
29. Parallel Programming III

Deadlock and Starvation Producer-Consumer, The concept of the
monitor, Condition Variables [Deadlocks : Williams, Kap. 3.2.4-3.2.5]
[Condition Variables: Williams, Kap. 4.1]
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Deadlock Motivation
class BankAccount {

int balance = 0;
std::recursive_mutex m;
using guard = std::lock_guard<std::recursive_mutex>;

public:
...
void withdraw(int amount) { guard g(m); ... }
void deposit(int amount){ guard g(m); ... }

void transfer(int amount, BankAccount& to){
guard g(m);
withdraw(amount);
to.deposit(amount);

}
};

Problem?
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Deadlock Motivation
Suppose BankAccount instances x and y

Thread 1: x.transfer(1,y);

acquire lock for x

withdraw from x

acquire lock for y

Thread 2: y.transfer(1,x);

acquire lock for y

withdraw from y

acquire lock for x
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Deadlock

Deadlock: two or more processes are
mutually blocked because each process
waits for another of these processes to
proceed.
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Threads and Resources

Grafically t and Resources (Locks) r

Thread t attempts to acquire resource a: t a

Resource b is held by thread q: s b
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Deadlock – Detection
A deadlock for threads t1, . . . , tn occurs when the graph describing
the relation of the n threads and resources r1, . . . , rm contains a
cycle.

t1

r1t2

r2

t3 r3

t4

r4
held by

wants
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Techniques

Deadlock detection detects cycles in the dependency graph.
Deadlocks can in general not be healed: releasing locks generally
leads to inconsistent state
Deadlock avoidance amounts to techniques to ensure a cycle can
never arise

Coarser granularity “one lock for all”
Two-phase locking with retry mechanism
Lock Hierarchies
...
Resource Ordering
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Back to the Example
class BankAccount {

int id; // account number, also used for locking order
std::recursive_mutex m; ...

public:
...
void transfer(int amount, BankAccount& to){

if (id < to.id){
guard g(m); guard h(to.m);
withdraw(amount); to.deposit(amount);

} else {
guard g(to.m); guard h(m);
withdraw(amount); to.deposit(amount);

}
}

};
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C++11 Style
class BankAccount {

...
std::recursive_mutex m;
using guard = std::lock_guard<std::recursive_mutex>;

public:
...
void transfer(int amount, BankAccount& to){

std::lock(m,to.m); // lock order done by C++
// tell the guards that the lock is already taken:
guard g(m,std::adopt_lock); guard h(to.m,std::adopt_lock);
withdraw(amount);
to.deposit(amount);

}
};
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By the way...
class BankAccount {

int balance = 0;
std::recursive_mutex m;
using guard = std::lock_guard<std::recursive_mutex>;

public:
...
void withdraw(int amount) { guard g(m); ... }
void deposit(int amount){ guard g(m); ... }

void transfer(int amount, BankAccount& to){
withdraw(amount);
to.deposit(amount);

}
};

This would have worked here also.
But then for a very short amount of
time, money disappears, which does
not seem acceptable (transient incon-
sistency!) 907

Starvation und Livelock

Starvation: the repeated but unsuccess-
ful attempt to acquire a resource that was
recently (transiently) free.

Livelock: competing processes are able
to detect a potential deadlock but make
no progress while trying to resolve it.
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Politelock
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Producer-Consumer Problem

Two (or more) processes, producers and consumers of data should
become decoupled by some data structure.

Fundamental Data structure for building pipelines in software.

t1 t2
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Sequential implementation (unbounded buffer)
class BufferS {

std::queue<int> buf;
public:

void put(int x){
buf.push(x);

}

int get(){
while (buf.empty()){} // wait until data arrive
int x = buf.front();
buf.pop();
return x;

}
};

not thread-safe
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How about this?
class Buffer {

std::recursive_mutex m;
using guard = std::lock_guard<std::recursive_mutex>;
std::queue<int> buf;

public:
void put(int x){ guard g(m);

buf.push(x);
}
int get(){ guard g(m);

while (buf.empty()){}
int x = buf.front();
buf.pop();
return x;

}
};

Deadlock
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Well, then this?
void put(int x){

guard g(m);
buf.push(x);

}
int get(){

m.lock();
while (buf.empty()){

m.unlock();
m.lock();

}
int x = buf.front();
buf.pop();
m.unlock();
return x;

}

Ok this works, but it wastes CPU
time.
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Better?
void put(int x){

guard g(m);
buf.push(x);

}
int get(){

m.lock();
while (buf.empty()){

m.unlock();
std::this_thread::sleep_for(std::chrono::milliseconds(10));
m.lock();

}
int x = buf.front(); buf.pop();
m.unlock();
return x;

}

Ok a little bit better, limits reactiv-
ity though.
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Moral

We do not want to implement waiting on a condition ourselves.

There already is a mechanism for this: condition variables.

The underlying concept is called Monitor.
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Monitor

Monitor abstract data structure equipped
with a set of operations that run in mutual
exclusion and that can be synchronized.

Invented by C.A.R. Hoare and Per Brinch
Hansen (cf. Monitors – An Operating Sys-
tem Structuring Concept, C.A.R. Hoare
1974)

C.A.R. Hoare,
*1934

Per Brinch Hansen
(1938-2007)
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Monitors vs. Locks
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Monitor and Conditions

Monitors provide, in addition to mutual exclusion, the following
mechanism:

Waiting on conditions: If a condition does not hold, then

Release the monitor lock
Wait for the condition to become true
Check the condition when a signal is raised

Signalling: Thread that might make the condition true:

Send signal to potentially waiting threads
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Condition Variables
#include <mutex>
#include <condition_variable>
...

class Buffer {
std::queue<int> buf;

std::mutex m;
// need unique_lock guard for conditions
using guard = std::unique_lock<std::mutex>;
std::condition_variable cond;

public:
...

};
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Condition Variables
class Buffer {
...
public:

void put(int x){
guard g(m);
buf.push(x);
cond.notify_one();

}
int get(){

guard g(m);
cond.wait(g, [&]{return !buf.empty();});
int x = buf.front(); buf.pop();
return x;

}
};
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Technical Details

A thread that waits using cond.wait runs at most for a short time
on a core. After that it does not utilize compute power and
“sleeps”.
The notify (or signal-) mechanism wakes up sleeping threads that
subsequently check their conditions.

cond.notify_one signals one waiting thread
cond.notify_all signals all waiting threads. Required when waiting
thrads wait potentially on different conditions.
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Technical Details

Many other programming langauges
offer the same kind of mechanism.
The checking of conditions (in a loop!)
has to be usually implemented by the
programmer.

Java Example
synchronized long get() {

long x;
while (isEmpty())

try {
wait ();
} catch (InterruptedException e) { }

x = doGet();
return x;

}

synchronized put(long x){
doPut(x);
notify ();

}
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By the way, using a bounded buffer..
class Buffer {

...
CircularBuffer<int,128> buf; // from lecture 6

public:
void put(int x){ guard g(m);

cond.wait(g, [&]{return !buf.full();});
buf.put(x);
cond.notify_all();

}
int get(){ guard g(m);

cond.wait(g, [&]{return !buf.empty();});
cond.notify_all();
return buf.get();

}
};
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