29. Parallel Programming lil

Deadlock and Starvation Producer-Consumer, The concept of the
monitor, Condition Variables [Deadlocks : Williams, Kap. 3.2.4-3.2.5]
[Condition Variables: Williams, Kap. 4.1]

Deadlock Motivation

Suppose BankAccount instances x and y

Thread 1: x.transfer(l,y);
acquire lock for x «— g <-.
withdraw from x

acquire lock for y |

.

withdraw from y

"*-- acquire lock for x

~~
S
~
.....
- -

’
.
L4
*

Thread 2: y.transfer(1,x);

acquire lock for y « (g

A
]
!

900

Deadlock Motivation

class BankAccount {
int balance

= 0;

std: :recursive_mutex m;

public:

using guard = std::lock_guard<std::recursive_mutex>;

void withdraw(int amount) { guard g(m);
void deposit(int amount){ guard g(m);

.}
.}
void transfer(int amount, BankAccount& to){
guard g(m) ;
withdraw(amount) ; Problem?
to.deposit (amount) ;
}
};
898
Deadlock
Deadlock: two or more processes are -3
mutually blocked because each process a o)
waits for another of these processes to =
proceed. L

901

899

Threads and Resources

m Grafically ¢ and Resources (Locks) "
m Thread ¢ attempts to acquire resource a: ¢ g
S «—— 1}

m Resource b is held by thread ¢:

902

Techniques

m Deadlock detection detects cycles in the dependency graph.
Deadlocks can in general not be healed: releasing locks generally
leads to inconsistent state

m Deadlock avoidance amounts to techniques to ensure a cycle can
never arise

m Coarser granularity “one lock for all”
m Two-phase locking with retry mechanism
m Lock Hierarchies
]
]

Resource Ordering

904

Deadlock — Detection

A deadlock for threads %1, ..
the relation of the n threads and resources 71, ..

., t, occurs when the graph describing
., Tm contains a

cycle.
t2 wants) 1 ¢ t4
T2 tl
T4 ’ t3 <held by "3
Back to the Example

class BankAccount {
int id; // account number, also used for locking order
std: :recursive_mutex m; ...

public:

void transfer(int amount, BankAccount& to){
if (id < to.id){
guard g(m); guard h(to.m);
withdraw(amount); to.deposit(amount);
} else {
guard g(to.m); guard h(m);
withdraw(amount); to.deposit(amount);

}

905

C++11 Style

class BankAccount {

std::recursive_mutex m;

using guard = std::lock_guard<std::recursive_mutex>;

public:

void transfer(int amount, BankAccount& to){

std::lock(m,to.m); // lock order done by C++
// tell the guards that the lock is already taken:
guard g(m,std::adopt_lock); guard h(to.m,std::adopt_lock);

withdraw(amount) ;
to.deposit(amount) ;

Starvation und Livelock

Starvation: the repeated but unsuccess-
ful attempt to acquire a resource that was
recently (transiently) free.

Livelock: competing processes are able
to detect a potential deadlock but make
no progress while trying to resolve it.

906

908

By the way...

class BankAccount {
int balance = 0;

std: :recursive_mutex m;

using guard = std::lock_guard<std::recursive_mutex>;

public:

void withdraw(int amount) { guard g(m); ... }
void deposit(int amount){ guard g(m); ... }

void transfer(int amount, BankAccount& to){

withdraw(amount) ;
to.deposit (amount) ;
}
};
Politelock

This would have worked here also.
But then for a very short amount of
time, money disappears, which does
not seem acceptable (transient incon-
sistencv!) 907

909

Producer-Consumer Problem

Two (or more) processes, producers and consumers of data should
become decoupled by some data structure.

Fundamental Data structure for building pipelines in software.

ty — — 1o

910

How about this?

class Buffer {
std::recursive_mutex m;
using guard = std::lock_guard<std::recursive_mutex>;
std: :queue<int> buf;
public:
void put(int x){ guard g(m);
buf.push(x);
}

int get(O{ guard g(m); Vbd*
while (buf.empty()){} De?
int x = buf.front();
buf.pop();
return Xx;
}

912

Sequential implementation (unbounded buffer)

class BufferS {
std: :queue<int> buf;
public:
void put(int x){
buf .push(x) ; \(z]
p agkga

} (=
00‘Q0
int getO{

while (buf.empty()){} // wait until data arrive
int x = buf.front();

buf .pop() ;
return x;
}
s
Well, then this?
void put(int x){
guard g(m);
buf.push(x);
}
int getO{

m.lock(Q);

while (buf.empty)t oy yhic works, but it wastes CPU
m.unlock(); .
m.lock(); time.

}

int x = buf.front();

buf.pop();

m.unlock();

return x;

911

913

Better?

void put(int x){
guard g(m);
buf.push(x);

}

int get({
m.lock();
while (buf.empty()){

m.unlock();

ity though.

Ok a little bit better, limits reactiv-

std::this_thread::sleep_for(std::chrono::milliseconds(10));

m.lock();
}
int x = buf.front(); buf.pop();
m.unlock();
return x;

}

Monitor

Monitor abstract data structure equipped
with a set of operations that run in mutual
exclusion and that can be synchronized.

Invented by C.A.R. Hoare and Per Brinch
Hansen (cf. Monitors — An Operating Sys-
tem Structuring Concept, C.A.R. Hoare
1974)

C.A.R. Hoare,
*1934

(1938-2007)

914

916

Moral

We do not want to implement waiting on a condition ourselves.

There already is a mechanism for this: condition variables.

The underlying concept is called Monitor.

Monitors vs. Locks

shared

shared

915

monitor

monitor

917

Monitor and Conditions

Monitors provide, in addition to mutual exclusion, the following
mechanism:

Waiting on conditions: If a condition does not hold, then

m Release the monitor lock
m Wait for the condition to become true
m Check the condition when a signal is raised

Signalling: Thread that might make the condition true:

m Send signal to potentially waiting threads

918

Condition Variables

class Buffer {
public:
void put(int x){
guard g(m) ;

buf.push(x);
cond.notify_one();

}
int getO{
guard g(m);
cond.wait(g, [&]{return !buf.empty();});
int x = buf.front(); buf.pop();
return Xx;
}

920

Condition Variables

#include <mutex>
#include <condition_variable>

class Buffer {
std::queue<int> buf;

std: :mutex m;
// need unique_lock guard for conditions
using guard = std::unique_lock<std::mutex>;
std::condition_variable cond;

public:

};

919

Technical Details

m A thread that waits using cond.wait runs at most for a short time
on a core. After that it does not utilize compute power and
“sleeps”.

m The notify (or signal-) mechanism wakes up sleeping threads that
subsequently check their conditions.

B cond.notify_one signals one waiting thread
B cond.notify_all signals all waiting threads. Required when waiting
thrads wait potentially on different conditions.

921

Technical Details By the way, using a bounded buffer..

class Buffer {
Java Example

synchronized long get() {

CircularBuffer<int,128> buf; // from lecture 6

. long x: public:
m Many other programming langauges Whtir';e ;iSEmptm) void put(int x){ guard g(m);
offer the same kind of mechanism. WO esceone ;°2d'watt)(g’ [&]{return !tbuf.full();});
. . . | . catch.(nterruptedException e u _put X);
The checking of cpndltlons (in a loop!) x = doCiet) cond.notify all();
has to be usually implemented by the ‘ }
programmer. synchronized put(iong x){ int get(O{ guard g(m);
doPut(x); cond.wait(g, [&]{return !'buf.empty();});
| notify () cond.notify_all();
return buf.getQ;
}

922

