
27. Parallel Programming I

Moore’s Law and the Free Lunch, Hardware Architectures, Parallel
Execution, Flynn’s Taxonomy, Scalability: Amdahl and Gustafson,
Data-parallelism, Task-parallelism, Scheduling

[Task-Scheduling: Cormen et al, Kap. 27] [Concurrency, Scheduling:
Williams, Kap. 1.1 – 1.2]

760



The Free Lunch

The free lunch is over 40

40"The Free Lunch is Over", a fundamental turn toward concurrency in software, Herb Sutter, Dr. Dobb’s Journal, 2005
761



Moore’s Law

Gordon E. Moore (1929)Observation by Gordon E. Moore:

The number of transistors on integrated circuits doubles
approximately every two years.

762



763



For a long time...

the sequential execution became faster ("Instruction Level
Parallelism", "Pipelining", Higher Frequencies)
more and smaller transistors = more performance
programmers simply waited for the next processor generation

764



Today

the frequency of processors does not increase significantly and
more (heat dissipation problems)
the instruction level parallelism does not increase significantly any
more
the execution speed is dominated by memory access times (but
caches still become larger and faster)

765



Trends

766



Multicore

Use transistors for more compute cores
Parallelism in the software
Programmers have to write parallel programs to benefit from new
hardware

767



Forms of Parallel Execution

Vectorization
Pipelining
Instruction Level Parallelism
Multicore / Multiprocessing
Distributed Computing

768



Vectorization

Parallel Execution of the same operations on elements of a vector
(register)

x

y
+ x+ yskalar

x1 x2 x3 x4

y1 y2 y3 y4
+ x1 + y1 x2 + y2 x3 + y3 x4 + y4vector

x1 x2 x3 x4

y1 y2 y3 y4
fma 〈x, y〉vector

769



Vectorization

Parallel Execution of the same operations on elements of a vector
(register)

x

y
+ x+ yskalar

x1 x2 x3 x4

y1 y2 y3 y4
+ x1 + y1 x2 + y2 x3 + y3 x4 + y4vector

x1 x2 x3 x4

y1 y2 y3 y4
fma 〈x, y〉vector

769



Vectorization

Parallel Execution of the same operations on elements of a vector
(register)

x

y
+ x+ yskalar

x1 x2 x3 x4

y1 y2 y3 y4
+ x1 + y1 x2 + y2 x3 + y3 x4 + y4vector

x1 x2 x3 x4

y1 y2 y3 y4
fma 〈x, y〉vector

769



Home Work

770



More efficient

771



Pipeline

772



Balanced / Unbalanced Pipeline

A pipeline is called balanced, if each step takes the same
computation time.

Software-Pipelines are often unbalanced.

In the following we assume that each step of the pipeline takes as
long as the longest step.

773



Throughput

Throughput = Input or output data rate
Number operations per time unit
larger througput is better

throughput =
1

max(computationtime(stages))

ignores lead-in and lead-out times

774



Latency

Time to perform a computation
latency = #stages ·max(computationtime(stages))

775



Homework Example

Washing T0 = 1h, Drying T1 = 2h, Ironing T2 = 1h, Tidy up
T3 = 0.5h

Latency L = 8h

In the long run: 1 batch every 2h (0.5/h).

776



Throughput vs. Latency

Increasing throughput can increase latency
Stages of the pipeline need to communicate and synchronize:
overhead

777



Pipelines in CPUs

Fetch Decode Execute Data Fetch Writeback

Multiple Stages

Every instruction takes 5 time units (cycles)
In the best case: 1 instruction per cycle, not always possible
(“stalls”)

Paralellism (several functional units) leads to faster execution.

778



ILP – Instruction Level Parallelism

Modern CPUs provide several hardware units and execute
independent instructions in parallel.

Pipelining
Superscalar CPUs (multiple instructions per cycle)
Out-Of-Order Execution (Programmer observes the sequential
execution)
Speculative Execution ()

779



27.2 Hardware Architectures

780



Shared vs. Distributed Memory

CPU CPU CPU

Shared Memory

Mem

CPU CPU CPU

Mem Mem Mem

Distributed Memory

Interconnect

781



Shared vs. Distributed Memory Programming

Categories of programming interfaces

Communication via message passing
Communication via memory sharing

It is possible:

to program shared memory systems as distributed systems (e.g. with
message passing MPI)
program systems with distributed memory as shared memory systems
(e.g. partitioned global address space PGAS)

782



Shared Memory Architectures

Multicore (Chip Multiprocessor - CMP)
Symmetric Multiprocessor Systems (SMP)
Simultaneous Multithreading (SMT = Hyperthreading)

one physical core, Several Instruction Streams/Threads: several virtual
cores
Between ILP (several units for a stream) and multicore (several units for
several streams). Limited parallel performance.

Non-Uniform Memory Access (NUMA)

Same programming interface

783



Overview

CMP SMP NUMA

784



An Example

AMD Bulldozer: be-
tween CMP and SMT

2x integer core
1x floating point core

785



Flynn’s Taxonomy

SI = Single Instruction
MI = Multiple Instructions

SD = Single Data
MD = Multiple Data

Single-Core Fehlertoleranz

Vector Computing / GPU Multi-Core

786



Flynn’s Taxonomy

SI = Single Instruction
MI = Multiple Instructions

SD = Single Data
MD = Multiple Data

Single-Core

Fehlertoleranz

Vector Computing / GPU Multi-Core

786



Flynn’s Taxonomy

SI = Single Instruction
MI = Multiple Instructions

SD = Single Data
MD = Multiple Data

Single-Core Fehlertoleranz

Vector Computing / GPU Multi-Core

786



Flynn’s Taxonomy

SI = Single Instruction
MI = Multiple Instructions

SD = Single Data
MD = Multiple Data

Single-Core Fehlertoleranz

Vector Computing / GPU

Multi-Core

786



Flynn’s Taxonomy

SI = Single Instruction
MI = Multiple Instructions

SD = Single Data
MD = Multiple Data

Single-Core Fehlertoleranz

Vector Computing / GPU Multi-Core
786



Massively Parallel Hardware
[General Purpose] Graphical Processing
Units ([GP]GPUs)

Revolution in High Performance
Computing

Calculation 4.5 TFlops vs. 500 GFlops
Memory Bandwidth 170 GB/s vs. 40
GB/s

SIMD

High data parallelism
Requires own programming model. Z.B.
CUDA / OpenCL

787



27.3 Multi-Threading, Parallelism and Concurrency

788



Processes and Threads

Process: instance of a program

each process has a separate context, even a separate address space
OS manages processes (resource control, scheduling, synchronisation)

Threads: threads of execution of a program

Threads share the address space
fast context switch between threads

789



Why Multithreading?

Avoid “polling” resources (files, network, keyboard)
Interactivity (e.g. responsivity of GUI programs)
Several applications / clients in parallel
Parallelism (performance!)

790



Multithreading conceptually

Thread 1

Thread 2

Thread 3

Single Core

Thread 1

Thread 2

Thread 3

Multi Core

791



Thread switch on one core (Preemption)

thread 1 thread 2

idle
busy

Store State t1
Interrupt

Load State t2

busyidle

Store State t2
Interrupt

Load State t1
busy

idle

792



Thread switch on one core (Preemption)

thread 1 thread 2

idle
busy

Store State t1
Interrupt

Load State t2

busyidle

Store State t2
Interrupt

Load State t1
busy

idle

792



Thread switch on one core (Preemption)

thread 1 thread 2

idle
busy

Store State t1
Interrupt

Load State t2

busyidle

Store State t2
Interrupt

Load State t1
busy

idle

792



Thread switch on one core (Preemption)

thread 1 thread 2

idle
busy

Store State t1
Interrupt

Load State t2

busyidle

Store State t2
Interrupt

Load State t1
busy

idle

792



Thread switch on one core (Preemption)

thread 1 thread 2

idle
busy

Store State t1
Interrupt

Load State t2

busyidle

Store State t2
Interrupt

Load State t1
busy

idle

792



Parallelität vs. Concurrency
Parallelism: Use extra resources to solve a problem faster
Concurrency: Correctly and efficiently manage access to shared
resources
Begriffe überlappen offensichtlich. Bei parallelen Berechnungen
besteht fast immer Synchronisierungsbedarf.

Parallelism

Work

Resources

Concurrency

Requests

Resources

793



Thread Safety

Thread Safety means that in a concurrent application of a program
this always yields the desired results.

Many optimisations (Hardware, Compiler) target towards the correct
execution of a sequential program.

Concurrent programs need an annotation that switches off certain
optimisations selectively.

794



Example: Caches

Access to registers faster than to
shared memory.
Principle of locality.
Use of Caches (transparent to the
programmer)

If and how far a cache coherency is guar-
anteed depends on the used system.

795



27.4 Scalability: Amdahl and Gustafson

796



Scalability

In parallel Programming:

Speedup when increasing number p of processors
What happens if p→∞?
Program scales linearly: Linear speedup.

797



Parallel Performance

Given a fixed amount of computing work W (number computing
steps)

Sequential execution time T1
Parallel execution time on p CPUs

Perfection: Tp = T1/p

Performance loss: Tp > T1/p (usual case)
Sorcery: Tp < T1/p

798



Parallel Speedup

Parallel speedup Sp on p CPUs:

Sp =
W/Tp
W/T1

=
T1
Tp
.

Perfection: linear speedup Sp = p

Performance loss: sublinear speedup Sp < p (the usual case)
Sorcery: superlinear speedup Sp > p

Efficiency:Ep = Sp/p

799



Reachable Speedup?
Parallel Program

Parallel Part Seq. Part

80% 20%

T1 = 10

T8 =?

T8 =
10 · 0.8

8
+ 10 · 0.2 = 1 + 2 = 3

S8 =
T1
T8

=
10

3
≈ 3.3 < 8 (!)

800



Reachable Speedup?
Parallel Program

Parallel Part Seq. Part

80% 20%

T1 = 10

T8 =
10 · 0.8

8
+ 10 · 0.2 = 1 + 2 = 3

S8 =
T1
T8

=
10

3
≈ 3.3 < 8 (!)

800



Reachable Speedup?
Parallel Program

Parallel Part Seq. Part

80% 20%

T1 = 10

T8 =
10 · 0.8

8
+ 10 · 0.2 = 1 + 2 = 3

S8 =
T1
T8

=
10

3
≈ 3.3 < 8 (!)

800



Amdahl’s Law: Ingredients

Computational work W falls into two categories

Paralellisable part Wp

Not parallelisable, sequential part Ws

Assumption: W can be processed sequentially by one processor in
W time units (T1 = W ):

T1 = Ws +Wp

Tp ≥ Ws +Wp/p

801



Amdahl’s Law

Sp =
T1
Tp
≤ Ws +Wp

Ws +
Wp

p

802



Amdahl’s Law

With sequential, not parallelizable fraction λ: Ws = λW ,
Wp = (1− λ)W :

Sp ≤
1

λ+ 1−λ
p

Thus
S∞ ≤

1

λ

803



Amdahl’s Law

With sequential, not parallelizable fraction λ: Ws = λW ,
Wp = (1− λ)W :

Sp ≤
1

λ+ 1−λ
p

Thus
S∞ ≤

1

λ

803



Illustration Amdahl’s Law

p = 1

t

Ws

Wp

p = 2

Ws

Wp

p = 4

Ws

Wp

T1

804



Illustration Amdahl’s Law

p = 1

t

Ws

Wp

p = 2

Ws

Wp

p = 4

Ws

Wp

T1

804



Illustration Amdahl’s Law

p = 1

t

Ws

Wp

p = 2

Ws

Wp

p = 4

Ws

Wp

T1

804



Amdahl’s Law is bad news

All non-parallel parts of a program can cause problems

805



Gustafson’s Law

Fix the time of execution
Vary the problem size.
Assumption: the sequential part stays constant, the parallel part
becomes larger

806



Illustration Gustafson’s Law

p = 1

t

Ws

Wp

p = 2

Ws

Wp Wp

p = 4

Ws

Wp Wp Wp Wp

T

807



Illustration Gustafson’s Law

p = 1

t

Ws

Wp

p = 2

Ws

Wp Wp

p = 4

Ws

Wp Wp Wp Wp

T

807



Illustration Gustafson’s Law

p = 1

t

Ws

Wp

p = 2

Ws

Wp Wp

p = 4

Ws

Wp Wp Wp Wp

T

807



Gustafson’s Law
Work that can be executed by one processor in time T :

Ws +Wp = T

Work that can be executed by p processors in time T :

Ws + p ·Wp = λ · T + p · (1− λ) · T

Speedup:

Sp =
Ws + p ·Wp

Ws +Wp
= p · (1− λ) + λ

= p− λ(p− 1)

808



Amdahl vs. Gustafson

Amdahl Gustafson

p = 4 p = 4

809



Amdahl vs. Gustafson

Amdahl Gustafson

p = 4

p = 4

809



Amdahl vs. Gustafson

Amdahl Gustafson

p = 4 p = 4

809



Amdahl vs. Gustafson

The laws of Amdahl and Gustafson are models of speedup for
parallelization.

Amdahl assumes a fixed relative sequential portion, Gustafson
assumes a fixed absolute sequential part (that is expressed as
portion of the work W1 and that does not increase with increasing
work).

The two models do not contradict each other but describe the
runtime speedup of different problems and algorithms.

810



27.5 Task- and Data-Parallelism

811



Parallel Programming Paradigms

Task Parallel: Programmer explicitly defines parallel tasks.
Data Parallel: Operations applied simulatenously to an aggregate
of individual items.

812



Example Data Parallel (OMP)

double sum = 0, A[MAX];
#pragma omp parallel for reduction (+:ave)
for (int i = 0; i< MAX; ++i)

sum += A[i];
return sum;

813



Example Task Parallel (C++11 Threads/Futures)

double sum(Iterator from, Iterator to)
{

auto len = from − to;
if (len > threshold){

auto future = std::async(sum, from, from + len / 2);
return sumS(from + len / 2, to) + future.get();

}
else

return sumS(from, to);
}

814



Work Partitioning and Scheduling

Partitioning of the work into parallel task (programmer or system)

One task provides a unit of work
Granularity?

Scheduling (Runtime System)

Assignment of tasks to processors
Goal: full resource usage with little overhead

815



Example: Fibonacci P-Fib

if n ≤ 1 then
return n

else
x← spawn P-Fib(n− 1)
y ← spawn P-Fib(n− 2)
sync
return x+ y;

816



P-Fib Task Graph

817



P-Fib Task Graph

818



Question

Each Node (task) takes 1 time unit.
Arrows depict dependencies.
Minimal execution time when number
of processors =∞?

critical path

819



Question

Each Node (task) takes 1 time unit.
Arrows depict dependencies.
Minimal execution time when number
of processors =∞?

critical path

819



Performance Model

p processors
Dynamic scheduling
Tp: Execution time on p processors

820



Performance Model

Tp: Execution time on p processors
T1: work: time for executing total work
on one processor
T1/Tp: Speedup

821



Performance Model

T∞: span: critical path, execution time
on∞ processors. Longest path from
root to sink.
T1/T∞: Parallelism: wider is better
Lower bounds:

Tp ≥ T1/p Work law
Tp ≥ T∞ Span law

822



Greedy Scheduler

Greedy scheduler: at each time it schedules as many as availbale
tasks.
Theorem
On an ideal parallel computer with p processors, a greedy scheduler
executes a multi-threaded computation with work T1 and span T∞ in
time

Tp ≤ T1/p+ T∞

823



Beispiel
Assume p = 2.

Tp = 5 Tp = 4

824



Beispiel
Assume p = 2.

Tp = 5 Tp = 4

824



Beispiel
Assume p = 2.

Tp = 5 Tp = 4

824



Beispiel
Assume p = 2.

Tp = 5 Tp = 4

824



Beispiel
Assume p = 2.

Tp = 5 Tp = 4

824



Beispiel
Assume p = 2.

Tp = 5

Tp = 4

824



Beispiel
Assume p = 2.

Tp = 5

Tp = 4

824



Beispiel
Assume p = 2.

Tp = 5

Tp = 4

824



Beispiel
Assume p = 2.

Tp = 5

Tp = 4

824



Beispiel
Assume p = 2.

Tp = 5

Tp = 4

824



Beispiel
Assume p = 2.

Tp = 5 Tp = 4

824



Proof of the Theorem

Assume that all tasks provide the same amount of work.

Complete step: p tasks are available.

incomplete step: less than p steps available.

Assume that number of complete steps larger than bT1/pc. Executed work
≥ bT1/pc · p+ p = T1 − T1 mod p+ p > T1. Contradiction. Therefore maximally
bT1/pc complete steps.

We now consider the graph of tasks to be done. Any maximal (critical) path starts
with a node t with deg−(t) = 0. An incomplete step executes all available tasks t
with deg−(t) = 0 and thus decreases the length of the span. Number incomplete
steps thus limited by T∞.

825



Consequence

if p� T1/T∞, i.e. T∞ � T1/p, then Tp ≈ T1/p.

Example Fibonacci
T1(n)/T∞(n) = Θ(φn/n). For moderate sizes of n we can use a lot
of processors yielding linear speedup.

826



Granularity: how many tasks?
#Tasks = #Cores?

Problem if a core cannot be fully used
Example: 9 units of work. 3 core.
Scheduling of 3 sequential tasks.

Exclusive utilization:

P1

P2

P3

s1

s2

s3

Execution Time: 3 Units

Foreign thread disturbing:

P1

P2

P3

s1

s2 s1

s3

Execution Time: 5 Units

827



Granularity: how many tasks?
#Tasks = #Cores?
Problem if a core cannot be fully used

Example: 9 units of work. 3 core.
Scheduling of 3 sequential tasks.

Exclusive utilization:

P1

P2

P3

s1

s2

s3

Execution Time: 3 Units

Foreign thread disturbing:

P1

P2

P3

s1

s2 s1

s3

Execution Time: 5 Units

827



Granularity: how many tasks?
#Tasks = #Cores?
Problem if a core cannot be fully used
Example: 9 units of work. 3 core.
Scheduling of 3 sequential tasks.

Exclusive utilization:

P1

P2

P3

s1

s2

s3

Execution Time: 3 Units

Foreign thread disturbing:

P1

P2

P3

s1

s2 s1

s3

Execution Time: 5 Units

827



Granularity: how many tasks?
#Tasks = #Cores?
Problem if a core cannot be fully used
Example: 9 units of work. 3 core.
Scheduling of 3 sequential tasks.

Exclusive utilization:

P1

P2

P3

s1

s2

s3

Execution Time: 3 Units

Foreign thread disturbing:

P1

P2

P3

s1

s2 s1

s3

Execution Time: 5 Units
827



Granularity: how many tasks?
#Tasks = Maximum?
Example: 9 units of work. 3 cores.
Scheduling of 9 sequential tasks.

Exclusive utilization:

P1

P2

P3

s1

s2

s3

s4

s5

s6

s7

s8

s9

Execution Time: 3 + ε Units

Foreign thread disturbing:

P1

P2

P3

s1

s2

s3

s4 s5

s6 s7

s8

s9

Execution Time: 4 Units. Full uti-
lization.

828



Granularity: how many tasks?
#Tasks = Maximum?
Example: 9 units of work. 3 cores.
Scheduling of 9 sequential tasks.

Exclusive utilization:

P1

P2

P3

s1

s2

s3

s4

s5

s6

s7

s8

s9

Execution Time: 3 + ε Units

Foreign thread disturbing:

P1

P2

P3

s1

s2

s3

s4 s5

s6 s7

s8

s9

Execution Time: 4 Units. Full uti-
lization.

828



Granularity: how many tasks?

#Tasks = Maximum?
Example: 106 tiny units of work.

P1

P2

P3

Execution time: dominiert vom Overhead.

829



Granularity: how many tasks?

#Tasks = Maximum?
Example: 106 tiny units of work.

P1

P2

P3

Execution time: dominiert vom Overhead.

829



Granularity: how many tasks?

Answer: as many tasks as possible with a sequential cutoff such that
the overhead can be neglected.

830



Example: Parallelism of Mergesort

Work (sequential runtime) of
Mergesort T1(n) = Θ(n log n).
Span T∞(n) = Θ(n)

Parallelism T1(n)/T∞(n) = Θ(log n)
(Maximally achievable speedup with
p =∞ processors)

split

merge

831


	Parallel Programming I
	Parallel Execution
	Hardware Architectures
	Multi-Threading, Parallelism and Concurrency
	Scalability: Amdahl and Gustafson
	Task- and Data-Parallelism


