
29. Parallel Programming III

Deadlock and Starvation Producer-Consumer, The concept of the
monitor, Condition Variables [Deadlocks : Williams, Kap. 3.2.4-3.2.5]
[Condition Variables: Williams, Kap. 4.1]

898

Deadlock Motivation
class BankAccount {

int balance = 0;
std::recursive_mutex m;
using guard = std::lock_guard<std::recursive_mutex>;

public:
...
void withdraw(int amount) { guard g(m); ... }
void deposit(int amount){ guard g(m); ... }

void transfer(int amount, BankAccount& to){
guard g(m);
withdraw(amount);
to.deposit(amount);

}
};

Problem?

899

Deadlock Motivation
Suppose BankAccount instances x and y

Thread 1: x.transfer(1,y);

acquire lock for x

withdraw from x

acquire lock for y

Thread 2: y.transfer(1,x);

acquire lock for y

withdraw from y

acquire lock for x

900

Deadlock

Deadlock: two or more processes are
mutually blocked because each process
waits for another of these processes to
proceed.

901



Threads and Resources

Grafically t and Resources (Locks) r

Thread t attempts to acquire resource a: t a

Resource b is held by thread q: s b

902

Deadlock – Detection
A deadlock for threads t1, . . . , tn occurs when the graph describing
the relation of the n threads and resources r1, . . . , rm contains a
cycle.

t1

r1t2

r2

t3 r3

t4

r4
held by

wants

903

Techniques

Deadlock detection detects cycles in the dependency graph.
Deadlocks can in general not be healed: releasing locks generally
leads to inconsistent state
Deadlock avoidance amounts to techniques to ensure a cycle can
never arise

Coarser granularity “one lock for all”
Two-phase locking with retry mechanism
Lock Hierarchies
...
Resource Ordering

904

Back to the Example
class BankAccount {

int id; // account number, also used for locking order
std::recursive_mutex m; ...

public:
...
void transfer(int amount, BankAccount& to){

if (id < to.id){
guard g(m); guard h(to.m);
withdraw(amount); to.deposit(amount);

} else {
guard g(to.m); guard h(m);
withdraw(amount); to.deposit(amount);

}
}

};
905



C++11 Style
class BankAccount {

...
std::recursive_mutex m;
using guard = std::lock_guard<std::recursive_mutex>;

public:
...
void transfer(int amount, BankAccount& to){

std::lock(m,to.m); // lock order done by C++
// tell the guards that the lock is already taken:
guard g(m,std::adopt_lock); guard h(to.m,std::adopt_lock);
withdraw(amount);
to.deposit(amount);

}
};

906

By the way...
class BankAccount {

int balance = 0;
std::recursive_mutex m;
using guard = std::lock_guard<std::recursive_mutex>;

public:
...
void withdraw(int amount) { guard g(m); ... }
void deposit(int amount){ guard g(m); ... }

void transfer(int amount, BankAccount& to){
withdraw(amount);
to.deposit(amount);

}
};

This would have worked here also.
But then for a very short amount of
time, money disappears, which does
not seem acceptable (transient incon-
sistency!) 907

Starvation und Livelock

Starvation: the repeated but unsuccess-
ful attempt to acquire a resource that was
recently (transiently) free.

Livelock: competing processes are able
to detect a potential deadlock but make
no progress while trying to resolve it.

908

Politelock

909



Producer-Consumer Problem

Two (or more) processes, producers and consumers of data should
become decoupled by some data structure.

Fundamental Data structure for building pipelines in software.

t1 t2

910

Sequential implementation (unbounded buffer)
class BufferS {

std::queue<int> buf;
public:

void put(int x){
buf.push(x);

}

int get(){
while (buf.empty()){} // wait until data arrive
int x = buf.front();
buf.pop();
return x;

}
};

not thread-safe

911

How about this?
class Buffer {

std::recursive_mutex m;
using guard = std::lock_guard<std::recursive_mutex>;
std::queue<int> buf;

public:
void put(int x){ guard g(m);

buf.push(x);
}
int get(){ guard g(m);

while (buf.empty()){}
int x = buf.front();
buf.pop();
return x;

}
};

Deadlock

912

Well, then this?
void put(int x){

guard g(m);
buf.push(x);

}
int get(){

m.lock();
while (buf.empty()){

m.unlock();
m.lock();

}
int x = buf.front();
buf.pop();
m.unlock();
return x;

}

Ok this works, but it wastes CPU
time.

913



Better?
void put(int x){

guard g(m);
buf.push(x);

}
int get(){

m.lock();
while (buf.empty()){

m.unlock();
std::this_thread::sleep_for(std::chrono::milliseconds(10));
m.lock();

}
int x = buf.front(); buf.pop();
m.unlock();
return x;

}

Ok a little bit better, limits reactiv-
ity though.

914

Moral

We do not want to implement waiting on a condition ourselves.

There already is a mechanism for this: condition variables.

The underlying concept is called Monitor.

915

Monitor

Monitor abstract data structure equipped
with a set of operations that run in mutual
exclusion and that can be synchronized.

Invented by C.A.R. Hoare and Per Brinch
Hansen (cf. Monitors – An Operating Sys-
tem Structuring Concept, C.A.R. Hoare
1974)

C.A.R. Hoare,
*1934

Per Brinch Hansen
(1938-2007)

916

Monitors vs. Locks

917



Monitor and Conditions

Monitors provide, in addition to mutual exclusion, the following
mechanism:

Waiting on conditions: If a condition does not hold, then

Release the monitor lock
Wait for the condition to become true
Check the condition when a signal is raised

Signalling: Thread that might make the condition true:

Send signal to potentially waiting threads

918

Condition Variables
#include <mutex>
#include <condition_variable>
...

class Buffer {
std::queue<int> buf;

std::mutex m;
// need unique_lock guard for conditions
using guard = std::unique_lock<std::mutex>;
std::condition_variable cond;

public:
...

};

919

Condition Variables
class Buffer {
...
public:

void put(int x){
guard g(m);
buf.push(x);
cond.notify_one();

}
int get(){

guard g(m);
cond.wait(g, [&]{return !buf.empty();});
int x = buf.front(); buf.pop();
return x;

}
};

920

Technical Details

A thread that waits using cond.wait runs at most for a short time
on a core. After that it does not utilize compute power and
“sleeps”.
The notify (or signal-) mechanism wakes up sleeping threads that
subsequently check their conditions.

cond.notify_one signals one waiting thread
cond.notify_all signals all waiting threads. Required when waiting
thrads wait potentially on different conditions.

921



Technical Details

Many other programming langauges
offer the same kind of mechanism.
The checking of conditions (in a loop!)
has to be usually implemented by the
programmer.

Java Example
synchronized long get() {

long x;
while (isEmpty())

try {
wait ();
} catch (InterruptedException e) { }

x = doGet();
return x;

}

synchronized put(long x){
doPut(x);
notify ();

}

922

By the way, using a bounded buffer..
class Buffer {

...
CircularBuffer<int,128> buf; // from lecture 6

public:
void put(int x){ guard g(m);

cond.wait(g, [&]{return !buf.full();});
buf.put(x);
cond.notify_all();

}
int get(){ guard g(m);

cond.wait(g, [&]{return !buf.empty();});
cond.notify_all();
return buf.get();

}
};

923


