7. Sorting |

Simple Sorting

7.1 Simple Sorting

Selection Sort, Insertion Sort, Bubblesort [Ottman/Widmayer, Kap. 2.1, Cormen et
al, Kap. 2.1, 2.2, Exercise 2.2-2, Problem 2-2

Problem

Input: An array A = (A[1], ..., A[n]) with length n.

Output: a permutation A’ of A, that is sorted: A’[i] < A'[;] for all
1 <1< <n.

Algorithm: IsSorted(A)

Input : Array A = (A[1], ..., A[n]) with length n.
Output : Boolean decision “sorted” or “not sorted”
fori< 1ton—1do
if Afi] > A[i + 1] then
return “not sorted”;

return “sorted”;

Observation

IsSorted(A):“not sorted”, if A[i] > Ali + 1] for an i.

Observation

IsSorted(A):“not sorted”, if A[i] > Ali + 1] for an i.
= idea:

200

Observation

IsSorted(A):“not sorted”, if A[i] > Ali + 1] for an i.
= idea:

for j < 1ton—1do
if A[j] > A[j + 1] then
swap(A[j], A[j + 1]);

200

Give itatry

516l (2] [8] [4] 1] (=1

Give itatry

[5l-{6] [2] [8] 4] 1] (i=1)
5] [6}2] [8] 4] [1] (j=2)

Give itatry

[5}—{6] (j=1)
(5=2)
[6]—18] (5 =3)

Give itatry

[51-{6] [2] [8] [4]
5] [2] [6}—8] [4]
5] [2] [6] [8}—4]

.
I
—_

—~ —~ —~ —~
. <o
I I
w (\)

~— ~— ~ ~—

(-
I
S

Give itatry

.

[51-{6] [2] [8] [4]
2] [6}—8] [4]
2] [6] [8}—4]
2] [6] [4] [8}—{1]

o] (o]
=] = =

o

.
I
—_

<
I
N

(-
I
S

<
I
3y

/A /N /N /N
<
~— N N~ ~—

Give itatry

.

[51-{6] [2] [8] [4]
5] [2] [6}—8] [4]
6] [8}—{4]
6] [4] [8}—{1]
6] [4] [1] [8]

o] (o]
o]
=] = =

o
N

.
I
—_

<
I
N

(-
I
S

<
I
3y

/A /N /N /N
<
~— N N~ ~—

Give itatry

.

[51-{6] [2] [8] [4]
5] [2] [6}—8] [4]
6] [8}—{4]
6] [4] [8}—{1]
6] [4] [1] [8]

=]
<
I
—_

<
I
N

m Not sorted! &.

. .
VS Y VS VS VS
N— N— N— N— N~—

<
I
3y

@] o
)]
(.
I
W

o
N

Give itatry

.

[51-{6] [2] [8] [4]
5] [2] [6}—8] [4]
6] [8}—{4]
6] [4] [8}—{1]
6] [4] [1] [8]

=]
<
I
—_

<
I
N

m Not sorted! &.

. .
VS Y VS VS VS
N— N— N— N— N~—

<
I
3y

@] o
)]
(.
I
W

o
N

Giveitatry

[5]—[6] (j=1)

2 4 1) =2
(7=2) m Not sorted! &.
[6}—[8] (j=3) m Butthe greatest

element moves to the
6] (8] (1 =4) right
. = new idea!

6] (j=05) ©

o
N

6] [4] [1]

201

Try it out

m Apply the procedure
iteratively.

NN NN

<<<<<
A
]Il
=l=lel=l~]
~le]]-]
EERER
[olole] =]

Try it out

iteratively.

m Apply the procedure
m For AL, ..

NN NN e

<<<<<<
e
ENREEE
[<l=lel=l~1+]
el <]
EERREN
[olole] o]l

., 1,

Try it out

iteratively.

m Apply the procedure
m For AL, ..

<<<<<<<
el
el
[<l=lel=l~T+]+
[~olel<le]<]
EERRRNE
[oleelfofel

., 1,

,n—1],

then A1, ..

]
=
o

s
e

T

()
p -
S
g
= —
o) s
-
Q :
O > -
= Q0 ~
>
Q&
S o O
<< = L
| |

N AN AN AN e~

A el=l
el
[=lelelel~]+]~1]
ledelefel<l]
(el fo)e
[elelolelofe]]

,n—1],

then A1, ..

Try it out

,n—1],

then A1, ..

()
p -
S
g
= —
o) s
-
Q :
O > -
= Q0 ~
>
Q&
S o O
<< = L
| |

N AN AN AN e~~~

[EANBANEANE NSNS AN AN A

- el=l=l=)

el

[=lelelel+]+]~1x]=)

[edelefelelefel~]

(el o)e]

[oleloelofelo~]

]
=
o

s
e

T

o p—
S
M _
. —
o £ -
p -
o -
o > ~
£T =2
V_|_
N,.U.AA
o @© c
rlvle
S o o <
<< = L =
| |

AN AN AN AN e NN

NBANBANEANEANE NS NSNS AN

A el=lel=l

el

[elelelel]+~]xlel]

ledelefelelelel~]+

(el ofofo] o]

[eleloelobelo~ o]

,n— 2],

1,..

[
[

then A

Try it out

,n — 1],
,n— 2],

., 1,

iteratively.
then A1,
then A[1,..

m Apply the procedure
m For AL, ..

NN NN NSNS NN e

A el =lel=lel =]l
el el

lelelel~=]l)

~edelelelelelel~+]x}el]

(el o[l ofobel+]+

[okeloel kel ool

m — N
w [
. 2 @ 2
o € -~
p -
o o
o > o -
S0 ==
V_|_
>= A.A.A
o @© c Cc .
Sg 629009
<= LE<LD
]]

A el =lel=lel=l<]=l<]=]=]
el el elelele])]
[elelelel~ <] lelel -] elelel
ledelefelelekeld=letel ==l
(el folel el ol
[elelolelokelf~of oo

Try it out

Algorithm: Bubblesort

Input : Array A = (A[1],...

Output : Sorted Array A
fori< 1ton—1do
for j« 1ton—1:do
if A[j] > A[j + 1] then
swap(A[j], Alj + 1]);

Analysis

Number key comparisons 37 (n — i) = 21 — 9(n?).
Number swaps in the worst case: O(n?)

@ What is the worst case?

Analysis

Number key comparisons 37 (n — i) = 21 — 9(n?).
Number swaps in the worst case: O(n?)

@ What is the worst case?
O If Ais sorted in decreasing order.

Analysis

Number key comparisons 37 (n — i) = 21 — 9(n?).

Number swaps in the worst case: O(n?)
@ What is the worst case?

O If Ais sorted in decreasing order.

@ Algorithm can be adapted such that it terminates when the array is sorted.
Key comparisons and swaps of the modified algorithm in the best case?

Analysis

Number key comparisons 3.7~ (n — i) = ”(”2_1) = O(n?).
Number swaps in the worst case: O(n?)

@ What is the worst case?
O If Ais sorted in decreasing order.

@ Algorithm can be adapted such that it terminates when the array is sorted.
Key comparisons and swaps of the modified algorithm in the best case?

@ Key comparisons = n — 1. Swaps = 0.

Selection Sort

5] [6] [2] [8] 4] [1] (i=1)

m lterative procedure
as for Bubblesort.

Selection Sort

5] [6] [2] [8] 4] [(i=1)

m lterative procedure
as for Bubblesort.

m Selection of the
smallest (or largest)
element by
immediate search.

Selection Sort

[SSIN
I

[6] (1=1)
@ (1=2) m Iterative procedure

as for Bubblesort.

m Selection of the
smallest (or largest)
element by
immediate search.

Selection Sort

[SSIN
I

[6] (1=1)
@ (1=2) m Iterative procedure

as for Bubblesort.

m Selection of the
smallest (or largest)
element by
immediate search.

Selection Sort

1
(1=2) m lterative procedure
3) as for Bubblesort.

m Selection of the
smallest (or largest)
element by
immediate search.

Selection Sort

1
(1=2) m lterative procedure
3) as for Bubblesort.

m Selection of the
smallest (or largest)
element by
immediate search.

Selection Sort

6! (i=1)
@ (i=2) m lterative procedure
@ (i = 3) as for Bubblesort.
: Selection of the
1 2] [4 =4 "
6] (i) smallest (or largest)

element by
immediate search.

Selection Sort

6! (i=1)
@ (i=2) m lterative procedure
@ (i = 3) as for Bubblesort.
: Selection of the
1 2] [4 =4 "
6] (i) smallest (or largest)

element by
immediate search.

Selection Sort

6] (i=1)
@ (i=2) m lterative procedure
@ (i = 3) as for Bubblesort.

: Selection of the
1] [2] [4 5 =4 "
6! (i) smallest (or largest)
@ (i =5) element by

immediate search.

Selection Sort

6] (i=1)
@ (i=2) m lterative procedure
@ (i = 3) as for Bubblesort.

: Selection of the
1] [2] [4 5 =4 "
6! (i) smallest (or largest)
@ (i =5) element by

immediate search.

Selection Sort

smallest (or largest)

element by
immediate search.

m lterative procedure
as for Bubblesort

m Selection of the

=] o] o] [w] [eof [eofe
<] ¢ [&] o] |ok[o]
(0] |0} [e0] [cof 0] [t0)]
] o) [0+ =] [+
o] |ok |y [a] o] [ey]
wil= H = = H

Selection Sort

smallest (or largest)

element by
immediate search.

m lterative procedure
as for Bubblesort

m Selection of the

=] o] o] [w0] | [efe
<] ¢ [&] o] |ok[o]
(0] |0} [e0] [cof 0] [t0)]
] o) [0+ =] [+
o] |ok |y [a] o] [ey]
wil= H = = H

Selection Sort

smallest (or largest)

element by
immediate search.

m lterative procedure
as for Bubblesort

m Selection of the

=] o] o] [w] |eof [eof[eo]
<] ¥ [&] o] |ok[o] o
(0] |0} [e0] [0k 0] 0] o]
] o) [0+] [5] ¥
o] |ok|ay [a] o] [o] feu
(7o) o I e e I

Algorithm: Selection Sort

Input : Array A = (A[l],...,Aln]), n > 0.
Output : Sorted Array A
fori< 1ton—1do

P41

for j < i+ 1 ton do
if Aj] < A[p] then
P17

swap(Ali], A[p])

Analysis

Number comparisons in worst case:

Analysis

Number comparisons in worst case: O(n?).
Number swaps in the worst case:

Analysis

Number comparisons in worst case: O(n?).
Number swaps in the worst case: n — 1 = O(n)
Best case number comparisons:

Analysis

Number comparisons in worst case: O(n?).
Number swaps in the worst case: n — 1 = O(n)
Best case number comparisons: ©(n?).

Insertion Sort

511 (6] (i=1)

Insertion Sort

Tl@ (i=1)
m lterative procedure:
1=1..n

Insertion Sort

[SSIN
I

BlIE 26 @0 (
B B2 @ & 60

) m lterative procedure:
1=1..n

~
I
N =

m Determine insertion
position for element 7.

Insertion Sort

BlIE 26 @0 (
5,612 B @ 0 |

[SSN

.

m lterative procedure:
1=1..n

m Determine insertion
position for element 7.

m Insert element ¢

Insertion Sort

)
I
—_
N—

+5]| 6] (

T@l (m lterative procedure:
1=1..n

8 2l (1=3) w Determine insertion

position for element 7.
m Insert element ¢

—_
[SSI%
[\)

N

Insertion Sort

T | [6] (i=1)
T@ | (i = 2) | I‘teraltlve procedure:
1= 1...N
T 6 | (i =3) m Determine insertion

position for element 7.
m Insert element ¢

208

Insertion Sort

T|@
51,811 [2

'@ m s

)

) m lterative procedure:
1=1..n

) m Determine insertion

) position for element .

m Insert element ¢ array

block movement
potentially required

Insertion Sort

T|@
T@m

Tl\. 21 (8]
6]1[8 | 4]

1=1..n
m Determine insertion
position for element 7.
m Insert element ¢ array
block movement
potentially required

)
) m lterative procedure:
)
)

Insertion Sort

[SSIN
I

T|@

T@ | [2] s m lterative procedure:
1=1...n
T 2] m Determine insertion

IIEE
2 5 [B @6

position for element 7.

m Insert element ¢ array
block movement
potentially required

[SEN
I

~—~~ I~
~
I
(@) _ W0 NN =
~— ~— ~— ~— ~~—

[SSN
I

Insertion Sort

T|@
T@m
BBl 216 @ [
llmml
2,5 6 B @I

—t || —,

Gt = W NN =
I — O o —

m lterative procedure:
1=1..n

m Determine insertion
position for element 7.

m Insert element ¢ array
block movement
potentially required

Insertion Sort

T|@
T@m

TI\. 21 (8]
6]1[8 | 4]

EI
5 6] T8 [l

~
I

Gt = W NN =

= D D O —

7

~
I

~
I

~
I

(
(
(
(i
(
(1=6

m lterative procedure:
1=1..n

m Determine insertion
position for element 7.

m Insert element ¢ array
block movement
potentially required

208

Insertion Sort

T|@
T@m

TI\. 21 (8]
6]1[8 | 4]

6] [8] [4]][1]

T..5|z6

~
I

Gt = W NN =

= D D O —

7

~
I

~
I

~
I

(
(
(
(i
(
(

m lterative procedure:
1=1..n

m Determine insertion
position for element 7.

m Insert element ¢ array
block movement
potentially required

208

Insertion Sort

T 5]| [6] (i=1)
T@ | [2 . i=2) ™ I'teraltive procedure:
i=1..n
T.\. 2l] (1=3) = Determine insertion
6] 0 8] | (1=4) position for element .
.T 6| (8 1] (i =5) m Insert element i array
block movement
1] (i =6) potentially required

Insertion Sort

@ What is the disadvantage of this algorithm compared to sorting
by selection?

Insertion Sort

@ What is the disadvantage of this algorithm compared to sorting
by selection?

@ Many element movements in the worst case.

@ What is the advantage of this algorithm compared to selection
sort?

Insertion Sort

@ What is the disadvantage of this algorithm compared to sorting
by selection?

@ Many element movements in the worst case.

@ What is the advantage of this algorithm compared to selection
sort?

® The search domain (insertion interval) is already sorted.
Consequently: binary search possible.

Algorithm: Insertion Sort

Input : Array A = (A[l],...,A[n]), n > 0.
Output : Sorted Array A
for i < 2 to n do

x + Ali

for j « i — 1 downto p do
| Al + 1]+ Al]

Alp] + x

p < BinarySearch(A[l...i — 1], z); // Smallest p € [1,4| with A[p] > z

Analysis

Number comparisons in the worst case:

4With slight modification of the function BinarySearch for the minimum / maximum: ©(n)

Analysis

Number comparisons in the worst case:
S la-logk = alog((n —1)!) € O(nlogn).
Number comparisons in the best case

4With slight modification of the function BinarySearch for the minimum / maximum: ©(n)

Analysis

Number comparisons in the worst case:
S la-logk = alog((n —1)!) € O(nlogn).

Number comparisons in the best case O(nlogn).*
Number swaps in the worst case

4With slight modification of the function BinarySearch for the minimum / maximum: ©(n)

211

Analysis

Number comparisons in the worst case:
S la-logk = alog((n —1)!) € O(nlogn).

Number comparisons in the best case O(nlogn).*

Number swaps in the worst case > ,_,(k — 1) € O(n

4With slight modification of the function BinarySearch for the minimum / maximum: ©(n)

)

Different point of view

Sorting node:

Different point of view

Sorting node:

A%

NN

Different point of view

A%

N

A%

A%

A%

N

A%

A%

A

a\%

A%

A

A%

o N N
&

n O

Different point of view

A%

N

A%

A%

A%

N

A%

A%

A

a\%

A%

A

Different point of view

"

GL’> 5

<

15
2l B
g BN B B
@4 BH BH B B
i B B B B

A%

Different point of view

5

5

N

6— = 5
B\

2 5
12

(00)
&
N

IS
NN N
NN N

NN
NN

A%

Different point of view

5 5
Y
6i>> 6

I

NN N

NN

A%

Different point of view

5 5
Y
6i>> 6

I

NN N

NN

A%

Different point of view

)

o
=g N GN G N G A G AV S

I

5

NN NN
NN N

NN

A%

Different point of view

)

o
=g N GN G N G A G AV S

.

.

oo

NN N
NN

N A A - AV < AV <

A%

Different point of view

)

o
=g N GN G N G A G AV S

.

.

Y

o

NN

N

N A A - AV < AV <
BN A S A4

A%

Different point of view

]
.

.

Y

o
[e2)

N

o
=g N GN G N G A G AV S

N A A - AV < AV <
BN A S A4

a5 AV G AV S

Different point of view

5\5

612
5| N

2 2 Z 5 %_ 6
AR IR

8 8 2 8 2 8 2_ 8

R

4— 2 2 2 21—
| |Gl T us?v

1— 2152 2 2 2
1 1z 1% 15 15
1 2 4 5 6

™

8

m Like selection sort
[and like Bubblesort]

A%

5\>< A%

Different point of view

A%

N

A%

A%

A%

N

A%

A%

A

a\%

A%

A

Different point of view

5\5

6
6"

.

N <r

2

8

NN NN

IS
NN N
NN N

NN

A%

Different point of view

g 2= s =
L

8 B B E

4 =2 =2 =2 2

‘B B N N

A%

Different point of view

6 hd
6" 2

|
|50

|
|53

|
12

r AV
WA

P AV 1

N

A

A

N

A

Different point of view

6 hd
6" 2

|
|50

|
|53

|
12

o \V N+ N

R\v AV -w6>< B N
vw/< -ww/< N
vw/< -ww< £ N

88 44 —

Different point of view

6 hd
6" 2

|
|50

|
|53

|
12

r AV
P AV 1

P AV 1

16

|53

12

r AV A

P AV

P AV

» AV A

16

05

14

12

WAVR=N}
vw/< 0
v:\u/< <
VH/< o
Pl

214

Different point of view

m Like insertion sort

6 hd
6" 2

|
|50

|
|53

|
12

r AV
WA

P AV 1

16

|53

12

o \v N+ ©
A -ww/< S0
V6>< -w:\u/< <
v5>< -MW< S
Vw/< -ww/< =
44 11

214

Conclusion

In a certain sense, Selection Sort, Bubble Sort and Insertion Sort
provide the same kind of sort strategy. Will be made more precise. °

5In the part about parallel sorting networks. For the sequential code of course the observations as described above still
hold.

Shellsort

Insertion sort on subsequences of the form (A;.;) (: € N) with
decreasing distances k. Last considered distance must be k£ = 1.

Good sequences: for example sequences with distances
ke {2'37]0 <1i,j}.

Shellsort

9 8 7 6 5 4

Shellsort

9 8 7 6 5 4 3 2 1 0
2 9 0 insertionsort, k=4

Shellsort

2 9 0 insertionsort, k=4

Shellsort

insertion sort, £k = 4

9 0

2

Shellsort

insertion sort, £k = 4

9 0

2

Shellsort

insertion sort, £k = 4

9 0

2

insertion sort, &k = 2

9 8

6

Shellsort

insertion sort, £k = 4

9 0

2

insertion sort, &k = 2

9 8

6

Shellsort

insertion sort, £k = 4

9 0

2

insertion sort, &k = 2

9 8

6

insertion sort, £k = 1

8 9

7

8. Sorting Il

Heapsort, Quicksort, Mergesort

8.1 Heapsort

[Ottman/Widmayer, Kap. 2.3, Cormen et al, Kap. 6]

Heapsort

Inspiration from selectsort: fast insertion
Inspiration from insertion sort: fast determination of position

@ Can we have the best of both worlds?

Heapsort

Inspiration from selectsort: fast insertion
Inspiration from insertion sort: fast determination of position

@ Can we have the best of both worlds?
@ Yes, but it requires some more thinking...

[Max-]Heap®

Binary tree with the following prop-
erties Wurzel

!

22

20/ 18 «——parent
/" \ /" \
16 12 15 17 «—child

3/ \2 s/ \11 14/\ /\

leaves

8Heap(data structure), not: as in “heap and stack” (memory allocation)

[Max-]Heap®

Wurzel

!

complete up to the lowest -
level e
18 «——parent

20
/ N\ / N\
16 12 15 17 «—child
3/ \2 8/ \11 14/ \ / \

leaves

SHeap(data structure), not: as in “heap and stack” (memory allocation)

[Max-]Heap®

Wurzel

7

Gaps (if any) of the tree in 20
the last level to the right 16/ \12

!

22

18 «——parent

15/ \

17 «<—child

3/ \2 8/ \11 14/\ /\

8Heap(data structure), not: as in “heap and stack” (memory allocation)

leaves

[Max-]Heap®

Wurzel

!

22

20/ 18 «——parent
/ N\ / N\
16 12 15

17 «—child
Heap-Condition: /\ /) / \ / \
Max-(Min-)Heap: key of a 3 2 8 11 14
child smaller (greater) thant leaves

that of the parent node

8Heap(data structure), not: as in “heap and stack” (memory allocation)

Heap and Array

Tree — Array:
m children(i) = {2i,2i 4+ 1}
m parent(i) = |i/2]

Vater

|22]20[18]16]12[15]17] 3| 2 | 8 | 11]14]
12 M 8 9 10 11 12

Kinder
Depends on the starting index’

8] M

’For array that start at 0: {27,2i + 1} — {2i +1,2i + 2}, |3/2] — [(i — 1)/2]

N

[10]

[”]

/ w\
j“\ /\

Recursive heap structure

A heap consists of two heaps:

20/ \18
/ \ / \
11 14/\ /\

Recursive heap structure

A heap consists of two heaps:

20

/ N\

16 12

/\ N\
3

2 8 11

15/ \17
FARA

Insert

m Insert new element at the first free
position. Potentially violates the heap

property.

20/ \18
16/ \12 15/ \17

3/ \2 8/ \11 14/\@ /\

Insert

m Insert new element at the first free
position. Potentially violates the heap
property.

m Reestablish heap property: climb
successively

22
20 18

/\ /\
16 Q

/\ /\

2

Insert

m Insert new element at the first free
position. Potentially violates the heap
property.

m Reestablish heap property: climb
successively

/\
/\ /\

/\ /\

2

Insert

m Insert new element at the first free
position. Potentially violates the heap
property.

m Reestablish heap property: climb
successively

m Worst case number of operations:
O(logn)

3

/\
/\ /\

/\ /\

2

Remove the maximum

20/ \18
/ \ / \

P 14/\ /\

225

Remove the maximum

m Replace the maximum by the lower
right element

@
20/ \18
16/ \ 15/ \

3/\2 8/\11 /\ /\

Remove the maximum

m Replace the maximum by the lower
right element

m Reestablish heap property: sink
successively (in the direction of the
greater child)

/20\
@ 18
SN N

16 12

3/\2 8/\11 /\ /\

225

Remove the maximum

m Replace the maximum by the lower
right element

m Reestablish heap property: sink
successively (in the direction of the
greater child)

16/ \18
/N 1/ \

ﬁ " WARA

225

Remove the maximum

m Replace the maximum by the lower
right element

m Reestablish heap property: sink
successively (in the direction of the
greater child)

m Worst case number of operations:
O(logn)

16/ \18
/N 1/ \

ﬁ " WARA

Algorithm Sink(A, 7, m)

Input : Array A with heap structure for the children of ¢. Last element m.

Output : Array A with heap structure for ¢ with last element m.
while 2 < m do

j < 2i; // j left child
if j <m and A[j] < A[j + 1] then
| jj+1;// jright child with greater key
if Afi] < A[j] then
swap(Ali], A[j])
i < j; // keep sinking
else
| i ¢ m; // sinking finished

Sort heap

All,...,n] is a Heap.

While n > 1
m swap(A[l], A[n])
m Sink(A,1,n —1);
Bn<n—1

7 6 4 5 1 2

Sort heap

All,...,n] is a Heap.

While n > 1
m swap(A[l], A[n])
m Sink(A,1,n —1);
Bn<n—1

swap =

N N

[e2B e}

BRI

a1 O

—_— ek

\V)

227

Sort heap

All,...,n] is a Heap.

While n > 1
m swap(A[l], A[n])
m Sink(A,1,n —1);
Bn<n—1

swap
sink

U

NN

a o O

N

N O O

B e Y

<~ IS

207

Sort heap

All,...,n] is a Heap.

While n > 1
m swap(A[l], A[n])
m Sink(A4,1,n —1);
En<n—1

swap
sink
swap

=
=
=

- O N N

o o1 O O

~ A b B

Sort heap

All,...,n] is a Heap.

While n > 1
m swap(A[l], A[n])
m Sink(A,1,n — 1);
BEn+<n—1

swap
sink
swap
sink
swap
sink
swap
sink
swap

A 2 2 A

NN DR =201 =2 N

Heap creation

Observation: Every leaf of a heap is trivially a correct heap.

Consequence:

Heap creation

Observation: Every leaf of a heap is trivially a correct heap.

Consequence: Induction from below!

Algorithm HeapSort(A, n)

Input : Array A with length n.
Output : A sorted.
// Build the heap.
for i < n/2 downto 1 do
. Sink(A, 14, n);
// Now A is a heap.
for i < n downto 2 do
swap(A[1], A[z])
Sink(A4,1,i — 1)

// Now A is sorted.

Analysis: sorting a heap

Sink traverses at most log n nodes. For each node 2 key
comparisons. = sorting a heap costs in the worst case 2logn
comparisons.

Number of memory movements of sorting a heap also O(nlogn).

Analysis: creating a heap

Calls to sink: n/2. Thus number of comparisons and movements:
v(n) € O(nlogn).

Analysis: creating a heap

Calls to sink: n/2. Thus number of comparisons and movements:
v(n) € O(nlogn).

But mean length of sinking paths is much smaller:

|logn| n |logn| h
o)=Y [ﬁ] cheOm Y)
h=0 h=0

with s(z) == >0 kot = (L (0<z<1)®ands(3) =2

v(n) € O(n).

8.2 Mergesort

[Ottman/Widmayer, Kap. 2.4, Cormen et al, Kap. 2.3],

Intermediate result

Heapsort: O(nlogn) Comparisons and movements.

@ Disadvantages of heapsort?

Intermediate result

Heapsort: O(nlogn) Comparisons and movements.

@ Disadvantages of heapsort?

©) Missing locality: heapsort jumps around in the sorted array
(negative cache effect).

Intermediate result

Heapsort: O(nlogn) Comparisons and movements.

@ Disadvantages of heapsort?

©) Missing locality: heapsort jumps around in the sorted array
(negative cache effect).

® Two comparisons required before each necessary memory
movement.

Mergesort

Divide and Conquer!

m Assumption: two halves of the array A are already sorted.
m Minimum of A can be evaluated with two comparisons.
m lteratively: sort the pre-sorted array A in O(n).

235

Merge

16

2

3

10

11

12

235

Merge

16

2

3

10

11

12

Merge

16

2

3

10

11

12

Merge

16

2

3

10

11

12

Merge

16

2

3

10

11

12

Merge

16

2

3

10

11

12

Merge

11

12

Merge

i 4 7 9 16 2 3 10 11 12
i 2 3 4 7 9 10 11

Merge

i 4 7 9 16 2 3 10 11 12
i 2 3 4 7 9 10 11 12

Merge

16

7

2

<

3

10

10

11

11

12

12

16

[e)} (S B w N -

~

Algorithm Merge(A, [, m, r)

Input : Array A with length n, indexes 1 <[l <m <r <n. A[l,...

Alm+1,...,r] sorted
Output : All,...,r] sorted
B <+ new Array(r — [+ 1)
1L+ m+1 k1
while : < m and j < r do
if Ali] < A[j] then Blk] < Afi]; i+ i+1
else Blk] <+ Alj]; j+<j+1
k<« k+1;

while i <m do Blk] < Afi]; i ¢ i+1; k« k+1

s while j <rdo B[k]« A[j]; j« j+1; k+ k+1

for k < [to r do A[k] < B[k — [+ 1]

,ml,

236

Correctness
Hypothesis: after k iterations of the loop in line 3 BJ[1,... k] is
sorted and Blk] < Ali], if i < m and Blk] < A[j]if j <r.

Proof by induction:
Base case: the empty array B[1,...,0] is trivially sorted.
Induction step (k — k + 1):

m wlog Afi] < A[j],i <m,j <r.

m Bl[l,..., k] is sorted by hypothesis and B[k] < A[i].

m After B[k + 1] < A[i] B[1,...,k+ 1] is sorted.

m Bk+1]=A[] < Ali+1] (ifi+1 <m)and Blk + 1] < A[j]ifj <.

m k< k+ 1,7+ i+ 1: Statement holds again.

Analysis (Merge)

If: array A with lengthn, indexes 1 <[l <r <n.m=[(l+r)/2]
and All,...,m|, Ajm +1,...,r| sorted.

Then: in the call of Merge(A,l, m,r) a number of ©(r — 1) key
movements and comparisons are executed.

Proof: straightforward(Inspect the algorithm and count the
operations.)

Mergesort

5 2 6 1 8 4 3 9

Mergesort

5 2 6 1 8 4 3 9
Split

Mergesort

5 2 6 1 8 4 3 9

5 2 6 1][8 4 3 9 Spit

Mergesort

5 2 6 1 8 4 3 9

5 2 6 1][8 4 3 9 Spit

Split

Mergesort

5 2 6 1 8 4 3 9
Split

526 1] 8 4 3 9]

Split

5 2|6 18 4|3 9]

Mergesort

5 2 6 1 8 4 3 9
Split

526 1] 8 4 3 9]

5 2|6 18 4|3 9] Sl

Split

Mergesort

5 2 6 1 8 4 3 9

526 1] 8 4 3 9]

5 2|6 18 4|3 9]

BRI Y EVEY

Split
Split
Split

Mergesort

5 2 6 1 8 4 3 9

526 1] 8 4 3 9]

5 2|6 18 4|3 9]

BRI Y EVEY

Split
Split
Split
Merge

Mergesort

5 2 6 1 8 4 3 9

5 2 6 1]|8 4 3 9]

5 2]s 1H8 43 9

ST

]4 8|3 9]

Split
Split
Split
Merge

Mergesort

5 2 6 1 8 4 3 9

5 2 6 1]|8 4 3 9]

5 2]s 1H8 43 9

ST

]4 8|3 9]

Split
Split
Split
Merge
Merge

Mergesort

5 2 6 1 8 4 3 9

5 2 6 1]|8 4 3 9]

5 2]s 1H8 43 9

ST

]4 8| 3 9\

]1256\]3489\

Split
Split
Split
Merge
Merge

Mergesort

5 2 6 1 8 4 3 9

5 2 6 1]|8 4 3 9]

5 2]s 1H8 43 9

ST

]4 8| 3 9\

]1256\]3489\

Split
Split
Split
Merge
Merge
Merge

Mergesort

B R B R R R R

5 2 6 1]|8 4 3 9]

5 2]s 1H8 43 9

s
]1 2 5 62><8\<3 9

=
1 2 3 4 5 6

I

0 «—
© 1 ©

Split
Split
Split
Merge
Merge
Merge

Algorithm recursive 2-way Mergesort(A, [,)

Input : Array A with lengthn. 1 <1 <r<n

Output : Array All, ..., r] sorted.

if [<r then
m <+ |(I+71)/2] // middle position
Mergesort(A, [, m) // sort lower half
Mergesort(A,m + 1,r) // sort higher half

Merge(A, L, m,r) // Merge subsequences

Analysis

Recursion equation for the number of comparisons and key
movements:

n

cm) = C(|5])+C(|5)) +6m

Analysis

Recursion equation for the number of comparisons and key
movements:

C(n) = O([gb ol [SJ) +0(n) € O(nlogn)

Algorithm StraightMergesort(A)

Avoid recursion: merge sequences of length 1, 2,4, ... directly

Input : Array A with length n
Output : Array A sorted
length < 1
while length < n do // Iterate over lengths n
r <0
while r + length < n do // Iterate over subsequences
l—r+1
m < |+ length — 1
r < min(m + length,n)
Merge(A, [, m,)

 length < length - 2

Analysis

Like the recursive variant, the straight 2-way mergesort always
executes a number of ©(n logn) key comparisons and key
movements.

Natural 2-way mergesort

Observation: the variants above do not make use of any presorting
and always execute O(n log n) memory movements.

@ How can partially presorted arrays be sorted better?

Natural 2-way mergesort

Observation: the variants above do not make use of any presorting
and always execute O(n log n) memory movements.

@ How can partially presorted arrays be sorted better?

@ Recursive merging of previously sorted parts (runs) of A.

Natural 2-way mergesort

5 6 2 4 8 3 9 7 1

Natural 2-way mergesort

5 6]z 4 s]f8 o] 7]]

Natural 2-way mergesort

54l

B EEEE 3 7 98

Natural 2-way mergesort

5 6]z 4 s3] 7]H]

2 4 5 6 8|3 7 9]1]

Natural 2-way mergesort

5 6]z 4 s3] 7]H]

21456 8|3 7 o]1]

PRyl

A 0 B R R R R BB

Natural 2-way mergesort

2 4 5 6 8|3 7 9]1]

oY

(234567 8 9]1]

Natural 2-way mergesort

5 6]z 4 s3] 7]H]

/\

’

"R R R R R R R R

Algorithm NaturalMergesort(A)

Input : Array A with length n > 0
Output : Array A sorted
repeat
r<0
while » < n do
[+—r+1
m < [; while m < n and Ajm + 1] > A[m] do m <~ m +1
if m <n then
r < m+1; while r <n and A[r +1] > A[rjdo r < r+1
Merge(A, I, m, r);

else
réi-n

until [=1

Analysis
In the best case, natural merge sort requires only n — 1
comparisons.

@ Is it also asymptotically better than StraightMergesort on
average?

Analysis

In the best case, natural merge sort requires only n — 1
comparisons.

@ Is it also asymptotically better than StraightMergesort on
average?

ONo. Given the assumption of pairwise distinct keys, on average there are n /2
positions i with k; > k;4, i.e. n/2 runs. Only one iteration is saved on average.

Natural mergesort executes in the worst case and on average a
number of ©(n logn) comparisons and memory movements.

8.3 Quicksort

[Ottman/Widmayer, Kap. 2.2, Cormen et al, Kap. 7]

Quicksort

@ What is the disadvantage of Mergesort?

Quicksort

@ What is the disadvantage of Mergesort?
©) Requires ©(n) storage for merging.

Quicksort

@ What is the disadvantage of Mergesort?
©) Requires ©(n) storage for merging.

@ How could we reduce the merge costs?

Quicksort

@ What is the disadvantage of Mergesort?
©) Requires ©(n) storage for merging.

@ How could we reduce the merge costs?

® Make sure that the left part contains only smaller elements than
the right part.

@ How?

Quicksort

@ What is the disadvantage of Mergesort?
©) Requires ©(n) storage for merging.

@ How could we reduce the merge costs?

® Make sure that the left part contains only smaller elements than
the right part.

@ How?

@ Pivot and Partition!

Quicksort (arbitrary pivot)

R R R R R R R

Quicksort (arbitrary pivot)

2 45 6 /83|79

Quicksort (arbitrary pivot)

2 45 6 /83|79

B EH & R R R R

Quicksort (arbitrary pivot)

2 45 6 /83|79
2|1 3 6 8[5]7 9 4

Quicksort (arbitrary pivot)

2 45 6 /83|79
2|1 3 6 8[5]7 9 4

1 2 3 4 5 8 7 9 6

Quicksort (arbitrary pivot)

2 45 6 /83|79
2|1 3 6 8[5]7 9 4
1 2 3 45 8|79 6

Quicksort (arbitrary pivot)

2 456 8[3]7 9
(2] 3 e @57 s
12 3[4 5 8/[7]|l9

1 2 3 4 5 6 7 9

'y

N

»

Quicksort (arbitrary pivot)

2 45 6 /83|79
2|1 3 6 8[5]7 9 4
1 2 3 45 8|79 6

1 2 3 45 6 7 98]

Quicksort (arbitrary pivot)

2 45 6 /83|79
(2]

1

1

2

2

w

6

4

8(5/7 9 4
5 8 7|9 6

Quicksort (arbitrary pivot)

2 45 6 /83|79
(2] 8(5/7 9 4
1 2 3 45 8|79 6

1 2 3 45 6 7 98]

w
(e2]

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

Algorithm Quicksort(A|/, . .., 7]

Input : Array A with lengthn. 1 <[<r <n.
Output : Array A, sorted between [and r.
if [<r then

Choose pivot p € AL, ...,]
k < Partition(A[l, ..., 7], p)
Quicksort(A[l, ...,k —1])
Quicksort(A[k + 1,...,7])

Reminder: algorithm Partition(A[/, . .., 7|, p)

Input : Array A, that contains the pivot p in [[,7] at least once.

Output : Array A partitioned around p. Returns the position of p.

while [< r do

while A[l] < p do
i+l +1

while A[r] > p do
Cor+r—1

swap(A[l], A[r])

if A[l] = A[r| then // Only for keys that are not pairwise different
ol 1l+1

return |-1

Analysis: number comparisons

Best case.

Analysis: number comparisons

Best case. Pivot = median; number comparisons:

T(n)=2Tn/2)+c-n, T(1)=0 = T(n) € O(nlogn)

Worst case.

Analysis: number comparisons

Best case. Pivot = median; number comparisons:

T(n)=2Tn/2)+c-n, T(1)=0 = T(n) € O(nlogn)

Worst case. Pivot = min or max; number comparisons:

Tn)=T(n—-1)+c-n, T(1)=0 = T(n) € 6(n?

Analysis: number swaps

Result of a call to partition (pivot 3):

2 1 3 6 8 5 7 9 4

@ How many swaps have taken place?

Analysis: number swaps

Result of a call to partition (pivot 3):
2 1 3 6 8 5 7 9 4

@ How many swaps have taken place?

® 2. The maximum number of swaps is given by the number of keys
in the smaller part.

Analysis: number swaps

Intellectual game

Analysis: number swaps

Intellectual game

m Each key from the smaller part pay a coin when swapped.

Analysis: number swaps

Intellectual game

m Each key from the smaller part pay a coin when swapped.

m When a key has paid a coin then the domain containing the key is
less than or equal to half the previous size.

Analysis: number swaps

Intellectual game

m Each key from the smaller part pay a coin when swapped.

m When a key has paid a coin then the domain containing the key is
less than or equal to half the previous size.

m Every key needs to pay at most logn coins. But there are only n
keys.

Analysis: number swaps

Intellectual game

m Each key from the smaller part pay a coin when swapped.

m When a key has paid a coin then the domain containing the key is
less than or equal to half the previous size.

m Every key needs to pay at most logn coins. But there are only n
keys.

Consequence: there are O(nlogn) key swaps in the worst case.

Randomized Quicksort

Despite the worst case running time of ©(n?), quicksort is used
practically very often.

Reason: quadratic running time unlikely provided that the choice of
the pivot and the pre-sorting are not very disadvantageous.

Avoidance: randomly choose pivot. Draw uniformly from [Z, r].

Analysis (randomized quicksort)

Expected number of compared keys with input length n:

T(n)=(n—1)+— Z (k=1 +T(n—k), T(0)=T(1)=0

Claim T'(n) < 4nlogn.

Proof by induction:

Base case straightforward for n = 0 (with 0log 0 := 0) and for n = 1.
Hypothesis: T'(n) < 4nlogn for some n.

Induction step: (n — 1 — n)

Analysis (randomized quicksort)

2
T(n):n—1+—ZT(/€) n—1+ Z4k10g/€
" =0 =t
n/2 n—1
=n—1+) 4k logk 4k log k
D 4k logk + > dklogh
k=1 <logn—1 Fk=n/2+1 <jogn

=4nlogn —4logn — 3 < 4nlogn

Analysis (randomized quicksort)

On average randomized quicksort requires O(n -logn) comparisons.

Practical considerations

Worst case recursion depth n — 1°. Then also a memory
consumption of O(n).

Can be avoided: recursion only on the smaller part. Then
guaranteed O(logn) worst case recursion depth and memory
consumption.

Quicksort with logarithmic memory consumption

Input : Array A with length n. 1 <1 <r <n.
Output : Array A, sorted between [and 7.
while [< r do
Choose pivot p € A[l,...,r]
k < Partition(A[l, ..., r],p)
if k—1<r—kthen
Quicksort(A[l, ...,k —1])

[+—Fk+1
else
Quicksort(Alk +1,...,7])
r<k—1
The call of Quicksort(A[l, . . ., r]) in the original algorithm has moved to iteration (tail recursion!): the if-statement became a

while-statement.

Practical considerations.

Practically the pivot is often the median of three elements. For
example: Median3(A[l], A[r], A[|l + r/2]]).

There is a variant of quicksort that requires only constant storage.
Idea: store the old pivot at the position of the new pivot.

	Sorting I
	Simple Sorting

	Sorting II
	Heapsort
	Mergesort
	Quicksort

