4. Searching

Linear Search, Binary Search, Interpolation Search, Lower Bounds
[Ottman/Widmayer, Kap. 3.2, Cormen et al, Kap. 2: Problems
2.1-3,2.2-3,2.3-5]

122

The Selection Problem

Provided
m Set of data sets with comparable keys k.

Wanted: data set with smallest, largest, middle key value. Generally:
find a data set with i-smallest key.

124

The Search Problem

Provided

m A set of data sets

examples
telephone book, dictionary, symbol table

m Each dataset has a key k.

m Keys are comparable: unique answer to the question k; < k, for
keys /ﬁ,]€2.

Task: find data set by key k.

123

Search in Array

Provided

m Array A with n elements (A[1],..., A[n]).
m Key b

Wanted: index k, 1 < k < n with A[k] = b or "not found”.

22 |20 | 32 | 10 | 35 | 24 | 42 | 38 | 28 | 41

125

Linear Search

Traverse the array from A[1] to A[n].

m Best case: 1 comparison.
m Worst case: n comparisons.

m Assumption: each permutation of the n keys with same
probability. Expected number of comparisons:

I . n+
ﬁ;lzz'

126

Divide and Conquer!

Search b = 23.

10|20 |22 | 24 | 28 |32 (35|38 |41 |42 | b<28
1 2 3 4 5 6 7 8 9 10

10| 20 |22 | 24 | 28 | 32 | 35 | 38 | 41 | 42 b>20
1 2 3 4 5 6 7 8 9 10

10 | 20 | 22| 24 | 28 | 32 | 35 | 38 | 41 | 42 b >22
1 2 3 4 5 6 7 8 9 10

10 |20 |22 | 24 | 28 | 32 | 35 |38 | 41 | 42 | b< 24
1 2 3 4 5 6 7 8 9 10

10120 | 22 | 24| 28 | 32 | 35| 38 41 42 erfolglos

3

128

Search in a Sorted Array

Provided

m Sorted array A with n elements (A[1], ..
Al < A2l < --- < An).
m Key b

Wanted: index k, 1 < k < n with A[k] = b or "not found”.

., Aln]) with

10 | 20 | 22 | 24 | 28 | 32 | 35 | 38 | 41 | 42

127

Binary Search Algorithm BSearch(A[l..r|, b)

Input : Sorted array A of n keys. Key b. Bounds 1 <[<r <mn orl > r beliebig.
Output : Index of the found element. 0, if not found.
m e [(L+7)/2]
if [> r then // Unsuccessful search
- return NotFound
else if b = A[m] then// found
. return m
else if b < A[m] then// element to the left
- return BSearch(A[l..m — 1],b)
else // b > A[m]: element to the right
. return BSearch(A[m + 1..7],b)

129

Analysis (worst case)

Recurrence (n = 2F)

d falls n =1,
T(n) =
T(n/2)+c fallsn > 1.
Compute:
T(n) :T<g> +c:T(%) + 2c
=7 (5) +ic
:T<E> +c-logen =d+c-logyn
n
= Assumption: T'(n) = d + clogyn

130

Result

The binary sorted search algorithm requires ©(log n) fundamental
operations.

132

Analysis (worst case)

T(n){d ifn =1,

T(n/2)+c ifn>1.
Guess : T'(n) =d +c-logyn
Proof by induction:

m Base clause: 7'(1) = d.
m Hypothesis: T'(n/2) = d + ¢ - logyn/2
m Step: (n/2 — n)

Tn)=Tn/2)+c=d+c-(loggn—1)+c=d+ clogyn.

lterative Binary Search Algorithm

Input : Sorted array A of n keys. Key b.
Output : Index of the found element. 0, if unsuccessful.
<1, r+<n
while [< r do
m <+ [({+71)/2]
if Alm| =10 then
. returnm
else if A[m| < b then
Clem+1
else
Crem—1

r(;turn NotFound:

133

Correctness

Algorithm terminates only if A is empty or b is found.
Invariant: If bis in A then b is in domain A[l..r]
Proof by induction

m Base clause b € A[l1..n] (oder nicht)
m Hypothesis: invariant holds after ¢ steps.

m Step:
b<Alm]=0b¢e All.m —1]
b>Am]=0be Alm+ 1..r|

Interpolation search
Expected relative position of b in the search interval [I,]|
€ [0,1].

New 'middle’: [+ p - (r — 1)
Expected number of comparisons O(loglogn) (without proof).

@ Would you always prefer interpolation search?

O No: worst case number of comparisons 2(n).

134

Can this be improved?

Assumption: values of the array are uniformly distributed.

Search for "Becker” at the very beginning of a telephone book while
search for "Wawrinka" rather close to the end.

Binary search always starts in the middle.

Binary search always takes m = |l + %51].

Lower Bounds

Binary Search (worst case): ©(logn) comparisons.

Does for any search algorithm in a sorted array (worst case) hold
that number comparisons = Q(log n)?

m For any input b = AJi] the
algorithm must succeed =-

Decision tree
decision tree comprises at

3
b < A3] YA[B]
least n nodes.
1 5
. Number comparisons in
b> All] b < A5 b> A[5] worst case = height of the
tree = maximum number
nodes from root to leaf.
2 4 6

138

Lower bound for Search in Unsorted Array

Any search algorithm with unsorted data of length n requires in the
worst case)(n) comparisons.

140

Decision Tree

Binary tree with height 4 has at most
20 4 21 ... 42k 1 =2k _ 1 <« 2" nodes.

2" > n = h>log,n

Decision tree with n node has at least height log, n.
Number decisions = (2(log n).

Any search algorithm on sorted data with length n requires in the
worst case (log n) comparisons.

139

Attempt

@ Correct?
"Proof”: to find b in A, b must be compared with each of the n
elements A[i] (1 <i <n).

Wrong argument! It is still possible to compare elements within A.

141

Better Argument

m Different comparisons: Number comparisons with b: e Number
comparisons without b: ¢

m Comparisons induce g groups. Initially g = n.

m To connect two groups at least one comparison is needed:
n—g<aui.

m At least one element per group must be compared with b.

m Number comparisons i +e >n — g+ g = n. |
Min and Max
@1 separately find minimum an maximum in (A[1],..., A[n]), 2n

comparisons are required. (How) can an algorithm with less than 2n
comparisons for both values at a time can be found?

@ Possible with %n comparisons: compare 2 elemetns each and
then the smaller one with min and the greater one with max.

144

5. Selection

The Selection Problem, Randomised Selection, Linear Worst-Case
Selection [Ottman/Widmayer, Kap. 3.1, Cormen et al, Kap. 9]

143

The Problem of Selection

Input

m unsorted array A = (A, ...
m Number 1l < k <n.

Output Afz] with [{j : A[j] < A[{]}| =k —1

, A,,) with pairwise different values

Special cases

k = 1: Minimum: Algorithm with n comparison operations trivial.
k = n: Maximum: Algorithm with n comparison operations trivial.
k = |n/2]: Median.

145

Approaches Use a pivot

Choose a pivot p
m Repeatedly find and remove the minimum O(k - n). Partition A in two parts, thereby determining the rank of p.
Median: O(n?) Recursion on the relevant part. If £ = r then found.
m Sorting (covered soon): O(nlogn)

m Use a pivot O(n) ! <l <|<|<|<|pP|>|>|>|>
r n

Algorithmus Partition(A[l..7], p) Correctness: Invariant

Input : Array A, that contains the pivot p in the interval [I, 7] at least once. Invariant I: A; < pVi € [0,1), 4; > pVi € (r,n], 3k € [I,7] : A, = p.

Output : Array A partitioned in [l..r] around p. Returns position of p. while I < r do

while | <r do : I
= while A[l] < p do
“\’hllfﬂﬂflp o el I und Al] >
- while A[r] > p do und All} > p
u‘/hlleﬁ[r]>1pdo Corer—1 und Al <
o r— und Alr| <p
swap(A[l], Alr)) _swap(A[l], Alr]) Tund A[l] < p < Alr]
if A[l] = A[r] then
if A[l] = A[T‘] then Iy |
L I+ 1+1 L — I
y return |-1

return |-1

148

Correctness: progress

while [<7 do

while A[l] < p do
Ll +1

while A[r] > p do
| r+7r—1
swap(A[l], A[r])

if A[l] = A[r] then
Ll +1

progress if A[l] < p
progress if A[r] > p

progress if A[l] > p oder Alr| < p
progress if A[l] = A[r] =p

return -1

Analysis

Partitioning with factor ¢ (0 < ¢ < 1): two groups with ¢ - n and
(1 — q) - n elements (without loss of generality g > 1 — g).

Tn)<T(g-n)+c-n

log, (n)—1
=cnt+q-cn+T(@F -n)=..=c-n Z q'+T(1)
i=0
<c-n iqi +d:c-n-L+d:O(n)
- i=0 1—gq
——
geom. Reihe

Choice of the pivot.

The minimum is a bad pivot: worst case O(n?)

D1 P2 | P3| Pa | P5

A good pivot has a linear number of elements on both sides.

How can we achieve this?

Randomness to our rescue (Tony Hoare, 1961). In each step
choose a random pivot.

N

=
=

&

) schlecht

(§

schlecht .

(W) N
L) L)

gute Pivots

Probability for a good pivot in one trial: =: p.
Probability for a good pivot after k trials: (1 — p)*~! - p.
Expected value of the geometric distribution: 1/p = 2

[Expected value of the Geometric Distribution]

Random variable X € N* with P(X = k) = (1 —p)*~! - p.
Expected value

k=1 k=1
=> kg —kd" =D (k+1)-¢" — k-
k=1 k=0
> 1 1
— —q p

Algorithm RandomPivot (A[l..7])

Input : Array A with length n. Indices 1 <[<i<r<n
Output : Random “good” pivot = € Al..r]
repeat
choose a random pivot x € A[l..r]
P
for j=1tordo
i A[j] <z thenp <+ p+1

o 13l ,
antil 22| < p < [te]

return

This algorithm is only of theoretical interest and delivers a good pivot in 2 expected
iterations. Practically, in algorithm QuickSelect a uniformly chosen random pivot
can be chosen or a deterministic one such as the median of three elements.

Algorithm Quickselect (A[l..r], k)

Input : Array A with length n. Indices 1 <[< k < r < mn, such that for all
v e Allr) : [[IAL) < o} > 1 and [{j]A[j) < o}] < 7.
Output : Value z € A[l..r] with |[{j|A[j] < z}| > k and [{jlz < A[j]}| >n—k+1
if |I=r then
. return A[l];

x < RandomPivot(A[l..r])
m < Partition(A[l..r], x)
if &k <m then

- return QuickSelect(A[l..m — 1], k)
else if £ > m then

. return QuickSelect(A[m + 1..r], k)
else

. return A[k]

Median of medians

Goal: find an algorithm that even in worst case requires only linearly
many steps.

Algorithm Select (k-smallest)

m Consider groups of five elements.

m Compute the median of each group (straighforward)

m Apply Select recursively on the group medians.

m Partition the array around the found median of medians. Result: ¢

m If ; = k then result. Otherwise: select recursively on the proper
side.

Median of medians
COOOOO0 OO0 0O0OsSaI OO0 ooo e

groups of five
medians

recursion for pivot
base case

A pivot (level 1)
partition (level 1)

@ median = pivot level 0

B 2. recursion starts

Analysis

Recursion inequality:

T(n)gquD +T(ﬁ—g+6D +d-n.

with some constant d.
Claim:

160

How good is this?

1N O R
J SRR 200 o
A 1 O
N Y
N O O

Number points left / right of the median of medians (without median
group and the rest group) > 3 - ([3[2]] —2) > 32 -6

Second call with maximally [T + 6] elements.

159

Proof

Base clause: choose c large enough such that

T(n) < c-nfirallen < ng.

Induction hypothesis:

T(i) < c-ifurallei < n.

Induction step:

161

Proof Result

Induction step:

T(n)<c- (%W +c- ﬁ—g+61 +d-n

n m 9
scegtete g tbctetd-m= 10 c-n+8ctd-n. The k-the element of a sequence of n elements can be found in at

Choose ¢ > 80 - d and ng = 91. most O(n) steps.

72 1 73
T(n)Sﬁ-c-n+8c+%-c-n:c- (%n+8> <c-n.
_,—/

<n flirn > ng

162

Overview

1. Repeatedly find minimum O(n?)

2. Sorting and choosing A[i] O(nlogn)

3. Quickselect with random pivot O(n) expected
4. Median of Medians (Blum) O(n) worst case

=
N
NI

& N N \
Y Y

" schlecht gute Pivots "7 schlecht

164

