7. Sorting |

Simple Sorting



7.1 Simple Sorting

Selection Sort, Insertion Sort, Bubblesort [Ottman/Widmayer, Kap. 2.1, Cormen et
al, Kap. 2.1, 2.2, Exercise 2.2-2, Problem 2-2



Problem

Input: An array A = (A[1], ..., A[n]) with length n.

Output: a permutation A’ of A, that is sorted: A’[i] < A'[;] for all
1 <1< <n.



Algorithm: IsSorted(A)

Input : Array A = (A[1], ..., A[n]) with length n.
Output : Boolean decision “sorted” or “not sorted”
fori< 1ton—1do
if Afi] > A[i + 1] then
return “not sorted”;

return “sorted”;



Observation

IsSorted(A):“not sorted”, if A[i] > Ali + 1] for an i.
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Observation

IsSorted(A):“not sorted”, if A[i] > Ali + 1] for an i.
= idea:

for j < 1ton—1do
if A[j] > A[j + 1] then
swap(A[j], A[j + 1]);
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Try it out

m Apply the procedure
iteratively.
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Try it out
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Algorithm: Bubblesort

Input : Array A = (A[1],...

Output : Sorted Array A
fori< 1ton—1do
for j« 1ton—1:do
if A[j] > A[j + 1] then
swap(A[j], Alj + 1]);
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Number swaps in the worst case: O(n?)

@ What is the worst case?
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Analysis

Number key comparisons 3.7~ (n — i) = ”(”2_1) = O(n?).
Number swaps in the worst case: O(n?)

@ What is the worst case?
O If Ais sorted in decreasing order.

@ Algorithm can be adapted such that it terminates when the array is sorted.
Key comparisons and swaps of the modified algorithm in the best case?

@ Key comparisons = n — 1. Swaps = 0.



Selection Sort

5] [6] [2] [8] 4] [1] (i=1)

m lterative procedure
as for Bubblesort.



Selection Sort

5] [6] [2] [8] 4] [ (i=1)

m lterative procedure
as for Bubblesort.

m Selection of the
smallest (or largest)
element by
immediate search.



Selection Sort

[SSIN
I

[6] (1=1)
@ (1=2)  m Iterative procedure

as for Bubblesort.

m Selection of the
smallest (or largest)
element by
immediate search.



Selection Sort

[SSIN
I

[6] (1=1)
@ (1=2)  m Iterative procedure

as for Bubblesort.

m Selection of the
smallest (or largest)
element by
immediate search.



Selection Sort

1
(1=2)  m lterative procedure
3) as for Bubblesort.

m Selection of the
smallest (or largest)
element by
immediate search.



Selection Sort

1
(1=2)  m lterative procedure
3) as for Bubblesort.

m Selection of the
smallest (or largest)
element by
immediate search.



Selection Sort

6! (i=1)
@ (i=2)  m lterative procedure
@ (i = 3) as for Bubblesort.
: Selection of the
1 2] [4 =4 "
6] (i ) smallest (or largest)

element by
immediate search.



Selection Sort

6! (i=1)
@ (i=2)  m lterative procedure
@ (i = 3) as for Bubblesort.
: Selection of the
1 2] [4 =4 "
6] (i ) smallest (or largest)

element by
immediate search.



Selection Sort

6] (i=1)
@ (i=2)  m lterative procedure
@ (i = 3) as for Bubblesort.

: Selection of the
1] [2] [4 5 =4 "
6! (i ) smallest (or largest)
@ (i =5) element by

immediate search.



Selection Sort

6] (i=1)
@ (i=2)  m lterative procedure
@ (i = 3) as for Bubblesort.

: Selection of the
1] [2] [4 5 =4 "
6! (i ) smallest (or largest)
@ (i =5) element by

immediate search.



Selection Sort

smallest (or largest)

element by
immediate search.

m lterative procedure
as for Bubblesort

m Selection of the

=] o] o] [w] [eof [eofe
<] ¢ [&] o] |ok[o]
(0] |0} [e0] [cof 0] [t0)]
] o) [0+ =] [+
o] |ok |y [a] o] [ey]
wil= H = = H



Selection Sort

smallest (or largest)

element by
immediate search.

m lterative procedure
as for Bubblesort

m Selection of the

=] o] o] [w0] | [efe
<] ¢ [&] o] |ok[o]
(0] |0} [e0] [cof 0] [t0)]
] o) [0+ =] [+
o] |ok |y [a] o] [ey]
wil= H = = H



Selection Sort

smallest (or largest)

element by
immediate search.

m lterative procedure
as for Bubblesort

m Selection of the

=] o] o] [w] |eof [eof[eo]
<] ¥ [&] o] |ok[o] o
(0] |0} [e0] [0k 0] 0] o]
] o) [0+ ] [5] ¥
o] |ok|ay [a] o] [o] feu
(7o) o I e e I



Algorithm: Selection Sort

Input : Array A = (A[l],...,Aln]), n > 0.
Output : Sorted Array A
fori< 1ton—1do

P41

for j < i+ 1 ton do
if Aj] < A[p] then
P17

swap(Ali], A[p])
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Analysis

Number comparisons in worst case: O(n?).
Number swaps in the worst case: n — 1 = O(n)
Best case number comparisons:



Analysis

Number comparisons in worst case: O(n?).
Number swaps in the worst case: n — 1 = O(n)
Best case number comparisons: ©(n?).
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Insertion Sort
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Insertion Sort
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Insertion Sort

@ What is the disadvantage of this algorithm compared to sorting
by selection?

@ Many element movements in the worst case.

@ What is the advantage of this algorithm compared to selection
sort?

® The search domain (insertion interval) is already sorted.
Consequently: binary search possible.



Algorithm: Insertion Sort

Input : Array A = (A[l],...,A[n]), n > 0.
Output : Sorted Array A
for i < 2 to n do

x + Ali

for j « i — 1 downto p do
| Al + 1]+ Al]

Alp] + x

p < BinarySearch(A[l...i — 1], z); // Smallest p € [1,4| with A[p] > z
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Analysis

Number comparisons in the worst case:
S la-logk = alog((n —1)!) € O(nlogn).

Number comparisons in the best case O(nlogn).*
Number swaps in the worst case

4With slight modification of the function BinarySearch for the minimum / maximum: ©(n)
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Analysis

Number comparisons in the worst case:
S la-logk = alog((n —1)!) € O(nlogn).

Number comparisons in the best case O(nlogn).*

Number swaps in the worst case > ,_,(k — 1) € O(n

4With slight modification of the function BinarySearch for the minimum / maximum: ©(n)
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Different point of view

m Like insertion sort
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Conclusion

In a certain sense, Selection Sort, Bubble Sort and Insertion Sort
provide the same kind of sort strategy. Will be made more precise. °

5In the part about parallel sorting networks. For the sequential code of course the observations as described above still
hold.



Shellsort

Insertion sort on subsequences of the form (A;.;) (: € N) with
decreasing distances k. Last considered distance must be k£ = 1.

Good sequences: for example sequences with distances
ke {2'37]0 <1i,j}.
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8. Sorting Il

Heapsort, Quicksort, Mergesort



8.1 Heapsort

[Ottman/Widmayer, Kap. 2.3, Cormen et al, Kap. 6]
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Inspiration from selectsort: fast insertion
Inspiration from insertion sort: fast determination of position

@ Can we have the best of both worlds?



Heapsort

Inspiration from selectsort: fast insertion
Inspiration from insertion sort: fast determination of position

@ Can we have the best of both worlds?
@ Yes, but it requires some more thinking...
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8Heap(data structure), not: as in “heap and stack” (memory allocation)



Heap and Array

Tree — Array:
m children(i) = {2i,2i 4+ 1}
m parent(i) = |i/2]

Vater

|22]20[18]16]12[15]17] 3| 2 | 8 | 11]14]
12 M 8 9 10 11 12

Kinder
Depends on the starting index’

8] M

’For array that start at 0: {27,2i + 1} — {2i +1,2i + 2}, |3/2] — [(i — 1)/2]

N
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Insert

m Insert new element at the first free
position. Potentially violates the heap
property.

m Reestablish heap property: climb
successively

m Worst case number of operations:
O(logn)
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right element

@
20/ \18
16/ \ 15/ \

3/\2 8/\11 /\ /\



Remove the maximum

m Replace the maximum by the lower
right element

m Reestablish heap property: sink
successively (in the direction of the
greater child)
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m Replace the maximum by the lower
right element

m Reestablish heap property: sink
successively (in the direction of the
greater child)
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Remove the maximum

m Replace the maximum by the lower
right element

m Reestablish heap property: sink
successively (in the direction of the
greater child)

m Worst case number of operations:
O(logn)
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Algorithm Sink(A, 7, m)

Input : Array A with heap structure for the children of ¢. Last element m.

Output : Array A with heap structure for ¢ with last element m.
while 2 < m do

j < 2i; // j left child
if j <m and A[j] < A[j + 1] then
| jj+1;// jright child with greater key
if Afi] < A[j] then
swap(Ali], A[j])
i < j; // keep sinking
else
| i ¢ m; // sinking finished




Sort heap

All,...,n] is a Heap.

While n > 1
m swap(A[l], A[n])
m Sink(A,1,n —1);
Bn<n—1
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Sort heap

All,...,n] is a Heap.

While n > 1
m swap(A[l], A[n])
m Sink(A,1,n —1);
Bn<n—1

swap =
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Sort heap

All,...,n] is a Heap.

While n > 1
m swap(A[l], A[n])
m Sink(A,1,n —1);
Bn<n—1

swap
sink
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Sort heap

All,...,n] is a Heap.

While n > 1
m swap(A[l], A[n])
m Sink(A4,1,n —1);
En<n—1

swap
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swap
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Sort heap

All,...,n] is a Heap.

While n > 1
m swap(A[l], A[n])
m Sink(A,1,n — 1);
BEn+<n—1

swap
sink
swap
sink
swap
sink
swap
sink
swap
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Heap creation

Observation: Every leaf of a heap is trivially a correct heap.

Consequence:



Heap creation

Observation: Every leaf of a heap is trivially a correct heap.

Consequence: Induction from below!



Algorithm HeapSort(A, n)

Input : Array A with length n.
Output : A sorted.
// Build the heap.
for i < n/2 downto 1 do
. Sink(A, 14, n);
// Now A is a heap.
for i < n downto 2 do
swap(A[1], A[z])
Sink(A4,1,i — 1)

// Now A is sorted.



Analysis: sorting a heap

Sink traverses at most log n nodes. For each node 2 key
comparisons. = sorting a heap costs in the worst case 2logn
comparisons.

Number of memory movements of sorting a heap also O(nlogn).



Analysis: creating a heap

Calls to sink: n/2. Thus number of comparisons and movements:
v(n) € O(nlogn).



Analysis: creating a heap

Calls to sink: n/2. Thus number of comparisons and movements:
v(n) € O(nlogn).

But mean length of sinking paths is much smaller:

|logn| n |logn| h
o)=Y [ﬁ] cheOm Y )
h=0 h=0

with s(z) == >0 kot = (L (0<z<1)®ands(3) =2

v(n) € O(n).



8.2 Mergesort

[Ottman/Widmayer, Kap. 2.4, Cormen et al, Kap. 2.3],



Intermediate result

Heapsort: O(nlogn) Comparisons and movements.

@ Disadvantages of heapsort?
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©) Missing locality: heapsort jumps around in the sorted array
(negative cache effect).




Intermediate result

Heapsort: O(nlogn) Comparisons and movements.

@ Disadvantages of heapsort?

©) Missing locality: heapsort jumps around in the sorted array
(negative cache effect).

® Two comparisons required before each necessary memory
movement.




Mergesort

Divide and Conquer!

m Assumption: two halves of the array A are already sorted.
m Minimum of A can be evaluated with two comparisons.
m lteratively: sort the pre-sorted array A in O(n).
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Merge

i 4 7 9 16 2 3 10 11 12
i 2 3 4 7 9 10 11 12
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Algorithm Merge(A, [, m, r)

Input : Array A with length n, indexes 1 <[l <m <r <n. A[l,...

Alm+1,...,r] sorted
Output : All,...,r] sorted
B <+ new Array(r — [+ 1)
1L+ m+1 k1
while : < m and j < r do
if Ali] < A[j] then Blk] < Afi]; i+ i+1
else Blk] <+ Alj]; j+<j+1
k<« k+1;

while i <m do Blk] < Afi]; i ¢ i+1; k« k+1

s while j <rdo B[k]« A[j]; j« j+1; k+ k+1

for k < [ to r do A[k] < B[k — [ + 1]

,ml,

236



Correctness
Hypothesis: after k iterations of the loop in line 3 BJ[1,... k] is
sorted and Blk] < Ali], if i < m and Blk] < A[j]if j <r.

Proof by induction:
Base case: the empty array B[1,...,0] is trivially sorted.
Induction step (k — k + 1):

m wlog Afi] < A[j],i <m,j <r.

m Bl[l,..., k] is sorted by hypothesis and B[k] < A[i].

m After B[k + 1] < A[i] B[1,...,k+ 1] is sorted.

m Bk+1]=A[] < Ali+1] (ifi+1 <m)and Blk + 1] < A[j]ifj <.

m k< k+ 1,7+ i+ 1: Statement holds again.



Analysis (Merge)

If: array A with lengthn, indexes 1 <[l <r <n.m=[(l+r)/2]
and All,...,m|, Ajm +1,...,r| sorted.

Then: in the call of Merge(A,l, m,r) a number of ©(r — 1) key
movements and comparisons are executed.

Proof: straightforward(Inspect the algorithm and count the
operations.)



Mergesort
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Mergesort
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Mergesort
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Split
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Mergesort
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Mergesort
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Mergesort
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Mergesort
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Algorithm recursive 2-way Mergesort(A, [, )

Input : Array A with lengthn. 1 <1 <r<n

Output : Array All, ..., r] sorted.

if [ <r then
m <+ |(I+71)/2] // middle position
Mergesort(A, [, m) // sort lower half
Mergesort(A,m + 1,r) // sort higher half

Merge(A, L, m,r) // Merge subsequences



Analysis

Recursion equation for the number of comparisons and key
movements:

n

cm) = C(|5])+C(|5)) +6m



Analysis

Recursion equation for the number of comparisons and key
movements:

C(n) = O( [gb ol [SJ) +0(n) € O(nlogn)



Algorithm StraightMergesort(A)

Avoid recursion: merge sequences of length 1, 2,4, ... directly

Input : Array A with length n
Output : Array A sorted
length < 1
while length < n do // Iterate over lengths n
r <0
while r + length < n do // Iterate over subsequences
l—r+1
m < |+ length — 1
r < min(m + length,n)
Merge(A, [, m, )

 length < length - 2




Analysis

Like the recursive variant, the straight 2-way mergesort always
executes a number of ©(n logn) key comparisons and key
movements.



Natural 2-way mergesort

Observation: the variants above do not make use of any presorting
and always execute O(n log n) memory movements.

@ How can partially presorted arrays be sorted better?



Natural 2-way mergesort

Observation: the variants above do not make use of any presorting
and always execute O(n log n) memory movements.

@ How can partially presorted arrays be sorted better?

@ Recursive merging of previously sorted parts (runs) of A.
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Natural 2-way mergesort
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Natural 2-way mergesort
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Natural 2-way mergesort
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Algorithm NaturalMergesort(A)

Input : Array A with length n > 0
Output : Array A sorted
repeat
r<0
while » < n do
[+—r+1
m < [; while m < n and Ajm + 1] > A[m] do m <~ m +1
if m <n then
r < m+1; while r <n and A[r +1] > A[rjdo r < r+1
Merge(A, I, m, r);

else
réi-n

until [ =1



Analysis
In the best case, natural merge sort requires only n — 1
comparisons.

@ Is it also asymptotically better than StraightMergesort on
average?




Analysis

In the best case, natural merge sort requires only n — 1
comparisons.

@ Is it also asymptotically better than StraightMergesort on
average?

ONo. Given the assumption of pairwise distinct keys, on average there are n /2
positions i with k; > k;4, i.e. n/2 runs. Only one iteration is saved on average.

Natural mergesort executes in the worst case and on average a
number of ©(n logn) comparisons and memory movements.



8.3 Quicksort

[Ottman/Widmayer, Kap. 2.2, Cormen et al, Kap. 7]
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Quicksort

@ What is the disadvantage of Mergesort?
©) Requires ©(n) storage for merging.

@ How could we reduce the merge costs?

® Make sure that the left part contains only smaller elements than
the right part.

@ How?

@ Pivot and Partition!



Quicksort (arbitrary pivot)
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Quicksort (arbitrary pivot)
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Quicksort (arbitrary pivot)
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Quicksort (arbitrary pivot)

2 45 6 /83|79
2|1 3 6 8[5]7 9 4
1 2 3 45 8|79 6
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Quicksort (arbitrary pivot)

2 45 6 /83|79
(2] 8(5/7 9 4
1 2 3 45 8|79 6
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Algorithm Quicksort(A|/, . .., 7]

Input : Array A with lengthn. 1 <[ <r <n.
Output : Array A, sorted between [ and r.
if [ <r then

Choose pivot p € AL, ..., ]
k < Partition(A[l, ..., 7], p)
Quicksort(A[l, ...,k —1])
Quicksort(A[k + 1,...,7])



Reminder: algorithm Partition(A[/, . .., 7|, p)

Input : Array A, that contains the pivot p in [[,7] at least once.

Output : Array A partitioned around p. Returns the position of p.

while [ < r do

while A[l] < p do
i+l +1

while A[r] > p do
Cor+r—1

swap(A[l], A[r])

if A[l] = A[r| then // Only for keys that are not pairwise different
ol 1l+1

return |-1



Analysis: number comparisons

Best case.



Analysis: number comparisons

Best case. Pivot = median; number comparisons:

T(n)=2Tn/2)+c-n, T(1)=0 = T(n) € O(nlogn)

Worst case.



Analysis: number comparisons

Best case. Pivot = median; number comparisons:

T(n)=2Tn/2)+c-n, T(1)=0 = T(n) € O(nlogn)

Worst case. Pivot = min or max; number comparisons:

Tn)=T(n—-1)+c-n, T(1)=0 = T(n) € 6(n?



Analysis: number swaps

Result of a call to partition (pivot 3):

2 1 3 6 8 5 7 9 4

@ How many swaps have taken place?



Analysis: number swaps

Result of a call to partition (pivot 3):
2 1 3 6 8 5 7 9 4

@ How many swaps have taken place?

® 2. The maximum number of swaps is given by the number of keys
in the smaller part.
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Analysis: number swaps

Intellectual game

m Each key from the smaller part pay a coin when swapped.

m When a key has paid a coin then the domain containing the key is
less than or equal to half the previous size.

m Every key needs to pay at most logn coins. But there are only n
keys.

Consequence: there are O(nlogn) key swaps in the worst case.



Randomized Quicksort

Despite the worst case running time of ©(n?), quicksort is used
practically very often.

Reason: quadratic running time unlikely provided that the choice of
the pivot and the pre-sorting are not very disadvantageous.

Avoidance: randomly choose pivot. Draw uniformly from [Z, r].



Analysis (randomized quicksort)

Expected number of compared keys with input length n:

T(n)=(n—1)+— Z (k=1 +T(n—k), T(0)=T(1)=0

Claim T'(n) < 4nlogn.

Proof by induction:

Base case straightforward for n = 0 (with 0log 0 := 0) and for n = 1.
Hypothesis: T'(n) < 4nlogn for some n.

Induction step: (n — 1 — n)



Analysis (randomized quicksort)

2
T(n):n—1+—ZT(/€) n—1+ Z4k10g/€
" =0 =t
n/2 n—1
=n—1+) 4k logk 4k log k
D 4k logk + > dklogh
k=1 <logn—1 Fk=n/2+1  <jogn

=4nlogn —4logn — 3 < 4nlogn



Analysis (randomized quicksort)

On average randomized quicksort requires O(n -logn) comparisons.




Practical considerations

Worst case recursion depth n — 1°. Then also a memory
consumption of O(n).

Can be avoided: recursion only on the smaller part. Then
guaranteed O(logn) worst case recursion depth and memory
consumption.



Quicksort with logarithmic memory consumption

Input : Array A with length n. 1 <1 <r <n.
Output : Array A, sorted between [ and 7.
while [ < r do
Choose pivot p € A[l,...,r]
k < Partition(A[l, ..., r],p)
if k—1<r—kthen
Quicksort(A[l, ...,k —1])

[+—Fk+1
else
Quicksort(Alk +1,...,7])
r<k—1
The call of Quicksort(A[l, . . ., r]) in the original algorithm has moved to iteration (tail recursion!): the if-statement became a

while-statement.



Practical considerations.

Practically the pivot is often the median of three elements. For
example: Median3(A[l], A[r], A[|l + r/2]]).

There is a variant of quicksort that requires only constant storage.
Idea: store the old pivot at the position of the new pivot.
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