7. Sorting I

Simple Sorting

7.1 Simple Sorting

Selection Sort, Insertion Sort, Bubblesort [Ottman/Widmayer, Kap. 2.1, Cormen et al, Kap. 2.1, 2.2, Exercise 2.2-2, Problem 2-2

Problem

Input: An array A = (A[1], ..., A[n]) with length n.

Output: a permutation A' of A, that is sorted: $A'[i] \leq A'[j]$ for all $1 \leq i \leq j \leq n$.

198

Algorithm: IsSorted(A)

```
\begin{array}{lll} \textbf{Input}: & \text{Array } A = (A[1],...,A[n]) \text{ with length } n. \\ \textbf{Output}: & \text{Boolean decision "sorted" or "not sorted"} \\ \textbf{for } i \leftarrow 1 \text{ to } n-1 \text{ do} \\ & & \textbf{if } A[i] > A[i+1] \text{ then} \\ & & & \textbf{return "not sorted"}; \\ \textbf{return "sorted"}; \end{array}
```

Observation

IsSorted(A):"not sorted", if A[i] > A[i+1] for an i.

Observation

IsSorted(A):"not sorted", if A[i] > A[i+1] for an i.

 \Rightarrow idea:

Observation

```
\begin{split} & \mathsf{IsSorted}(A) \text{:``not sorted''}, \ \mathsf{if} \ A[i] > A[i+1] \ \mathsf{for an} \ i. \\ & \Rightarrow \mathsf{idea} \text{:} \\ & \mathsf{for} \ j \leftarrow 1 \ \mathsf{to} \ n-1 \ \mathsf{do} \\ & \quad \big\lfloor \ \mathsf{if} \ A[j] > A[j+1] \ \mathsf{then} \\ & \quad \big\lfloor \ \mathsf{swap}(A[j], A[j+1]); \end{split}
```

 $5 \mapsto 6$ 2 8 4 1 (j=1)

- $5 \mapsto 6$ 2 8 4 1 (j=1)

- $5 \mapsto 6$ 2 8 4 1 (j=1)
- 5 6 \leftarrow 2 8 4 1 (j=2)
- $5 \quad 2 \quad 6 \rightarrow 8 \quad 4 \quad 1 \quad (j=3)$

$$5 \mapsto 6$$
 2 8 4 1 $(j=1)$

5 6
$$\rightarrow$$
2 8 4 1 $(j=2)$

5 2 6
$$+$$
 8 4 1 $(j=3)$

$$[5]$$
 $[2]$ $[6]$ $[8] \longleftrightarrow [4]$ $[6]$ $[6]$ $[6]$

$$5 \mapsto 6$$
 2 8 4 1 $(j=1)$

5 6
$$\longrightarrow$$
 2 8 4 1 $(j=2)$

5 2 6
$$+$$
 8 4 1 $(j=3)$

5 2 6 8 4 1
$$(j=4)$$

5 2 6 4 8
$$\rightarrow$$
 1 $(j=5)$

$$5 \mapsto 6$$
 2 8 4 1 $(j=1)$

5 2 6
$$+$$
 8 4 1 $(j=3)$

5 2 6 8 4 1
$$(j=4)$$

$$\boxed{5}$$
 $\boxed{2}$ $\boxed{6}$ $\boxed{4}$ $\boxed{8} \longleftrightarrow \boxed{1}$ $(j=5)$

$$5 \mapsto 6$$
 2 8 4 1 $(j=1)$

5 6 2 8 4 1
$$(j=2)$$

5 2 6
$$\rightarrow$$
 8 4 1 $(j=3)$

5 2 6 8 4 1
$$(j=4)$$

5 2 6 4 8
$$(j = 5)$$

5 2 6 4 1 8

■ Not sorted! ②.

$$5 \mapsto 6$$
 2 8 4 1 $(j=1)$

5 6 2 8 4 1
$$(j=2)$$

5 2 6
$$\rightarrow$$
 8 4 1 $(j=3)$

5 2 6 8 4 1
$$(j=4)$$

5 2 6 4 8
$$(j = 5)$$

5 2 6 4 1 8

■ Not sorted! ②.

- $5 \leftrightarrow 6$ 2 8 4 1 (j=1)
- 5 6 \leftrightarrow 2 8 4 1 (j=2)
- [5] [2] $[6] \longleftrightarrow [8]$ [4] [1] (j=3)
- 5 2 6 8 4 1 (j=4)
 - 5 2 6 4 8 1 (j=5)
- 5 2 6 4 1 8

- Not sorted! ②.
- But the greatest element moves to the right
 - \Rightarrow new idea!

Apply the procedure iteratively.

- Apply the procedure iteratively.
- \blacksquare For $A[1,\ldots,n]$,

- Apply the procedure iteratively.
- For $A[1,\ldots,n]$, then $A[1,\ldots,n-1]$,

- Apply the procedure iteratively.
- For $A[1,\ldots,n]$, then $A[1,\ldots,n-1]$,

- Apply the procedure iteratively.
- For $A[1,\ldots,n]$, then $A[1,\ldots,n-1]$,

- Apply the procedure iteratively.
- For $A[1,\ldots,n]$, then $A[1,\ldots,n-1]$, then $A[1,\ldots,n-2]$,


```
(j = 1, i = 1)
            (j = 2)

(j = 3)

(j = 4)

(j = 5)

(j = 1, i = 2)
1
1
1
8
8
8
8
8
8
8
             (j = 2)

(j = 3)

(j = 4)
             (j = 1, i = 3)
            (j=2) 
 (j=3)
               (i = 1, i = 4)
```

- Apply the procedure iteratively.
- For $A[1,\ldots,n]$, then $A[1,\ldots,n-1]$, then $A[1,\ldots,n-2]$,


```
8
8
8
4
4
4
6
1
1
1
5
5
5
```

```
1
1
1
1
8
8
8
8
8
8
8
8
8
8
                (j = 1, i = 1)
              (j = 2)

(j = 3)

(j = 4)

(j = 5)
              (j = 1, i = 2)
               (j = 2)

(j = 3)

(j = 4)
               (j = 1, i = 3)
               (j=2) 
 (j=3)
              (j = 1, i = 4)
(j = 2)
                (i = 1, j = 5)
```

- Apply the procedure iteratively.
- For $A[1,\ldots,n]$, then $A[1,\ldots,n-1]$, then $A[1,\ldots,n-2]$, etc.

Algorithm: Bubblesort

```
\begin{array}{ll} \textbf{Input}: & \mathsf{Array}\ A = (A[1], \dots, A[n]),\ n \geq 0. \\ \textbf{Output}: & \mathsf{Sorted}\ \mathsf{Array}\ A \\ \textbf{for}\ i \leftarrow 1\ \textbf{to}\ n-1\ \textbf{do} \\ & & \mathsf{for}\ j \leftarrow 1\ \textbf{to}\ n-i\ \textbf{do} \\ & & & \mathsf{if}\ A[j] > A[j+1]\ \textbf{then} \\ & & & & \mathsf{swap}(A[j], A[j+1]); \end{array}
```

Number key comparisons $\sum_{i=1}^{n-1} (n-i) = \frac{n(n-1)}{2} = \Theta(n^2)$.

Number swaps in the worst case: $\Theta(n^2)$

? What is the worst case?

Number key comparisons $\sum_{i=1}^{n-1} (n-i) = \frac{n(n-1)}{2} = \Theta(n^2)$.

Number swaps in the worst case: $\Theta(n^2)$

? What is the worst case?

 \bigcirc If A is sorted in decreasing order.

Number key comparisons $\sum_{i=1}^{n-1} (n-i) = \frac{n(n-1)}{2} = \Theta(n^2)$.

Number swaps in the worst case: $\Theta(n^2)$

- What is the worst case?
- \bigcirc If A is sorted in decreasing order.

Algorithm can be adapted such that it terminates when the array is sorted. Key comparisons and swaps of the modified algorithm in the best case?

- Number key comparisons $\sum_{i=1}^{n-1} (n-i) = \frac{n(n-1)}{2} = \Theta(n^2)$.
- Number swaps in the worst case: $\Theta(n^2)$
- ? What is the worst case?
- \bigcirc If A is sorted in decreasing order.
- Algorithm can be adapted such that it terminates when the array is sorted. Key comparisons and swaps of the modified algorithm in the best case?
- \bigcirc Key comparisons = n-1. Swaps = 0.

Iterative procedure as for Bubblesort.

5 6 2 8 4 1 (i=1)

- Iterative procedure as for Bubblesort.
- Selection of the smallest (or largest) element by immediate search.

- $5 \ 6 \ 2 \ 8 \ 4 \ 1 \ (i=1)$
- Iterative procedure as for Bubblesort.
- Selection of the smallest (or largest) element by immediate search.

- 5 [
 - 6
- 2
- 8
- 4
- (i = 1)

- 1 6
 - <u>6</u>
- 2
- 8
- 4
- $\boxed{\mathbf{5}} \quad (i=2)$
- Iterative procedure as for Bubblesort.
- Selection of the smallest (or largest) element by immediate search.

- $5 \ 6 \ 2 \ 8 \ 4 \ 1 \ (i=1)$
- 1 6 2 8 4 5 (i=2)
- 1 2 6 8 4 5 (i=3)
- Iterative procedure as for Bubblesort.
- Selection of the smallest (or largest) element by immediate search.

- $5 \ 6 \ 2 \ 8 \ 4 \ 1 \ (i=1)$
- 1 6 2 8 4 5 (i=2)
- 1 2 6 8 4 5 (i=3)

- Iterative procedure as for Bubblesort.
- Selection of the smallest (or largest) element by immediate search.

- 5 6 2 8 4 1 (i=1)
- 1 6 2 8 4 5 (i=2)
- 1 2 6 8 4 5 (i=3)
- 1 2 4 8 6 5 (i=4)

- Iterative procedure as for Bubblesort.
- Selection of the smallest (or largest) element by immediate search.

- $5 \quad 6 \quad 2 \quad 8 \quad 4 \quad 1 \quad (i=1)$
- 1 6 2 8 4 5 (i=2)
- 1 2 6 8 4 5 (i=3)
- 1 2 4 8 6 5 (i=4)

- Iterative procedure as for Bubblesort.
- Selection of the smallest (or largest) element by immediate search.

- 5 6 2 8 4 1 (i=1)
- 1 6 2 8 4 5 (i=2)
- 1 2 6 8 4 5 (i=3)
- 1 2 4 8 6 5 (i=4)
- 1 2 4 5 6 8 (i=5)

- Iterative procedure as for Bubblesort.
- Selection of the smallest (or largest) element by immediate search.

- 5 6 2 8 4 1 (i=1)
- 1 6 2 8 4 5 (i=2)
- 1 2 6 8 4 5 (i=3)
- 1 2 4 8 6 5 (i=4)
- 1 2 4 5 6 8 (i=5)

- Iterative procedure as for Bubblesort.
- Selection of the smallest (or largest) element by immediate search.

- $5 \quad 6 \quad 2 \quad 8 \quad 4 \quad 1 \quad (i=1)$
- 1 6 2 8 4 5 (i=2)
- 1 2 6 8 4 5 (i=3)
- 1 2 4 8 6 5 (i=4)
- 1 2 4 5 6 8 (i=5)
- 1 2 4 5 6 8 (i=6)

- Iterative procedure as for Bubblesort.
- Selection of the smallest (or largest) element by immediate search.

- 1 6 2 8 4 5 (i=2)
- 1 2 6 8 4 5 (i=3)
- 1 2 4 8 6 5 (i=4)
- 1 2 4 5 6 8 (i=5)
- 1 2 4 5 6 8 (i=6)

- Iterative procedure as for Bubblesort.
- Selection of the smallest (or largest) element by immediate search.

- $5 \quad 6 \quad 2 \quad 8 \quad 4 \quad 1 \quad (i=1)$
- 1 6 2 8 4 5 (i=2)
- 1 2 6 8 4 5 (i=3)
- 1 2 4 8 6 5 (i=4)
- 1 2 4 5 6 8 (i=5)
- (i = 3)
- 1 2 4 5 6 8

- Iterative procedure as for Bubblesort.
- Selection of the smallest (or largest) element by immediate search.

Algorithm: Selection Sort

```
\begin{array}{ll} \textbf{Input}: & \mathsf{Array}\ A = (A[1], \dots, A[n]),\ n \geq 0. \\ \textbf{Output}: & \mathsf{Sorted}\ \mathsf{Array}\ A \\ \textbf{for}\ i \leftarrow 1\ \textbf{to}\ n - 1\ \textbf{do} \\ & p \leftarrow i \\ & \textbf{for}\ j \leftarrow i + 1\ \textbf{to}\ n\ \textbf{do} \\ & & | \ i \mathbf{f}\ A[j] < A[p]\ \textbf{then} \\ & & | \ p \leftarrow j; \\ & \mathsf{swap}(A[i], A[p]) \end{array}
```

Number comparisons in worst case:

Number comparisons in worst case: $\Theta(n^2)$.

Number swaps in the worst case:

Number comparisons in worst case: $\Theta(n^2)$.

Number swaps in the worst case: $n-1 = \Theta(n)$

Best case number comparisons:

Number comparisons in worst case: $\Theta(n^2)$.

Number swaps in the worst case: $n - 1 = \Theta(n)$

Best case number comparisons: $\Theta(n^2)$.

 $5 \mid 6 \quad 2 \quad 8 \quad 4 \quad 1 \quad (i=1)$

$$\uparrow$$
 5 | 6 2 8 4 1 $(i=1)$

Iterative procedure:

$$i = 1...n$$

- \uparrow | 6 | 2 | 8 | 4 | 1 | (i = 1)
 5 | 6 | 2 | 8 | 4 | 1 | (i = 2)
- Iterative procedure: i = 1...n
- Determine insertion position for element i.

- Iterative procedure: i = 1...n
- Determine insertion position for element i.
- Insert element i

- \uparrow 5 | 6 | 2 | 8 | 4 | 1 | (i = 1) \downarrow 6 | 2 | 8 | 4 | 1 | (i = 2)
- Iterative procedure: i = 1...n
- Determine insertion position for element *i*.
- Insert element i

- \uparrow 5 | 6 | 2 | 8 | 4 | 1 | (i = 1)
 5 \uparrow 6 | 2 | 8 | 4 | 1 | (i = 2) \uparrow 5 | 6 | 2 | 8 | 4 | 1 | (i = 3)
- Iterative procedure: i = 1...n
- Determine insertion position for element *i*.
- Insert element i

- Iterative procedure: i = 1...n
- Determine insertion position for element i.
- Insert element i array block movement potentially required

- Iterative procedure: i = 1...n
- Determine insertion position for element *i*.
- Insert element i array block movement potentially required

 $\begin{bmatrix} 5 & 6 & 2 & 8 & 4 & 1 & (i = 2) \\ 1 & 5 & 6 & 2 & 8 & 4 & 1 & (i = 3) \\ 2 & 5 & 6 & 8 & 4 & 1 & (i = 4) \\ 2 & 5 & 6 & 8 & 4 & 1 & (i = 5) \\ \end{bmatrix}$

8

- Iterative procedure: i = 1...n
- Determine insertion position for element i.
- Insert element i array block movement potentially required

- Iterative procedure: i = 1...n
- Determine insertion position for element i.
- Insert element i array block movement potentially required

- 8 8 6 6 8 6 8
- Iterative procedure: i = 1...n
- Determine insertion position for element i.
- Insert element i array block movement potentially required

- 8 8 6 6 8 6 8
- Iterative procedure: i = 1...n
- Determine insertion position for element *i*.
- Insert element i array block movement potentially required

- Iterative procedure: i = 1...n
- Determine insertion position for element i.
- Insert element i array block movement potentially required

What is the disadvantage of this algorithm compared to sorting by selection?

- What is the disadvantage of this algorithm compared to sorting by selection?
- ① Many element movements in the worst case.
- What is the advantage of this algorithm compared to selection sort?

- What is the disadvantage of this algorithm compared to sorting by selection?
- ① Many element movements in the worst case.
- What is the advantage of this algorithm compared to selection sort?
- ① The search domain (insertion interval) is already sorted. Consequently: binary search possible.

Algorithm: Insertion Sort

Number comparisons in the worst case:

 $^{^4 \}mbox{With slight modification of the function BinarySearch for the minimum / maximum: }\Theta(n)$

Number comparisons in the worst case:

$$\sum_{k=1}^{n-1} a \cdot \log \dot{k} = a \log((n-1)!) \in \mathcal{O}(n \log n).$$

Number comparisons in the best case

 $^{^4}$ With slight modification of the function BinarySearch for the minimum / maximum: $\Theta(n)$

Number comparisons in the worst case:

$$\sum_{k=1}^{n-1} a \cdot \log \dot{k} = a \log((n-1)!) \in \mathcal{O}(n \log n).$$

Number comparisons in the best case $\Theta(n \log n)$.⁴

Number swaps in the worst case

 $^{^4}$ With slight modification of the function BinarySearch for the minimum / maximum: $\Theta(n)$

Number comparisons in the worst case:

$$\sum_{k=1}^{n-1} a \cdot \log \dot{k} = a \log((n-1)!) \in \mathcal{O}(n \log n).$$

Number comparisons in the best case $\Theta(n \log n)$.⁴

Number swaps in the worst case $\sum_{k=2}^{n} (k-1) \in \Theta(n^2)$

21

 $^{^4}$ With slight modification of the function BinarySearch for the minimum / maximum: $\Theta(n)$

Sorting node:

Sorting node:

- 5
- 6 ≥
- 2 ≥ ≥
 - 8 \\ge\$
- 4 | | | | | | | |
- 1 | | | | | | | | | | | |

Conclusion

In a certain sense, Selection Sort, Bubble Sort and Insertion Sort provide the same kind of sort strategy. Will be made more precise. ⁵

⁵In the part about parallel sorting networks. For the sequential code of course the observations as described above still hold.

Insertion sort on subsequences of the form $(A_{k \cdot i})$ $(i \in \mathbb{N})$ with decreasing distances k. Last considered distance must be k = 1.

Good sequences: for example sequences with distances $k \in \{2^i 3^j | 0 \le i, j\}$.

9 8 7 6 5 4 3 2 1 0

9 8 7 6 5 4 3 2 1 0

1 8 7 6 5 4 3 2 9 0 insertion sort, k=4

21

9	8	/	6	5	4	3	2	1	0	
1	8	7	6	5	4	3	2	9	0	insertion sort, $k=4$
1	0	7	6	5	4	3	2	9	8	
1	0	3	6	5	4	7	2	9	8	
1	0	3	2	5	4	7	6	9	8	

8. Sorting II

Heapsort, Quicksort, Mergesort

8.1 Heapsort

[Ottman/Widmayer, Kap. 2.3, Cormen et al, Kap. 6]

Heapsort

Inspiration from selectsort: fast insertion

Inspiration from insertion sort: fast determination of position

? Can we have the best of both worlds?

Heapsort

Inspiration from selectsort: fast insertion

Inspiration from insertion sort: fast determination of position

② Can we have the best of both worlds?

① Yes, but it requires some more thinking...

Binary tree with the following properties

⁶Heap(data structure), not: as in "heap and stack" (memory allocation)

Binary tree with the following properties

complete up to the lowest level

⁶Heap(data structure), not: as in "heap and stack" (memory allocation)

Binary tree with the following properties

- complete up to the lowest level
- Gaps (if any) of the tree in the last level to the right

⁶Heap(data structure), not: as in "heap and stack" (memory allocation)

Binary tree with the following properties

- complete up to the lowest level
- Gaps (if any) of the tree in the last level to the right
- Max-(Min-)Heap: key of a child smaller (greater) thant that of the parent node

⁶Heap(data structure), not: as in "heap and stack" (memory allocation)

Heap and Array

Tree \rightarrow Array:

- children $(i) = \{2i, 2i + 1\}$
- ightharpoonup parent $(i) = \lfloor i/2 \rfloor$

Depends on the starting index⁷

⁷For array that start at 0: $\{2i,2i+1\} \rightarrow \{2i+1,2i+2\}, \lfloor i/2 \rfloor \rightarrow \lfloor (i-1)/2 \rfloor$

Recursive heap structure

A heap consists of two heaps:

Recursive heap structure

A heap consists of two heaps:

Insert new element at the first free position. Potentially violates the heap property.

- Insert new element at the first free position. Potentially violates the heap property.
- Reestablish heap property: climb successively

- Insert new element at the first free position. Potentially violates the heap property.
- Reestablish heap property: climb successively

- Insert new element at the first free position. Potentially violates the heap property.
- Reestablish heap property: climb successively
- Worst case number of operations: $\mathcal{O}(\log n)$

Replace the maximum by the lower right element

- Replace the maximum by the lower right element
- Reestablish heap property: sink successively (in the direction of the greater child)

- Replace the maximum by the lower right element
- Reestablish heap property: sink successively (in the direction of the greater child)

- Replace the maximum by the lower right element
- Reestablish heap property: sink successively (in the direction of the greater child)
- Worst case number of operations: $\mathcal{O}(\log n)$

Algorithm Sink(A, i, m)

```
Array A with heap structure for the children of i. Last element m.
Input:
Output: Array A with heap structure for i with last element m.
while 2i \leq m do
    i \leftarrow 2i; // j left child
    if i < m and A[j] < A[j+1] then
     j \leftarrow j + 1; // j right child with greater key
    if A[i] < A[j] then
        swap(A[i], A[j])
        i \leftarrow j: // keep sinking
    else
    i \leftarrow m; // sinking finished
```

A[1,...,n] is a Heap. While n>1

- \blacksquare swap(A[1], A[n])
- Sink(A, 1, n 1);
- $n \leftarrow n-1$

$$A[1,...,n]$$
 is a Heap. While $n>1$

- \blacksquare swap(A[1], A[n])
- Sink(A, 1, n 1);
- $n \leftarrow n-1$

$$A[1,...,n]$$
 is a Heap. While $n>1$

- \blacksquare swap(A[1], A[n])
- Sink(A, 1, n 1);
- $n \leftarrow n-1$

$$A[1,...,n]$$
 is a Heap. While $n>1$

- \blacksquare swap(A[1], A[n])
- Sink(A, 1, n 1);
- $n \leftarrow n-1$

$$A[1,...,n]$$
 is a Heap. While $n>1$

- \blacksquare swap(A[1], A[n])
- Sink(A, 1, n 1);
- $n \leftarrow n-1$

		7	6	4	5	1	2
swap	\Rightarrow	2	6	4	5	1	7
sink	\Rightarrow	6	5	4	2	1	7
swap	\Rightarrow	1	5	4	2	6	7
sink	\Rightarrow	5	4	2	1	6	7
swap	\Rightarrow	1	4	2	5	6	7
sink	\Rightarrow	4	1	2	5	6	7
swap	\Rightarrow	2	1	4	5	6	7
sink	\Rightarrow	2	1	4	5	6	7
swap	\Rightarrow	1	2	4	5	6	7

Heap creation

Observation: Every leaf of a heap is trivially a correct heap.

Consequence:

Heap creation

Observation: Every leaf of a heap is trivially a correct heap.

Consequence: Induction from below!

Algorithm HeapSort(A, n)

```
Input: Array A with length n.
Output: A sorted.
// Build the heap.
for i \leftarrow n/2 downto 1 do
    Sink(A, i, n);
// Now A is a heap.
for i \leftarrow n downto 2 do
    swap(A[1], A[i])
    Sink(A, 1, i - 1)
// Now A is sorted.
```

Analysis: sorting a heap

Sink traverses at most $\log n$ nodes. For each node 2 key comparisons. \Rightarrow sorting a heap costs in the worst case $2\log n$ comparisons.

Number of memory movements of sorting a heap also $O(n \log n)$.

Analysis: creating a heap

Calls to sink: n/2. Thus number of comparisons and movements: $v(n) \in \mathcal{O}(n \log n)$.

 $^{^{8}}f(x) = \frac{1}{1-x} = 1 + x + x^{2} \dots \Rightarrow f'(x) = \frac{1}{(1-x)^{2}} = 1 + 2x + \dots$

Analysis: creating a heap

Calls to sink: n/2. Thus number of comparisons and movements: $v(n) \in \mathcal{O}(n \log n)$.

But mean length of sinking paths is much smaller:

$$v(n) = \sum_{h=0}^{\lfloor \log n \rfloor} \left\lceil \frac{n}{2^{h+1}} \right\rceil \cdot c \cdot h \in \mathcal{O}(n \sum_{h=0}^{\lfloor \log n \rfloor} \frac{h}{2^h})$$

with
$$s(x) := \sum_{k=0}^{\infty} kx^k = \frac{x}{(1-x)^2}$$
 $(0 < x < 1)$ 8 and $s(\frac{1}{2}) = 2$:

$$v(n) \in \mathcal{O}(n)$$
.

 $^{^{8}}f(x) = \frac{1}{1-x} = 1 + x + x^{2}... \Rightarrow f'(x) = \frac{1}{(1-x)^{2}} = 1 + 2x + ...$

8.2 Mergesort

[Ottman/Widmayer, Kap. 2.4, Cormen et al, Kap. 2.3],

Intermediate result

Heapsort: $O(n \log n)$ Comparisons and movements.

Object: Disadvantages of heapsort?

Intermediate result

Heapsort: $O(n \log n)$ Comparisons and movements.

- ② Disadvantages of heapsort?
- Missing locality: heapsort jumps around in the sorted array (negative cache effect).

Intermediate result

Heapsort: $O(n \log n)$ Comparisons and movements.

- ② Disadvantages of heapsort?
 - Missing locality: heapsort jumps around in the sorted array (negative cache effect).
 - Two comparisons required before each necessary memory movement.

Mergesort

Divide and Conquer!

- Assumption: two halves of the array *A* are already sorted.
- \blacksquare Minimum of A can be evaluated with two comparisons.
- Iteratively: sort the pre-sorted array A in $\mathcal{O}(n)$.

Merge

Merge

Merge

Algorithm Merge(A, l, m, r)

```
Array A with length n, indexes 1 < l < m < r < n. A[l, \ldots, m].
  Input:
                      A[m+1,\ldots,r] sorted
  Output: A[l, \ldots, r] sorted
1 B \leftarrow \text{new Array}(r-l+1)
i \leftarrow l: i \leftarrow m+1: k \leftarrow 1
3 while i < m and j < r do
4 if A[i] < A[j] then B[k] \leftarrow A[i]; i \leftarrow i+1
blue{1}{blue{1}{5}} else B[k] \leftarrow A[j]; j \leftarrow j+1
k \leftarrow k + 1:
7 while i \le m do B[k] \leftarrow A[i]; i \leftarrow i+1; k \leftarrow k+1
8 while j < r do B[k] \leftarrow A[j]; j \leftarrow j + 1; k \leftarrow k + 1
9 for k \leftarrow l to r do A[k] \leftarrow B[k-l+1]
```

Correctness

Hypothesis: after k iterations of the loop in line 3 B[1, ..., k] is sorted and $B[k] \le A[i]$, if $i \le m$ and $B[k] \le A[j]$ if $j \le r$.

Proof by induction:

Base case: the empty array $B[1, \ldots, 0]$ is trivially sorted. Induction step $(k \to k+1)$:

- lacksquare wlog $A[i] \leq A[j]$, $i \leq m, j \leq r$.
- B[1,...,k] is sorted by hypothesis and $B[k] \leq A[i]$.
- After $B[k+1] \leftarrow A[i] \ B[1, ..., k+1]$ is sorted.
- $B[k+1] = A[i] \le A[i+1]$ (if $i+1 \le m$) and $B[k+1] \le A[j]$ if $j \le r$.
- $k \leftarrow k + 1, i \leftarrow i + 1$: Statement holds again.

Analysis (Merge)

Lemma

If: array A with length n, indexes $1 \le l < r \le n$. $m = \lfloor (l+r)/2 \rfloor$ and $A[l, \ldots, m]$, $A[m+1, \ldots, r]$ sorted.

Then: in the call of Merge(A, l, m, r) a number of $\Theta(r - l)$ key movements and comparisons are executed.

Proof: straightforward(Inspect the algorithm and count the operations.)

5 2 6 1 8 4 3 9

Split

Split

Split

Split

Split

Split

Split

Split

Split

Split

Split

Split

Split

Split

Merge

Split

Split

Split

Merge

Split

Split

Split

Merge

Merge

Algorithm recursive 2-way Mergesort(A, l, r)

```
\begin{array}{lll} \textbf{Input}: & \text{Array $A$ with length $n$. $1 \leq l \leq r \leq n$} \\ \textbf{Output}: & \text{Array $A[l,\ldots,r]$ sorted.} \\ \textbf{if $l < r$ then} \\ & m \leftarrow \lfloor (l+r)/2 \rfloor & \text{// middle position} \\ & \text{Mergesort}(A,l,m) & \text{// sort lower half} \\ & \text{Mergesort}(A,m+1,r) & \text{// sort higher half} \\ & \text{Merge}(A,l,m,r) & \text{// Merge subsequences} \\ \end{array}
```

Analysis

Recursion equation for the number of comparisons and key movements:

$$C(n) = C(\left\lceil \frac{n}{2} \right\rceil) + C(\left\lfloor \frac{n}{2} \right\rfloor) + \Theta(n)$$

Analysis

Recursion equation for the number of comparisons and key movements:

$$C(n) = C(\left\lceil \frac{n}{2} \right\rceil) + C(\left\lfloor \frac{n}{2} \right\rfloor) + \Theta(n) \in \Theta(n \log n)$$

Algorithm StraightMergesort(*A***)**

Avoid recursion: merge sequences of length 1, 2, 4, ... directly

```
Input: Array A with length n
Output: Array A sorted
length \leftarrow 1
while length < n do
                                          // Iterate over lengths n
    r \leftarrow 0
    while r + length < n do // Iterate over subsequences
         l \leftarrow r + 1
         m \leftarrow l + length - 1
         r \leftarrow \min(m + length, n)
         Merge(A, l, m, r)
    length \leftarrow length \cdot 2
```

Analysis

Like the recursive variant, the straight 2-way mergesort always executes a number of $\Theta(n \log n)$ key comparisons and key movements.

Observation: the variants above do not make use of any presorting and always execute $\Theta(n \log n)$ memory movements.

O How can partially presorted arrays be sorted better?

Observation: the variants above do not make use of any presorting and always execute $\Theta(n \log n)$ memory movements.

- O How can partially presorted arrays be sorted better?
- The Recursive merging of previously sorted parts (runs) of A.

5 6 2 4 8 3 9 7 1

5 6 2 4 8 3 9 7 1

Algorithm NaturalMergesort(A)

```
Array A with length n > 0
Input:
Output:
          Array A sorted
repeat
    r \leftarrow 0
    while r < n do
        l \leftarrow r + 1
        m \leftarrow l; while m < n and A[m+1] \geq A[m] do m \leftarrow m+1
        if m < n then
             r \leftarrow m+1; while r < n and A[r+1] \ge A[r] do r \leftarrow r+1
            Merge(A, l, m, r):
        else
          r \leftarrow n
until l=1
```

Analysis

In the best case, natural merge sort requires only n-1 comparisons.

Is it also asymptotically better than StraightMergesort on average?

Analysis

In the best case, natural merge sort requires only n-1 comparisons.

Is it also asymptotically better than StraightMergesort on average?

①No. Given the assumption of pairwise distinct keys, on average there are n/2 positions i with $k_i > k_{i+1}$, i.e. n/2 runs. Only one iteration is saved on average.

Natural mergesort executes in the worst case and on average a number of $\Theta(n \log n)$ comparisons and memory movements.

8.3 Quicksort

[Ottman/Widmayer, Kap. 2.2, Cormen et al, Kap. 7]

? What is the disadvantage of Mergesort?

- ? What is the disadvantage of Mergesort?
- $oldsymbol{\mathbb{O}}$ Requires $\Theta(n)$ storage for merging.

- ? What is the disadvantage of Mergesort?
- $oldsymbol{\mathbb{O}}$ Requires $\Theta(n)$ storage for merging.
- ? How could we reduce the merge costs?

- What is the disadvantage of Mergesort?
- \bigcirc Requires $\Theta(n)$ storage for merging.
- ? How could we reduce the merge costs?
- ① Make sure that the left part contains only smaller elements than the right part.
- ? How?

- What is the disadvantage of Mergesort?
- \bigcirc Requires $\Theta(n)$ storage for merging.
- ? How could we reduce the merge costs?
- ① Make sure that the left part contains only smaller elements than the right part.
- ? How?
- ① Pivot and Partition!

2 4 5 6 8 3 7 9 1

2 4 5 6 8 3 7 9 1

 2
 4
 5
 6
 8
 3
 7
 9
 1

 2
 1
 3
 6
 8
 5
 7
 9
 4

- 2 4 5 6 8 3 7 9 1
- 2 1 3 6 8 5 7 9 4

 2
 4
 5
 6
 8
 3
 7
 9
 1

 2
 1
 3
 6
 8
 5
 7
 9
 4

 1
 2
 3
 4
 5
 8
 7
 9
 6

 2
 4
 5
 6
 8
 3
 7
 9
 1

 2
 1
 3
 6
 8
 5
 7
 9
 4

 1
 2
 3
 4
 5
 8
 7
 9
 6

 2
 4
 5
 6
 8
 3
 7
 9
 1

 2
 1
 3
 6
 8
 5
 7
 9
 4

 1
 2
 3
 4
 5
 8
 7
 9
 6

 1
 2
 3
 4
 5
 6
 7
 9
 8

 2
 4
 5
 6
 8
 3
 7
 9
 1

 2
 1
 3
 6
 8
 5
 7
 9
 4

 1
 2
 3
 4
 5
 8
 7
 9
 6

 1
 2
 3
 4
 5
 6
 7
 9
 8

2 4 5 6 8 3 7 9 1 2 1 3 6 8 5 7 9 4 1 2 3 4 5 8 7 9 6 1 2 3 4 5 6 7 9 8 1 2 3 4 5 6 7 8 9

Algorithm Quicksort($A[l,\ldots,r]$

```
\begin{array}{lll} \textbf{Input}: & \text{Array } A \text{ with length } n. \ 1 \leq l \leq r \leq n. \\ \textbf{Output}: & \text{Array } A, \text{ sorted between } l \text{ and } r. \\ \textbf{if } l < r \text{ then} \\ & \text{Choose pivot } p \in A[l, \ldots, r] \\ & k \leftarrow \text{Partition}(A[l, \ldots, r], p) \\ & \text{Quicksort}(A[l, \ldots, k-1]) \\ & \text{Quicksort}(A[k+1, \ldots, r]) \end{array}
```

Reminder: algorithm Partition(A[l, ..., r], p)

```
Input: Array A, that contains the pivot p in [l, r] at least once.
Output: Array A partitioned around p. Returns the position of p.
while l < r do
     while A[l] < p do
      l \leftarrow l + 1
     \begin{array}{c|c} \textbf{while} \ A[r] > p \ \textbf{do} \\ & r \leftarrow r-1 \end{array}
     swap(A[l], A[r])
     if A[l] = A[r] then l \leftarrow l+1
                                                 // Only for keys that are not pairwise different
return |-1
```

25

Analysis: number comparisons

Best case.

Analysis: number comparisons

Best case. Pivot = median; number comparisons:

$$T(n) = 2T(n/2) + c \cdot n, \ T(1) = 0 \quad \Rightarrow \quad T(n) \in \mathcal{O}(n \log n)$$

Worst case.

Analysis: number comparisons

Best case. Pivot = median; number comparisons:

$$T(n) = 2T(n/2) + c \cdot n, \ T(1) = 0 \quad \Rightarrow \quad T(n) \in \mathcal{O}(n \log n)$$

Worst case. Pivot = min or max; number comparisons:

$$T(n) = T(n-1) + c \cdot n, \ T(1) = 0 \quad \Rightarrow \quad T(n) \in \Theta(n^2)$$

Result of a call to partition (pivot 3):

```
2 1 3 6 8 5 7 9 4
```

? How many swaps have taken place?

Result of a call to partition (pivot 3):

- 2 1 3 6 8 5 7 9 4
- ? How many swaps have taken place?

Intellectual game

Intellectual game

Each key from the smaller part pay a coin when swapped.

Intellectual game

- Each key from the smaller part pay a coin when swapped.
- When a key has paid a coin then the domain containing the key is less than or equal to half the previous size.

Intellectual game

- Each key from the smaller part pay a coin when swapped.
- When a key has paid a coin then the domain containing the key is less than or equal to half the previous size.
- Every key needs to pay at most $\log n$ coins. But there are only n keys.

Intellectual game

- Each key from the smaller part pay a coin when swapped.
- When a key has paid a coin then the domain containing the key is less than or equal to half the previous size.
- Every key needs to pay at most $\log n$ coins. But there are only n keys.

Consequence: there are $O(n \log n)$ key swaps in the worst case.

Randomized Quicksort

Despite the worst case running time of $\Theta(n^2)$, quicksort is used practically very often.

Reason: quadratic running time unlikely provided that the choice of the pivot and the pre-sorting are not very disadvantageous.

Avoidance: randomly choose pivot. Draw uniformly from [l, r].

Analysis (randomized quicksort)

Expected number of compared keys with input length n:

$$T(n) = (n-1) + \frac{1}{n} \sum_{k=1}^{n} (T(k-1) + T(n-k)), \ T(0) = T(1) = 0$$

Claim $T(n) \le 4n \log n$.

Proof by induction:

Base case straightforward for n=0 (with $0 \log 0 := 0$) and for n=1.

Hypothesis: $T(n) \leq 4n \log n$ for some n.

Induction step: $(n-1 \rightarrow n)$

Analysis (randomized quicksort)

$$T(n) = n - 1 + \frac{2}{n} \sum_{k=0}^{n-1} T(k) \stackrel{\mathsf{H}}{\leq} n - 1 + \frac{2}{n} \sum_{k=0}^{n-1} 4k \log k$$

$$= n - 1 + \sum_{k=1}^{n/2} 4k \underbrace{\log k}_{\leq \log n - 1} + \sum_{k=n/2+1}^{n-1} 4k \underbrace{\log k}_{\leq \log n}$$

$$\leq n - 1 + \frac{8}{n} \left((\log n - 1) \sum_{k=1}^{n/2} k + \log n \sum_{k=n/2+1}^{n-1} k \right)$$

$$= n - 1 + \frac{8}{n} \left((\log n) \cdot \frac{n(n-1)}{2} - \frac{n}{4} \left(\frac{n}{2} + 1 \right) \right)$$

$$= 4n \log n - 4 \log n - 3 \leq 4n \log n$$

Analysis (randomized quicksort)

Theorem

On average randomized quicksort requires $\mathcal{O}(n \cdot \log n)$ comparisons.

Practical considerations

Worst case recursion depth $n-1^9$. Then also a memory consumption of $\mathcal{O}(n)$.

Can be avoided: recursion only on the smaller part. Then guaranteed $\mathcal{O}(\log n)$ worst case recursion depth and memory consumption.

260

⁹stack overflow possible!

Quicksort with logarithmic memory consumption

```
Input:
        Array A with length n. 1 < l < r < n.
Output: Array A, sorted between l and r.
while l < r do
    Choose pivot p \in A[l, \ldots, r]
    k \leftarrow \mathsf{Partition}(A[l,\ldots,r],p)
    if k-l < r-k then
        Quicksort(A[l, \ldots, k-1])
        l \leftarrow k+1
    else
     Quicksort(A[k+1,\ldots,r])
r \leftarrow k-1
```

The call of Quicksort($A[l, \ldots, r]$) in the original algorithm has moved to iteration (tail recursion!): the if-statement became a while-statement.

Practical considerations.

Practically the pivot is often the median of three elements. For example: Median3(A[l], A[r], A[|l+r/2|]).

There is a variant of quicksort that requires only constant storage. Idea: store the old pivot at the position of the new pivot.