
28. Parallel Programming II

C++ Threads, Shared Memory, Concurrency, Excursion: lock
algorithm (Peterson), Mutual Exclusion Race Conditions [C++
Threads: Williams, Kap. 2.1-2.2], [C++ Race Conditions: Williams,
Kap. 3.1] [C++ Mutexes: Williams, Kap. 3.2.1, 3.3.3]

832

C++11 Threads
#include <iostream>
#include <thread>

void hello(){
std::cout << "hello\n";

}

int main(){
// create and launch thread t
std::thread t(hello);
// wait for termination of t
t.join();
return 0;

}

create thread

hello

join

833

C++11 Threads
void hello(int id){

std::cout << "hello from " << id << "\n";
}

int main(){
std::vector<std::thread> tv(3);
int id = 0;
for (auto & t:tv)

t = std::thread(hello, ++id);
std::cout << "hello from main \n";
for (auto & t:tv)

t.join();
return 0;

}

create threads

join

834

Nondeterministic Execution!

One execution:
hello from main
hello from 2
hello from 1
hello from 0

Other execution:
hello from 1
hello from main
hello from 0
hello from 2

Other execution:
hello from main
hello from 0
hello from hello from 1
2

835



Technical Detail

To let a thread continue as background thread:
void background();

void someFunction(){
...
std::thread t(background);
t.detach();
...

} // no problem here, thread is detached

836

More Technical Details

With allocating a thread, reference parameters are copied, except
explicitly std::ref is provided at the construction.
Can also run Functor or Lambda-Expression on a thread
In exceptional circumstances, joining threads should be executed
in a catch block

More background and details in chapter 2 of the book C++ Concurrency in Action,
Anthony Williams, Manning 2012. also available online at the ETH library.

837

28.2 Shared Memory, Concurrency

838

Sharing Resources (Memory)

Up to now: fork-join algorithms: data parallel or
divide-and-conquer
Simple structure (data independence of the threads) to avoid race
conditions
Does not work any more when threads access shared memory.

839



Managing state

Managing state: Main challenge of concurrent programming.

Approaches:

Immutability, for example constants.
Isolated Mutability, for example thread-local variables, stack.
Shared mutable data, for example references to shared memory,
global variables

840

Protect the shared state

Method 1: locks, guarantee exclusive access to shared data.
Method 2: lock-free data structures, exclusive access with a much
finer granularity.
Method 3: transactional memory (not treated in class)

841

Canonical Example

class BankAccount {
int balance = 0;

public:
int getBalance(){ return balance; }
void setBalance(int x) { balance = x; }
void withdraw(int amount) {

int b = getBalance();
setBalance(b − amount);

}
// deposit etc.

};

(correct in a single-threaded world)

842

Bad Interleaving

Parallel call to widthdraw(100) on the same account

Thread 1
int b = getBalance();

setBalance(b−amount);

Thread 2

int b = getBalance();

setBalance(b−amount);
t

843



Tempting Traps

WRONG:
void withdraw(int amount) {

int b = getBalance();
if (b==getBalance())

setBalance(b − amount);
}

Bad interleavings cannot be solved with a repeated reading

844

Tempting Traps

also WRONG:
void withdraw(int amount) {

setBalance(getBalance() − amount);
}

Assumptions about atomicity of operations are almost always wrong

845

Mutual Exclusion

We need a concept for mutual exclusion

Only one thread may execute the operation withdraw on the same
account at a time.

The programmer has to make sure that mutual exclusion is used.

846

More Tempting Traps
class BankAccount {

int balance = 0;
bool busy = false;

public:
void withdraw(int amount) {

while (busy); // spin wait
busy = true;
int b = getBalance();
setBalance(b − amount);
busy = false;

}

// deposit would spin on the same boolean
};

does not work!

847



Just moved the problem!

Thread 1

while (busy); //spin

busy = true;

int b = getBalance();

setBalance(b − amount);

Thread 2

while (busy); //spin

busy = true;

int b = getBalance();
setBalance(b − amount);

t

848

How ist this correctly implemented?

We use locks (mutexes) from libraries
They use hardware primitives, Read-Modify-Write (RMW)
operations that can, in an atomic way, read and write depending
on the read result.
Without RMW Operations the algorithm is non-trivial and requires
at least atomic access to variable of primitive type.

849

28.3 Excursion: lock algorithm

850

Alice’s Cat vs. Bob’s Dog

851



Required: Mutual Exclusion

852

Required: No Lockout When Free

853

Communication Types

Transient: Parties participate at the same time

Persistent: Parties participate at different times

Mutual exclusion: persistent communication

854

Communication Idea 1

855



Access Protocol

856

Problem!

857

Communication Idea 2

858

Access Protocol 2.1

859



Different Scenario

860

Problem: No Mutual Exclusion

861

Checking Flags Twice: Deadlock

862

Access Protocol 2.2

863



Access Protocol 2.2:provably correct

864

Weniger schwerwiegend: Starvation

865

Final Solution

866

General Problem of Locking remains

867



Peterson’s Algorithm41

for two processes is provable correct and free from starvation
non−critical section

flag[me] = true // I am interested
victim = me // but you go first
// spin while we are both interested and you go first:
while (flag[you] && victim == me) {};

critical section

flag[me] = false

The code assumes that the access to flag
/ victim is atomic and particularly lineariz-
able or sequential consistent. An assump-
tion that – as we will see below – is not nec-
essarily given for normal variables. The
Peterson-lock is not used on modern hard-
ware.

41not relevant for the exam
868

28.4 Mutual Exclusion

869

Critical Sections and Mutual Exclusion

Critical Section
Piece of code that may be executed by at most one process (thread)
at a time.

Mutual Exclusion
Algorithm to implement a critical section

acquire_mutex(); // entry algorithm\\
... // critical section
release_mutex(); // exit algorithm

870

Required Properties of Mutual Exclusion

Correctness (Safety)
At most one process executes the
critical section code

Liveness
Acquiring the mutex must terminate in
finite time when no process executes
in the critical section

871



Almost Correct
class BankAccount {

int balance = 0;
std::mutex m; // requires #include <mutex>

public:
...
void withdraw(int amount) {

m.lock();
int b = getBalance();
setBalance(b − amount);
m.unlock();

}
};

What if an exception occurs?
872

RAII Approach

class BankAccount {
int balance = 0;
std::mutex m;

public:
...
void withdraw(int amount) {

std::lock_guard<std::mutex> guard(m);
int b = getBalance();
setBalance(b − amount);

} // Destruction of guard leads to unlocking m
};

What about getBalance / setBalance?

873

Reentrant Locks

Reentrant Lock (recursive lock)

remembers the currently affected thread;
provides a counter

Call of lock: counter incremented
Call of unlock: counter is decremented. If counter = 0 the lock is released.

874

Account with reentrant lock
class BankAccount {

int balance = 0;
std::recursive_mutex m;
using guard = std::lock_guard<std::recursive_mutex>;

public:
int getBalance(){ guard g(m); return balance;
}
void setBalance(int x) { guard g(m); balance = x;
}
void withdraw(int amount) { guard g(m);

int b = getBalance();
setBalance(b − amount);

}
};

875



28.5 Race Conditions

876

Race Condition

A race condition occurs when the result of a computation depends
on scheduling.
We make a distinction between bad interleavings and data races
Bad interleavings can occur even when a mutex is used.

877

Example: Stack

Stack with correctly synchronized access:
template <typename T>
class stack{

...
std::recursive_mutex m;
using guard = std::lock_guard<std::recursive_mutex>;

public:
bool isEmpty(){ guard g(m); ... }
void push(T value){ guard g(m); ... }
T pop(){ guard g(m); ...}

};

878

Peek

Forgot to implement peek. Like this?
template <typename T>
T peek (stack<T> &s){

T value = s.pop();
s.push(value);
return value;

}

not thread-safe!

Despite its questionable style the code is correct in a sequential
world. Not so in concurrent programming.

879



Bad Interleaving!

Initially empty stack s, only shared between threads 1 and 2.

Thread 1 pushes a value and checks that the stack is then
non-empty. Thread 2 reads the topmost value using peek().

Thread 1

s.push(5);

assert(!s.isEmpty());

Thread 2

int value = s.pop();

s.push(value);
return value;

t

880

The fix

Peek must be protected with the same lock as the other access
methods

881

Bad Interleavings

Race conditions as bad interleavings can happen on a high level of
abstraction

In the following we consider a different form of race condition: data
race.

882

How about this?
class counter{

int count = 0;
std::recursive_mutex m;
using guard = std::lock_guard<std::recursive_mutex>;

public:
int increase(){

guard g(m); return ++count;
}
int get(){

return count;
}

}

not thread-safe!

883



Why wrong?

It looks like nothing can go wrong because the update of count
happens in a “tiny step”.

But this code is still wrong and depends on
language-implementation details you cannot assume.

This problem is called Data-Race

Moral: Do not introduce a data race, even if every interleaving you
can think of is correct. Don’t make assumptions on the memory
order.

884

A bit more formal

Data Race (low-level Race-Conditions) Erroneous program behavior
caused by insufficiently synchronized accesses of a shared resource
by multiple threads, e.g. Simultaneous read/write or write/write of
the same memory location

Bad Interleaving (High Level Race Condition) Erroneous program
behavior caused by an unfavorable execution order of a
multithreaded algorithm, even if that makes use of otherwise well
synchronized resources.

885

We look deeper
class C {

int x = 0;
int y = 0;

public:
void f() {

x = 1;
y = 1;

}
void g() {

int a = y;
int b = x;
assert(b >= a);

}
}

A
B

C
D

Can this fail?

There is no interleaving of f and g that
would cause the assertion to fail:

A B C D X
A C B D X
A C D B X
C A B D X
C C D B X
C D A B X

It can nevertheless fail!

886

One Resason: Memory Reordering

Rule of thumb: Compiler and hardware allowed to make changes
that do not affect the semantics of a sequentially executed program

void f() {
x = 1;
y = x+1;
z = x+1;

}

⇐⇒
sequentially equivalent

void f() {
x = 1;
z = x+1;
y = x+1;

}

887



From a Software-Perspective

Modern compilers do not give guarantees that a global ordering of
memory accesses is provided as in the sourcecode:

Some memory accesses may be even optimized away completely!
Huge potential for optimizations – and for errors, when you make
the wrong assumptions

888

Example: Self-made Rendevouz

int x; // shared

void wait(){
x = 1;
while(x == 1);

}

void arrive(){
x = 2;

}

Assume thread 1 calls wait, later thread 2
calls arrive. What happens?

thread 1

thread 2

wait

arrive

889

Compilation

Source
int x; // shared

void wait(){
x = 1;
while(x == 1);

}

void arrive(){
x = 2;

}

Without optimisation

wait:
movl $0x1, x
test:
mov x, %eax
cmp $0x1, %eax
je test

arrive:
movl $0x2, x

With optimisation

wait:
movl $0x1, x
test:
jmp test

arrive
movl $0x2, x

if equal

always

890

Hardware Perspective

Modern multiprocessors do not enforce global ordering of all
instructions for performance reasons:

Most processors have a pipelined architecture and can execute
(parts of) multiple instructions simultaneously. They can even
reorder instructions internally.
Each processor has a local cache, and thus loads/stores to shared
memory can become visible to other processors at different times

891



Memory Hierarchy

Registers

L1 Cache

L2 Cache

...

System Memory slow,high latency,low cost,high capacity

fast,low latency, high cost, low capacity

892

An Analogy

893

Schematic

894

Memory Models

When and if effects of memory operations become visible for
threads, depends on hardware, runtime system and programming
language.

A memory model (e.g. that of C++) provides minimal guarantees for
the effect of memory operations

leaving open possibilities for optimisation
containing guidelines for writing thread-safe programs

For instance, C++ provides guarantees when synchronisation with a
mutex is used.

895



Fixed
class C {

int x = 0;
int y = 0;
std::mutex m;

public:
void f() {

m.lock(); x = 1; m.unlock();
m.lock(); y = 1; m.unlock();

}
void g() {

m.lock(); int a = y; m.unlock();
m.lock(); int b = x; m.unlock();
assert(b >= a); // cannot fail

}
};

896

Atomic
Here also possible:
class C {

std::atomic_int x{0}; // requires #include <atomic>
std::atomic_int y{0};

public:
void f() {

x = 1;
y = 1;

}
void g() {

int a = y;
int b = x;
assert(b >= a); // cannot fail

}
}; 897


