
27. Parallel Programming I

Moore’s Law and the Free Lunch, Hardware Architectures, Parallel
Execution, Flynn’s Taxonomy, Scalability: Amdahl and Gustafson,
Data-parallelism, Task-parallelism, Scheduling

[Task-Scheduling: Cormen et al, Kap. 27] [Concurrency, Scheduling:
Williams, Kap. 1.1 – 1.2]
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The Free Lunch

The free lunch is over 40

40"The Free Lunch is Over", a fundamental turn toward concurrency in software, Herb Sutter, Dr. Dobb’s Journal, 2005
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Moore’s Law

Gordon E. Moore (1929)Observation by Gordon E. Moore:

The number of transistors on integrated circuits doubles
approximately every two years.
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For a long time...

the sequential execution became faster ("Instruction Level
Parallelism", "Pipelining", Higher Frequencies)
more and smaller transistors = more performance
programmers simply waited for the next processor generation
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Today

the frequency of processors does not increase significantly and
more (heat dissipation problems)
the instruction level parallelism does not increase significantly any
more
the execution speed is dominated by memory access times (but
caches still become larger and faster)
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Trends
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Multicore

Use transistors for more compute cores
Parallelism in the software
Programmers have to write parallel programs to benefit from new
hardware
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Forms of Parallel Execution

Vectorization
Pipelining
Instruction Level Parallelism
Multicore / Multiprocessing
Distributed Computing
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Vectorization

Parallel Execution of the same operations on elements of a vector
(register)

x

y
+ x+ yskalar

x1 x2 x3 x4

y1 y2 y3 y4
+ x1 + y1 x2 + y2 x3 + y3 x4 + y4vector

x1 x2 x3 x4

y1 y2 y3 y4
fma 〈x, y〉vector
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Home Work
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More efficient
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Pipeline
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Balanced / Unbalanced Pipeline

A pipeline is called balanced, if each step takes the same
computation time.

Software-Pipelines are often unbalanced.

In the following we assume that each step of the pipeline takes as
long as the longest step.
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Throughput

Throughput = Input or output data rate
Number operations per time unit
larger througput is better

throughput =
1

max(computationtime(stages))

ignores lead-in and lead-out times
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Latency

Time to perform a computation
latency = #stages ·max(computationtime(stages))

775



Homework Example

Washing T0 = 1h, Drying T1 = 2h, Ironing T2 = 1h, Tidy up
T3 = 0.5h

Latency L = 8h

In the long run: 1 batch every 2h (0.5/h).
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Throughput vs. Latency

Increasing throughput can increase latency
Stages of the pipeline need to communicate and synchronize:
overhead
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Pipelines in CPUs

Fetch Decode Execute Data Fetch Writeback

Multiple Stages

Every instruction takes 5 time units (cycles)
In the best case: 1 instruction per cycle, not always possible
(“stalls”)

Paralellism (several functional units) leads to faster execution.
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ILP – Instruction Level Parallelism

Modern CPUs provide several hardware units and execute
independent instructions in parallel.

Pipelining
Superscalar CPUs (multiple instructions per cycle)
Out-Of-Order Execution (Programmer observes the sequential
execution)
Speculative Execution ()
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27.2 Hardware Architectures
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Shared vs. Distributed Memory

CPU CPU CPU

Shared Memory

Mem

CPU CPU CPU

Mem Mem Mem

Distributed Memory

Interconnect
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Shared vs. Distributed Memory Programming

Categories of programming interfaces

Communication via message passing
Communication via memory sharing

It is possible:

to program shared memory systems as distributed systems (e.g. with
message passing MPI)
program systems with distributed memory as shared memory systems
(e.g. partitioned global address space PGAS)
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Shared Memory Architectures

Multicore (Chip Multiprocessor - CMP)
Symmetric Multiprocessor Systems (SMP)
Simultaneous Multithreading (SMT = Hyperthreading)

one physical core, Several Instruction Streams/Threads: several virtual
cores
Between ILP (several units for a stream) and multicore (several units for
several streams). Limited parallel performance.

Non-Uniform Memory Access (NUMA)

Same programming interface
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Overview

CMP SMP NUMA
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An Example

AMD Bulldozer: be-
tween CMP and SMT

2x integer core
1x floating point core
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Flynn’s Taxonomy

SI = Single Instruction
MI = Multiple Instructions

SD = Single Data
MD = Multiple Data

Single-Core Fehlertoleranz

Vector Computing / GPU Multi-Core
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Massively Parallel Hardware
[General Purpose] Graphical Processing
Units ([GP]GPUs)

Revolution in High Performance
Computing

Calculation 4.5 TFlops vs. 500 GFlops
Memory Bandwidth 170 GB/s vs. 40
GB/s

SIMD

High data parallelism
Requires own programming model. Z.B.
CUDA / OpenCL
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27.3 Multi-Threading, Parallelism and Concurrency
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Processes and Threads

Process: instance of a program

each process has a separate context, even a separate address space
OS manages processes (resource control, scheduling, synchronisation)

Threads: threads of execution of a program

Threads share the address space
fast context switch between threads
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Why Multithreading?

Avoid “polling” resources (files, network, keyboard)
Interactivity (e.g. responsivity of GUI programs)
Several applications / clients in parallel
Parallelism (performance!)
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Multithreading conceptually

Thread 1

Thread 2

Thread 3

Single Core

Thread 1

Thread 2

Thread 3

Multi Core
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Thread switch on one core (Preemption)

thread 1 thread 2

idle
busy

Store State t1
Interrupt

Load State t2

busyidle

Store State t2
Interrupt

Load State t1
busy

idle
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Parallelität vs. Concurrency
Parallelism: Use extra resources to solve a problem faster
Concurrency: Correctly and efficiently manage access to shared
resources
Begriffe überlappen offensichtlich. Bei parallelen Berechnungen
besteht fast immer Synchronisierungsbedarf.

Parallelism

Work

Resources

Concurrency

Requests

Resources
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Thread Safety

Thread Safety means that in a concurrent application of a program
this always yields the desired results.

Many optimisations (Hardware, Compiler) target towards the correct
execution of a sequential program.

Concurrent programs need an annotation that switches off certain
optimisations selectively.
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Example: Caches

Access to registers faster than to
shared memory.
Principle of locality.
Use of Caches (transparent to the
programmer)

If and how far a cache coherency is guar-
anteed depends on the used system.
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27.4 Scalability: Amdahl and Gustafson

796



Scalability

In parallel Programming:

Speedup when increasing number p of processors
What happens if p→∞?
Program scales linearly: Linear speedup.
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Parallel Performance

Given a fixed amount of computing work W (number computing
steps)

Sequential execution time T1
Parallel execution time on p CPUs

Perfection: Tp = T1/p

Performance loss: Tp > T1/p (usual case)
Sorcery: Tp < T1/p
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Parallel Speedup

Parallel speedup Sp on p CPUs:

Sp =
W/Tp
W/T1

=
T1
Tp
.

Perfection: linear speedup Sp = p

Performance loss: sublinear speedup Sp < p (the usual case)
Sorcery: superlinear speedup Sp > p

Efficiency:Ep = Sp/p
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Reachable Speedup?
Parallel Program

Parallel Part Seq. Part

80% 20%

T1 = 10

T8 =?

T8 =
10 · 0.8

8
+ 10 · 0.2 = 1 + 2 = 3

S8 =
T1
T8

=
10

3
≈ 3.3 < 8 (!)
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Amdahl’s Law: Ingredients

Computational work W falls into two categories

Paralellisable part Wp

Not parallelisable, sequential part Ws

Assumption: W can be processed sequentially by one processor in
W time units (T1 = W ):

T1 = Ws +Wp

Tp ≥ Ws +Wp/p
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Amdahl’s Law

Sp =
T1
Tp
≤ Ws +Wp

Ws +
Wp

p
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Amdahl’s Law

With sequential, not parallelizable fraction λ: Ws = λW ,
Wp = (1− λ)W :

Sp ≤
1

λ+ 1−λ
p

Thus
S∞ ≤

1

λ

803



Amdahl’s Law

With sequential, not parallelizable fraction λ: Ws = λW ,
Wp = (1− λ)W :

Sp ≤
1

λ+ 1−λ
p

Thus
S∞ ≤

1

λ

803



Illustration Amdahl’s Law

p = 1

t

Ws

Wp

p = 2

Ws

Wp

p = 4

Ws

Wp

T1
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Amdahl’s Law is bad news

All non-parallel parts of a program can cause problems
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Gustafson’s Law

Fix the time of execution
Vary the problem size.
Assumption: the sequential part stays constant, the parallel part
becomes larger
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Illustration Gustafson’s Law

p = 1

t

Ws

Wp

p = 2

Ws

Wp Wp

p = 4

Ws

Wp Wp Wp Wp

T

807



Illustration Gustafson’s Law

p = 1

t

Ws

Wp

p = 2

Ws

Wp Wp

p = 4

Ws

Wp Wp Wp Wp

T

807



Illustration Gustafson’s Law

p = 1

t

Ws

Wp

p = 2

Ws

Wp Wp

p = 4

Ws

Wp Wp Wp Wp

T

807



Gustafson’s Law
Work that can be executed by one processor in time T :

Ws +Wp = T

Work that can be executed by p processors in time T :

Ws + p ·Wp = λ · T + p · (1− λ) · T

Speedup:

Sp =
Ws + p ·Wp

Ws +Wp
= p · (1− λ) + λ

= p− λ(p− 1)
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Amdahl vs. Gustafson

Amdahl Gustafson

p = 4 p = 4
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Amdahl vs. Gustafson

Amdahl Gustafson

p = 4

p = 4
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Amdahl vs. Gustafson

Amdahl Gustafson

p = 4 p = 4
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Amdahl vs. Gustafson

The laws of Amdahl and Gustafson are models of speedup for
parallelization.

Amdahl assumes a fixed relative sequential portion, Gustafson
assumes a fixed absolute sequential part (that is expressed as
portion of the work W1 and that does not increase with increasing
work).

The two models do not contradict each other but describe the
runtime speedup of different problems and algorithms.
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27.5 Task- and Data-Parallelism
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Parallel Programming Paradigms

Task Parallel: Programmer explicitly defines parallel tasks.
Data Parallel: Operations applied simulatenously to an aggregate
of individual items.
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Example Data Parallel (OMP)

double sum = 0, A[MAX];
#pragma omp parallel for reduction (+:ave)
for (int i = 0; i< MAX; ++i)

sum += A[i];
return sum;
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Example Task Parallel (C++11 Threads/Futures)

double sum(Iterator from, Iterator to)
{

auto len = from − to;
if (len > threshold){

auto future = std::async(sum, from, from + len / 2);
return sumS(from + len / 2, to) + future.get();

}
else

return sumS(from, to);
}
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Work Partitioning and Scheduling

Partitioning of the work into parallel task (programmer or system)

One task provides a unit of work
Granularity?

Scheduling (Runtime System)

Assignment of tasks to processors
Goal: full resource usage with little overhead
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Example: Fibonacci P-Fib

if n ≤ 1 then
return n

else
x← spawn P-Fib(n− 1)
y ← spawn P-Fib(n− 2)
sync
return x+ y;
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P-Fib Task Graph
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P-Fib Task Graph
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Question

Each Node (task) takes 1 time unit.
Arrows depict dependencies.
Minimal execution time when number
of processors =∞?

critical path
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Performance Model

p processors
Dynamic scheduling
Tp: Execution time on p processors
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Performance Model

Tp: Execution time on p processors
T1: work: time for executing total work
on one processor
T1/Tp: Speedup
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Performance Model

T∞: span: critical path, execution time
on∞ processors. Longest path from
root to sink.
T1/T∞: Parallelism: wider is better
Lower bounds:

Tp ≥ T1/p Work law
Tp ≥ T∞ Span law
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Greedy Scheduler

Greedy scheduler: at each time it schedules as many as availbale
tasks.
Theorem
On an ideal parallel computer with p processors, a greedy scheduler
executes a multi-threaded computation with work T1 and span T∞ in
time

Tp ≤ T1/p+ T∞
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Beispiel
Assume p = 2.

Tp = 5 Tp = 4
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Proof of the Theorem

Assume that all tasks provide the same amount of work.

Complete step: p tasks are available.

incomplete step: less than p steps available.

Assume that number of complete steps larger than bT1/pc. Executed work
≥ bT1/pc · p+ p = T1 − T1 mod p+ p > T1. Contradiction. Therefore maximally
bT1/pc complete steps.

We now consider the graph of tasks to be done. Any maximal (critical) path starts
with a node t with deg−(t) = 0. An incomplete step executes all available tasks t
with deg−(t) = 0 and thus decreases the length of the span. Number incomplete
steps thus limited by T∞.
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Consequence

if p� T1/T∞, i.e. T∞ � T1/p, then Tp ≈ T1/p.

Example Fibonacci
T1(n)/T∞(n) = Θ(φn/n). For moderate sizes of n we can use a lot
of processors yielding linear speedup.
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Granularity: how many tasks?
#Tasks = #Cores?

Problem if a core cannot be fully used
Example: 9 units of work. 3 core.
Scheduling of 3 sequential tasks.

Exclusive utilization:

P1

P2

P3

s1

s2

s3

Execution Time: 3 Units

Foreign thread disturbing:

P1

P2

P3

s1

s2 s1

s3

Execution Time: 5 Units
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Granularity: how many tasks?
#Tasks = Maximum?
Example: 9 units of work. 3 cores.
Scheduling of 9 sequential tasks.

Exclusive utilization:

P1

P2

P3

s1

s2

s3

s4

s5

s6

s7

s8

s9

Execution Time: 3 + ε Units

Foreign thread disturbing:

P1

P2

P3
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s2

s3

s4 s5

s6 s7

s8

s9

Execution Time: 4 Units. Full uti-
lization.
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Granularity: how many tasks?

#Tasks = Maximum?
Example: 106 tiny units of work.

P1

P2

P3

Execution time: dominiert vom Overhead.
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Granularity: how many tasks?

Answer: as many tasks as possible with a sequential cutoff such that
the overhead can be neglected.
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Example: Parallelism of Mergesort

Work (sequential runtime) of
Mergesort T1(n) = Θ(n log n).
Span T∞(n) = Θ(n)

Parallelism T1(n)/T∞(n) = Θ(log n)
(Maximally achievable speedup with
p =∞ processors)

split

merge
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