## 11. Fundamental Data Structures

Abstract data types stack, queue, implementation variants for linked lists, amortized analysis [Ottman/Widmayer, Kap. 1.5.1-1.5.2, Cormen et al, Kap. 10.1.-10.2,17.1-17.3]

## **Abstract Data Types**

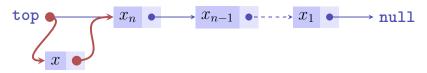
#### We recall

A *stack* is an abstract data type (ADR) with operations

- **push**(x, S): Puts element x on the stack S.
- ightharpoonup pop(S): Removes and returns top most element of S or null
- $\blacksquare$  top(S): Returns top most element of S or null.
- **is**Empty(S): Returns true if stack is empty, false otherwise.
- emptyStack(): Returns an empty stack.

301

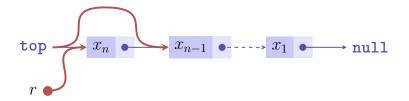
## **Implementation Push**



push(x,S):

- lacktriangledown Create new list element with x and pointer to the value of top.
- Assign the node with x to top.

## **Implementation Pop**



pop(S):

- If top=null, then return null
- **2** otherwise memorize pointer p of top in r.
- ${f S}$  Set top to p.next and return r

# **Analysis**

Each of the operations push, pop, top and is Empty on a stack can be executed in  $\mathcal{O}(1)$  steps.

# Queue (fifo)

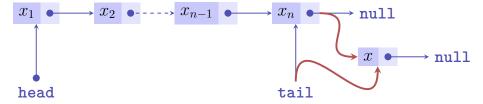
A queue is an ADT with the following operations

- $\blacksquare$  enqueue(x,Q): adds x to the tail (=end) of the queue.
- **dequeue**(Q): removes x from the head of the queue and returns x (null otherwise)
- $\mathbf{head}(Q)$ : returns the object from the head of the queue ( $\mathbf{null}$  otherwise)
- $\blacksquare$  is Empty(Q): return true if the queue is empty, otherwise false
- emptyQueue(): returns empty queue.

305

\_\_\_

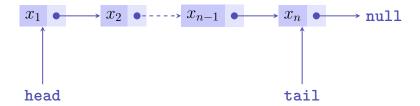
## **Implementation Queue**



#### enqueue(x, S):

- 1 Create a new list element with x and pointer to null.
- If tail  $\neq$  null, then set tail.next to the node with x.
- Set tail to the node with x.
- If head = null, then set head to tail.

#### **Invariants**



With this implementation it holds that

- $\blacksquare$  either head = tail = null,
- $\blacksquare$  or head = tail  $\neq$  null and head.next = null
- or head  $\neq$  null and tail  $\neq$  null and head  $\neq$  tail and head.next  $\neq$  null.

# **Implementation Queue**



#### dequeue(S):

- 1 Store pointer to head in r. If r = null, then return r.
- 2 Set the pointer of head to head.next.
- Is now head = null then set tail to null.
- Return the value of r.

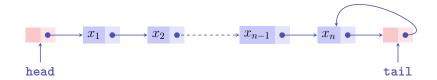
## **Analysis**

Each of the operations enqueue, dequeue, head and is Empty on the queue can be executed in  $\mathcal{O}(1)$  steps.

309

# **Implementation Variants of Linked Lists**

List with dummy elements (sentinels).



Advantage: less special cases

Variant: like this with pointer of an element stored singly indirect.

(Example: pointer to  $x_3$  points to  $x_2$ .)

# **Implementation Variants of Linked Lists**

Doubly linked list



### **Overview**

|     | enqueue     | delete      | search      | concat      |
|-----|-------------|-------------|-------------|-------------|
| (A) | $\Theta(1)$ | $\Theta(n)$ | $\Theta(n)$ | $\Theta(n)$ |
| (B) | $\Theta(1)$ | $\Theta(n)$ | $\Theta(n)$ | $\Theta(1)$ |
| (C) | $\Theta(1)$ | $\Theta(1)$ | $\Theta(n)$ | $\Theta(1)$ |
| (D) | $\Theta(1)$ | $\Theta(1)$ | $\Theta(n)$ | $\Theta(1)$ |

- (A) = singly linked
- (B) = Singly linked with dummy element at the beginning and the end
- (C) = Singly linked with indirect element addressing
- (D) = doubly linked

# priority queue

**Priority Queue** 

Operations

- **Insert**(x,p,Q): Enter object x with priority p.
- $\blacksquare$  extractMax(Q): Remove and return object x with highest priority.

313

## **Implementation Priority Queue**

With a Max Heap

Thus

- insert in  $\mathcal{O}(\log n)$  and
- **extractMax** in  $\mathcal{O}(\log n)$ .

## Multistack

Multistack adds to the stack operations below

 $\operatorname{multipop}(s,S)$ : remove the  $\min(\operatorname{size}(S),k)$  most recently inserted objects and return them.

Implementation as with the stack. Runtime of multipop is O(k).

#### **Academic Question**

If we execute on a stack with n elements a number of n times multipop(k,S) then this costs  $\mathcal{O}(n^2)$ ?

Certainly correct because each multipop may take  $\mathcal{O}(n)$  steps. How to make a better estimation?

## Idea (accounting)

Introduction of a cost model:

- Each call of push costs 1 CHF and additional 1 CHF will be put to account.
- Each call to pop costs 1 CHF and will be paid from the account.

Account will never have a negative balance. Thus: maximal costs = number of push operations times two.

### **More Formal**

Let  $t_i$  denote the real costs of the operation i. Potential function  $\Phi_i \geq 0$  for the "account balance" after i operations.  $\Phi_i \geq \Phi_0 \ \forall i$ .

Amortized costs of the *i*th operation:

$$a_i := t_i + \Phi_i - \Phi_{i-1}$$
.

It holds

$$\sum_{i=1}^{n} a_i = \sum_{i=1}^{n} (t_i + \Phi_i - \Phi_{i-1}) = \left(\sum_{i=1}^{n} t_i\right) + \Phi_n - \Phi_0 \ge \sum_{i=1}^{n} t_i.$$

Goal: find potential function that evens out expensive operations.

## **Example stack**

317

Potential function  $\Phi_i$  = number element on the stack.

- **push**(x, S): real costs  $t_i = 1$ .  $\Phi_i \Phi_{i-1} = 1$ . Amortized costs  $a_i = 2$ .
- pop(S): real costs  $t_i = 1$ .  $\Phi_i \Phi_{i-1} = -1$ . Amortized costs  $a_i = 0$ .
- multipop(k, S): real costs  $t_i = k$ .  $\Phi_i \Phi_{i-1} = -k$ . amortized costs  $a_i = 0$ .

All operations have *constant amortized cost*! Therefore, on average Multipop requires a constant amount of time. <sup>14</sup>

Note that we are not taking about the probabilistic mean but t

<sup>&</sup>lt;sup>14</sup>Note that we are not talking about the probabilistic mean but the (worst-case) average of the costs.

## **Example Binary Counter**

Binary counter with k bits. In the worst case for each count operation maximally k bitflips. Thus  $\mathcal{O}(n \cdot k)$  bitflips for counting from 1 to n. Better estimation?

Real costs  $t_i$  = number bit flips from 0 to 1 plus number of bit-flips from 1 to 0.

$$...0\underbrace{1111111}_{l ext{ Einsen}} + 1 = ...1\underbrace{0000000}_{l ext{ Zeroes}}.$$
  $\Rightarrow t_i = l+1$ 

## 12. Dictionaries

Dictionary, Self-ordering List, Implementation of Dictionaries with Array / List /Skip lists. [Ottman/Widmayer, Kap. 3.3,1.7, Cormen et al, Kap. Problem 17-5]

## **Example Binary Counter**

$$...0\underbrace{1111111}_{l \text{ Einsen}} + 1 = ...1\underbrace{0000000}_{l \text{ Nullen}}$$

potential function  $\Phi_i$ : number of 1-bits of  $x_i$ .

$$\Rightarrow \Phi_i - \Phi_{i-1} = 1 - l,$$

$$\Rightarrow a_i = t_i + \Phi_i - \Phi_{i-1} = l + 1 + (1 - l) = 2.$$

Amortized constant cost for each count operation.

321

## **Dictionary**

ADT to manage keys from a set  $\mathcal K$  with operations

- insert(k, D): Insert  $k \in \mathcal{K}$  to the dictionary D. Already exists  $\Rightarrow$  error messsage.
- delete(k, D): Delete k from the dictionary D. Not existing  $\Rightarrow$  error message.
- **search**(k, D): Returns true if  $k \in D$ , otherwise false

### Idea

## Other idea

Implement dictionary as sorted array

Worst case number of fundamental operations

Search  $\mathcal{O}(\log n)$   $\bigcirc$  Insert  $\mathcal{O}(n)$   $\bigcirc$  Delete  $\mathcal{O}(n)$ 

Implement dictionary as a linked list
Worst case number of fundamental operations

Search  $\mathcal{O}(n)$   $\bigcirc$  Insert  $\mathcal{O}(1)^{15}$   $\bigcirc$  Delete  $\mathcal{O}(n)$   $\bigcirc$ 

20

#### **Self Ordered Lists**

Problematic with the adoption of a linked list: linear search time *Idea:* Try to order the list elements such that accesses over time are possible in a faster way

For example

- Transpose: For each access to a key, the key is moved one position closer to the front.
- Move-to-Front (MTF): For each access to a key, the key is moved to the front of the list.

## **Transpose**

Transpose:

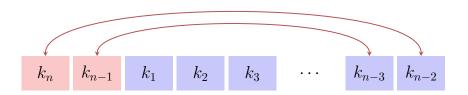
 $k_1$   $k_2$   $k_3$   $k_4$   $k_5$   $\cdots$   $k_{n-1}$   $k_n$ 

Worst case: Alternating sequence of n accesses to  $k_{n-1}$  and  $k_n$ . Runtime:  $\Theta(n^2)$ 

<sup>&</sup>lt;sup>15</sup>Provided that we do not have to check existence.

### **Move-to-Front**

Move-to-Front:



Alternating sequence of n accesses to  $k_{n-1}$  and  $k_n$ . Runtime:  $\Theta(n)$ 

Also here we can provide a sequence of accesses with quadratic runtime, e.g. access to the last element. But there is no obvious strategy to counteract much better than MTF..

# **Analysis**

Compare MTF with the best-possible competitor (algorithm) A. How much better can A be?

#### Assumptions:

329

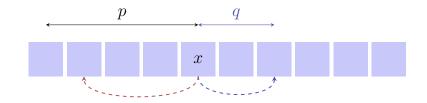
- MTF and A may only move the accessed element.
- MTF and A start with the same list.

Let  $M_k$  and  $A_k$  designate the lists after the kth step.  $M_0 = A_0$ .

## **Analysis**

#### Costs:

- Access to x: position p of x in the list.
- $\blacksquare$  No further costs, if x is moved before p
- Further costs q for each element that x is moved back starting from p.



# **Amortized Analysis**

Let an arbitrary sequence of search requests be given and let  $G_k^{(M)}$  and  $G_k^{(A)}$  the costs in step k for Move-to-Front and A, respectively. Want estimation of  $\sum_k G_k^{(M)}$  compared with  $\sum_k G_k^{(A)}$ .

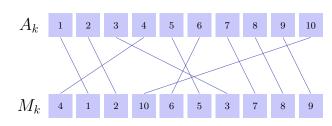
 $\Rightarrow$  Amortized analysis with potential function  $\Phi$ .

---

#### **Potential Function**

Potential function  $\Phi = \text{Number of inversions of A vs. MTF.}$ 

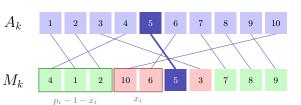
Inversion = Pair x, y such that for the positions of a and y  $\left(p^{(A)}(x) < p^{(A)}(y)\right) \neq \left(p^{(M)}(x) < p^{(M)}(y)\right)$ 

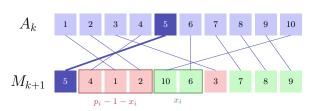


#inversion = #crossings

## **Estimating the Potential Function: MTF**

- Element i at position  $p_i := p^{(M)}(i)$ .
- lacksquare access costs  $C_k^{(M)}=p_i$ .
- $x_i$ : Number elements that are in M before  $p_i$  and in A after i.
- MTF removes  $x_i$  inversions.
- $p_i x_i 1$ : Number elements that in M are before  $p_i$  and in A are before i.
- MTF generates  $p_i 1 x_i$  inversions.

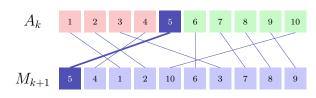


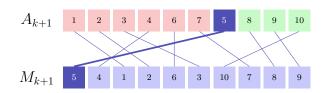


333

## **Estimating the Potential Function: A**

- Wlog element i at position  $p^{(A)}(i)$ .
- $X_k^{(A)}$ : number movements to the back (otherwise 0).
- access costs for i:  $C_k^{(A)} = p^{(A)}(i) \ge p^{(M)}(i) x_i$ .
- lacksquare A increases the number of inversions maximally by  $X_k^{(A)}$ .





### **Estimation**

$$\Phi_{k+1} - \Phi_k \le -x_i + (p_i - 1 - x_i) + X_k^{(A)}$$

Amortized costs of MTF in step *k*:

$$a_k^{(M)} = C_k^{(M)} + \Phi_{k+1} - \Phi_k$$

$$\leq p_i - x_i + (p_i - 1 - x_i) + X_k^{(A)}$$

$$= (p_i - x_i) + (p_i - x_i) - 1 + X_k^{(A)}$$

$$\leq C_k^{(A)} + C_k^{(A)} - 1 + X_k^{(A)} \leq 2 \cdot C_k^{(A)} + X_k^{(A)}.$$

## **Estimation**

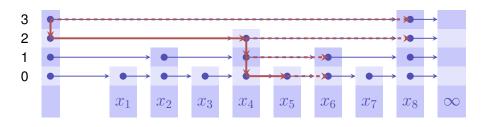
Summing up costs

$$\begin{split} \sum_{k} G_{k}^{(M)} &= \sum_{k} C_{k}^{(M)} \leq \sum_{k} a_{k}^{(M)} \leq \sum_{k} 2 \cdot C_{k}^{(A)} + X_{k}^{(A)} \\ &\leq 2 \cdot \sum_{k} C_{k}^{(A)} + X_{k}^{(A)} \\ &= 2 \cdot \sum_{k} G_{k}^{(A)} \end{split}$$

In the worst case MTF requires at most twice as many operations as the optimal strategy.

# Cool idea: skip lists

Perfect skip list



 $x_1 \leq x_2 \leq x_3 \leq \cdots \leq x_9$ .

337

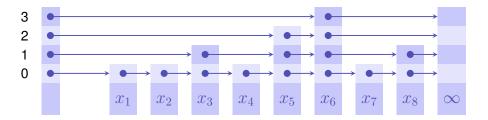
Example: search for a key x with  $x_5 < x < x_6$ .

# **Analysis perfect skip list (worst cases)**

Search in  $\mathcal{O}(\log n)$ . Insert in  $\mathcal{O}(n)$ .

## **Randomized Skip List**

Idea: insert a key with random height H with  $\mathbb{P}(H=i)=\frac{1}{2^{i+1}}$ .



# **Analysis Randomized Skip List**

#### Theorem

The expected number of fundamental operations for Search, Insert and Delete of an element in a randomized skip list is  $O(\log n)$ .

The lengthy proof that will not be presented in this courseobserves the length of a path from a searched node back to the starting point in the highest level.