10. Sorting lli

Lower bounds for the comparison based sorting, radix- and
bucket-sort

280

Lower bound for sorting

Up to here: worst case sorting takes €2(nlogn) steps.
Is there a better way? No:

Sorting procedures that are based on comparison require in the
worst case and on average at least C)(nlogn) key comparisons.

282

10.1 Lower bounds for comparison based sorting

[Ottman/Widmayer, Kap. 2.8, Cormen et al, Kap. 8.1]

281

Comparison based sorting

m An algorithm must identify the correct one of n! permutations of an
array (Ai)i=1,..n -

m At the beginning the algorithm know nothing about the array
structure.

m We consider the knowledge gain of the algorithm in the form of a
decision tree:

m Nodes contain the remaining possibilities.
m Edges contain the decisions.

283

Decision tree
abc acb cab bac bea cba
a<b

Yes No

abc acb cab bac bea cba
b<c b<c

/ \ ach cab bac bea / \

a<c a<c

ach bca

284

Average lower bound

m Decision tree T, with n leaves, average height

of a leaf m(T},)
m Assumption m(7,,) > logn not for all n.

m Choose smalles b with m(7}) < logn = b > 2

Ty, m b +b.=bwlogb >0undb, > 0=
Ty, b by < b,b, < b= m(T},) > logb, und
o= m(Ty,) > logb,
— b —

286

Decision tree

The height of a binary tree with L leaves is at least log, .. = The
heigh of the decision tree h > logn! € Q(nlogn).'?

Thus the length of the longest path in the decision tree € Q(nlogn).
Remaining to show: mean length M (n) of a path M (n) € Q(nlogn).

2logn! € O(nlogn):
logn!=>"7_, logk < nlogn.
logn! =371, loghk >

gl > og I
ben /2 log K 5 - log 5.
285

Average lower bound
Average height of a leaf:
m(Ty) = SHm(T,) + 1)+ S n(Ty,) + 1)

1
g(bl log 2b; + b, log 2b,.)

v

1
E(bl(log b+ 1)+ 0b.(logh. +1)) =

Y

1
g(b log b) = logb.

Contradiction. []
The last inequality holds because f(z) = xzlogz is convex and for a convex
function it holds that f((x + y)/2) < 1/2f(x) + 1/2f(y) (x = 2b;, y = 2b,)."®
Enter x = 2b;, y = 2b,, and b, + b, = b.

Bgenerally f(Az + (1 — N)y) < Af(z) + (1 =N f(y)for0 < A < 1.

287

10.2 Radixsort and Bucketsort

Radixsort, Bucketsort [Ottman/Widmayer, Kap. 2.5, Cormen et al, Kap. 8.3]

288

Annahmen

Assumption: keys representable as words from an alphabet
containing m elements.

m = 10 decimal numbers 183 = 183y
m =2 dual numbers 101,

m = 16 hexadecimal numbers A0

m = 26 words ““INFORMATIK*’

m is called the radix of the representation.

290

Radix Sort

Sorting based on comparison: comparable keys (< or >, often =).
No further assumptions.

Different idea: use more information about the keys.

289

Assumptions

m keys = m-adic numbers with same length.
m Procedure z for the extraction of digit £ in O(1) steps.

291

Radix-Exchange-Sort

Keys with radix 2.
Observation: if £ > 0,

29(i,x) = 29(i,y) foralli > k

and

2o(k, x) < z2(k,y),
then z < y.
Radix-Exchange-Sort

0111 0110 1000 0011 0001
Ne—

0111 0110 0001 0011/ 1000

PN
0011 0001/(0110 0111/ 1000)

10001/[0011/0110 0111/[1000

0001/0011|(0110]/0111]|1000)

294

Radix-Exchange-Sort

Idea:

m Start with a maximal k.

m Binary partition the data sets with z3(k,-) = 0 vs. z3(k,) = 1 like
with quicksort.

mk<+—k—1.

293

Algorithm RadixExchangeSort(A, [, r, D)

Array A with length n, left and right bounds 1 <[< r < n, bit
position b
Output : Array A, sorted in the domain [, r] by bits [0,...,b] .
if] >rand b > 0 then
1 1—1
jer+1
repeat
repeat i < i + 1 until z,(b,
repeat j < j + 1 until 2,(b,
if ¢ < j then swap(A[i], M)
until : > j
RadixExchangeSort(A, l,i — 1,b — 1)
RadixExchangeSort(A, i, 7, b — 1)

Input :

Ali)=1andi>j
Alj])=0and i > j

295

Analysis

RadixExchangeSort provide recursion with maximal recursion depth
= maximal number of digits p.

Worst case run time O(p - n).

296

Bucket Sort

12113121122 3 23 8 181929
o 1 2 3 4 5 6 7 8 9

29
23
122

8 19 21

3 18 121 131

3 8 181912121 1222329

298

Bucket Sort
3 8 18122121 131 23 21 1929\\
0 1 2 3 4 5 6 7 8 9
21
131 23 18 29
121 122 3 8 19

12113121122 3 23 8 181929

Bucket Sort

3 8 181912121 1222329

0o 1 2 3 4 5 6 7 8 9
29

23

21

19

18 131

8 122

3 121

3 8 1819212329121122131 (©

297

299

implementation details

Bucket size varies greatly. Two possibilities

m Linked list for each digit.
m One array of length n. compute offsets for each digit in the first
iteration.

300

