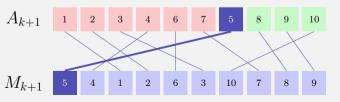




Estimating the Potential Function: A

- Wlog element *i* at position $p^{(A)}(i)$.
- X_k^(A): number movements to the back (otherwise 0).
- access costs for *i*: $C_k^{(A)} = p^{(A)}(i) \ge p^{(M)}(i) - x_i.$
- A increases the number of inversions maximally by X^(A)_k.





Estimation

$$\Phi_{k+1} - \Phi_k \le -x_i + (p_i - 1 - x_i) + X_k^{(A)}$$

Amortized costs of MTF in step k:

$$\begin{aligned} u_k^{(M)} &= C_k^{(M)} + \Phi_{k+1} - \Phi_k \\ &\leq p_i - x_i + (p_i - 1 - x_i) + X_k^{(A)} \\ &= (p_i - x_i) + (p_i - x_i) - 1 + X_k^{(A)} \\ &\leq C_k^{(A)} + C_k^{(A)} - 1 + X_k^{(A)} \leq 2 \cdot C_k^{(A)} + X_k^{(A)}. \end{aligned}$$

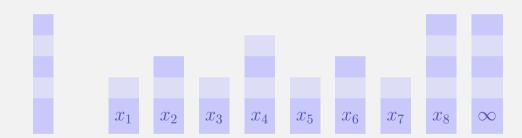
Estimation

Summing up costs

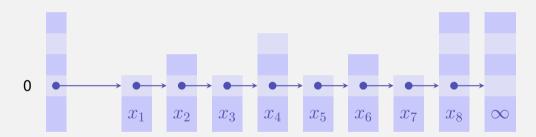
$$\sum_{k} G_{k}^{(M)} = \sum_{k} C_{k}^{(M)} \leq \sum_{k} a_{k}^{(M)} \leq \sum_{k} 2 \cdot C_{k}^{(A)} + X_{k}^{(A)}$$
$$\leq 2 \cdot \sum_{k} C_{k}^{(A)} + X_{k}^{(A)}$$
$$= 2 \cdot \sum_{k} G_{k}^{(A)}$$

In the worst case MTF requires at most twice as many operations as the optimal strategy.

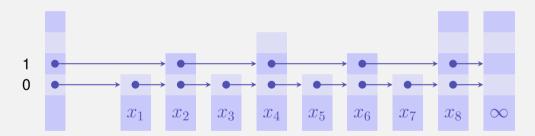
skip list



skip list



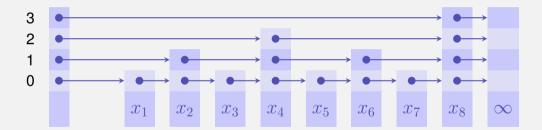
skip list



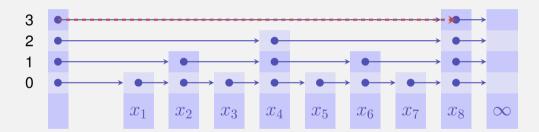
skip list



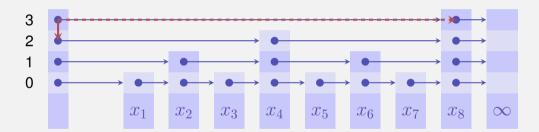
Perfect skip list



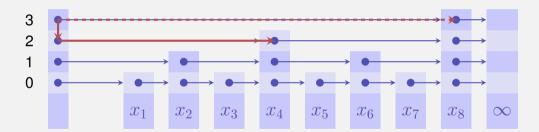
Perfect skip list



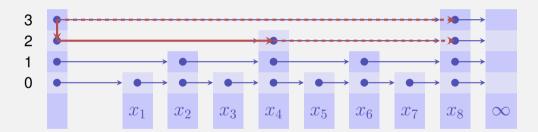
Perfect skip list



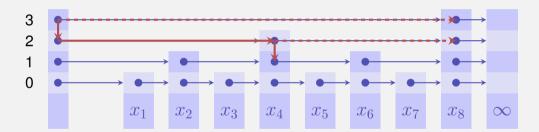
Perfect skip list



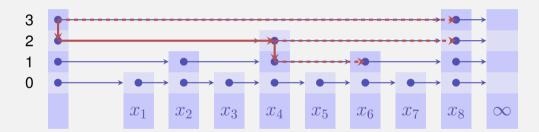
Perfect skip list



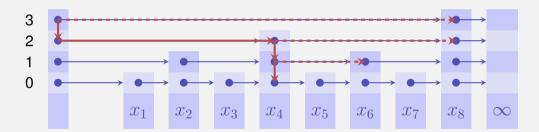
Perfect skip list



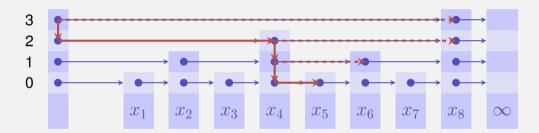
Perfect skip list



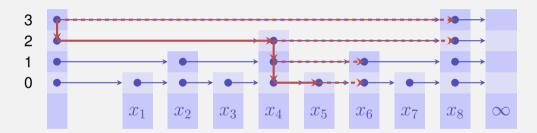
Perfect skip list



Perfect skip list



Perfect skip list



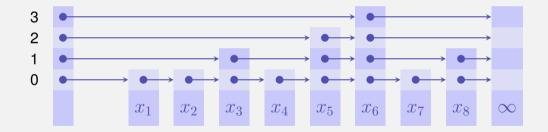
Analysis perfect skip list (worst cases)

Search in $\mathcal{O}(\log n)$. Insert in $\mathcal{O}(n)$.

Idea: insert a key with random height H with $\mathbb{P}(H = i) = \frac{1}{2^{i+1}}$.

Randomized Skip List

Idea: insert a key with random height H with $\mathbb{P}(H = i) = \frac{1}{2^{i+1}}$.



Analysis Randomized Skip List

Theorem

The expected number of fundamental operations for Search, Insert and Delete of an element in a randomized skip list is $O(\log n)$.

The lengthy proof that will not be presented in this courseobserves the length of a path from a searched node back to the starting point in the highest level.