27. Parallel Programming |

Moore’s Law and the Free Lunch, Hardware Architectures, Parallel
Execution, Flynn’s Taxonomy, Scalability: Amdahl and Gustafson,
Data-parallelism, Task-parallelism, Scheduling

[Task-Scheduling: Cormen et al, Kap. 27] [Concurrency, Scheduling:
Williams, Kap. 1.1 —1.2]
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The Free Lunch

The free lunch is over 49

40"The Free Lunch is Over", a fundamental turn toward concurrency in software, Herb Sutter, Dr. Dobb’s Journal, 2005



Moore’s Law

Observation by Gordon E. Moore: T

The number of transistors on integrated circuits doubles
approximately every two years.




Moore’s Law — The number of transistors on integrated circuit chips (1971-2016)
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Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. e
This advancement is important as other aspects of technological progress — such as processing speed or the price of electronic products — are
strongly linked to Moore's law.
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For a long time...

m the sequential execution became faster ("Instruction Level
Parallelism”, "Pipelining", Higher Frequencies)

m more and smaller transistors = more performance
m programmers simply waited for the next processor generation



Today

m the frequency of processors does not increase significantly and
more (heat dissipation problems)

m the instruction level parallelism does not increase significantly any
more

m the execution speed is dominated by memory access times (but
caches still become larger and faster)



Trends
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Multicore

m Use transistors for more compute cores
m Parallelism in the software

m Programmers have to write parallel programs to benefit from new
hardware



Forms of Parallel Execution

m Vectorization

m Pipelining

m Instruction Level Parallelism
m Multicore / Multiprocessing
m Distributed Computing



Vectorization

Parallel Execution of the same operations on elements of a vector
(register)

X
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Vectorization

Parallel Execution of the same operations on elements of a vector
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Home Work

B =l
E =l




More efficient
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Pipeline
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Balanced / Unbalanced Pipeline

A pipeline is called balanced, if each step takes the same
computation time.

Software-Pipelines are often unbalanced.

In the following we assume that each step of the pipeline takes as
long as the longest step.



Throughput

m Throughput = Input or output data rate
m Number operations per time unit
m larger througput is better

|
1

th hput =
FONEAPIE = hax(computationtime(stages))

ignores lead-in and lead-out times



Latency

m Time to perform a computation
m latency = #stages - max(computationtime(stages))



Homework Example

Washing Ty = 1h, Drying T1 = 2h, lroning T5 = 1h, Tidy up
T5 = 0.5h

m Latency L = 8h
m In the long run: 1 batch every 2h (0.5/h).



Throughput vs. Latency

m Increasing throughput can increase latency

m Stages of the pipeline need to communicate and synchronize:
overhead



Pipelines in CPUs

Fetch Decode Execute Data Fetch Writeback

Multiple Stages

m Every instruction takes 5 time units (cycles)
m In the best case: 1 instruction per cycle, not always possible
(“stalls”)

Paralellism (several functional units) leads to faster execution.



ILP - Instruction Level Parallelism

Modern CPUs provide several hardware units and execute
independent instructions in parallel.

m Pipelining

m Superscalar CPUs (multiple instructions per cycle)

m Out-Of-Order Execution (Programmer observes the sequential
execution)

m Speculative Execution ()



27.2 Hardware Architectures



Shared vs. Distributed Memory

Shared Memory Distributed Memory
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Shared vs. Distributed Memory Programming

m Categories of programming interfaces

m Communication via message passing
m Communication via memory sharing

m It is possible:

m to program shared memory systems as distributed systems (e.g. with
message passing MPI)

m program systems with distributed memory as shared memory systems
(e.g. partitioned global address space PGAS)



Shared Memory Architectures

m Multicore (Chip Multiprocessor - CMP)

m Symmetric Multiprocessor Systems (SMP)
m Simultaneous Multithreading (SMT = Hyperthreading)

m one physical core, Several Instruction Streams/Threads: several virtual
cores

m Between ILP (several units for a stream) and multicore (several units for
several streams). Limited parallel performance.

m Non-Uniform Memory Access (NUMA)

Same programming interface



Overview
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An Example
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Flynn’s Taxonomy

SISD

S| = Single Instruction
MI = Multiple Instructions

MISD
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Flynn’s Taxonomy
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Flynn’s Taxonomy
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Flynn’s Taxonomy

Single-Core
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Massively Parallel Hardware

[General Purpose] Graphical Processing
Units ([GP]GPUs)
m Revolution in High Performance R
Computing
m Calculation 4.5 TFlops vs. 500 GFlops

m Memory Bandwidth 170 GB/s vs. 40
GB/s

m SIMD

m High data parallelism
m Requires own programming model. Z.B.
CUDA / OpenCL




27.3 Multi-Threading, Parallelism and Concurrency



Processes and Threads

m Process: instance of a program

m each process has a separate context, even a separate address space
m OS manages processes (resource control, scheduling, synchronisation)

m Threads: threads of execution of a program

m Threads share the address space
m fast context switch between threads



Why Multithreading?

m Avoid “polling” resources (files, network, keyboard)
m Interactivity (e.g. responsivity of GUI programs)

m Several applications / clients in parallel

m Parallelism (performance!)



Multithreading conceptually

Thread 1 ----- - [ [
Single Core Thread 2 --------- - -
Thread 3 -------------- - e
Thread 1 ----- I - -
Multi Core Thread 2 ----- I, - - - -
Thread 3 ----- I - - - -



Thread switch on one core (Preemption)

thread 1 thread 2



Thread switch on one core (Preemption)

thread 1 thread 2

busy |
Interrupt idle

> Store State t;



Thread switch on one core (Preemption)

thread 1 thread 2

busy |
Interrupt idle

> Store State t;
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Load State ¢




Thread switch on one core (Preemption)

thread 1 threlad 2
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Thread switch on one core (Preemption)

thread 1 thread 2
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Parallelitat vs. Concurrency

m Farallelism: Use extra resources to solve a problem faster
m Concurrency: Correctly and efficiently manage access to shared

resources
m Begriffe Uberlappen offensichtlich. Bei parallelen Berechnungen

besteht fast immer Synchronisierungsbedarf.

Parallelism Concurrency

Work Requests

A7INS N7

Resources Resources

793



Thread Safety

Thread Safety means that in a concurrent application of a program
this always yields the desired results.

Many optimisations (Hardware, Compiler) target towards the correct
execution of a sequential program.

Concurrent programs need an annotation that switches off certain
optimisations selectively.



Example: Caches

m Access to registers faster than to
shared memory.

m Principle of locality.
m Use of Caches (transparent to the
programmer)

If and how far a cache coherency is guar-
anteed depends on the used system.




27.4 Scalability: Amdahl and Gustafson



Scalability

In parallel Programming:

m Speedup when increasing number p of processors
m What happens if p — co?
m Program scales linearly: Linear speedup.



Parallel Performance

Given a fixed amount of computing work T/ (number computing
steps)

Sequential execution time T3

Parallel execution time on p CPUs

m Perfection: T, =11 /p
m Performance loss: T, > T} /p (usual case)
m Sorcery: T, < T /p



Parallel Speedup

Parallel speedup S, on p CPUs:

w/T, Th
gy =—=t=—=
w/T, T,
m Perfection: linear speedup S, = p
m Performance loss: sublinear speedup S, < p (the usual case)
m Sorcery: superlinear speedup .S, > p

Efficiency:E, = S,/p



Reachable Speedup?

Parallel Program

Parallel Part
80%

Ty =10
Ty =7

Seq. Part
20%



Reachable Speedup?

Parallel Program

Parallel Part Seq. Part
80% 20%
T, =10
~10-0.8

Ty = +10:-02=1+2=3

8



Reachable Speedup?

Parallel Program

Parallel Part Seq. Part
80% 20%
T, =10
10 - 0.
Ty = 0808+10-0.2:1+2:3
T, 10
Sy=—==—~33<8 ()



Amdahl’s Law: Ingredients

Computational work ¥ falls into two categories

m Paralellisable part IV,

m Not parallelisable, sequential part IV,

Assumption: W can be processed sequentially by one processor in
W time units (17 = W):

T, =W, + W,
T,>Ws+W,/p



Amdahl’s Law

=




Amdahl’s Law

With sequential, not parallelizable fraction A\: W, = AW,
W, =(1-XW:
1

A4 =2

S, <



Amdahl’s Law

With sequential, not parallelizable fraction A\: W, = AW,
W, =(1-XW:
1

A4 =2

S, <

Thus

n
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lllustration Amdahl’s Law

p=1
W

W,




lllustration Amdahl’s Law

W,

W,




lllustration Amdahl’s Law

W
W,

W,




Amdahl’s Law is bad news

All non-parallel parts of a program can cause problems



Gustafson’s Law

m Fix the time of execution

m Vary the problem size.

m Assumption: the sequential part stays constant, the parallel part
becomes larger



lllustration Gustafson’s Law

p=1
W

W,




lllustration Gustafson’s Law

W, w, W,




lllustration Gustafson’s Law

W,

W,

W,

W,

W,

W,

W,
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Gustafson’s Law
Work that can be executed by one processor in time T
Ws+W,=T
Work that can be executed by p processors in time 7':
Ws+p-Wy=AX-T+p-(1-XN) T
Speedup:

PT W, + W, pr(1=-A)+

=p—Alp—1)




Amdahl vs. Gustafson

Amdabhl Gustafson




Amdahl vs. Gustafson

Amdabhl Gustafson

p=4




Amdahl vs. Gustafson

Amdabhl

p:
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Amdahl vs. Gustafson

The laws of Amdahl and Gustafson are models of speedup for
parallelization.

Amdahl assumes a fixed relative sequential portion, Gustafson
assumes a fixed absolute sequential part (that is expressed as
portion of the work 1/, and that does not increase with increasing
work).

The two models do not contradict each other but describe the
runtime speedup of different problems and algorithms.



27.5 Task- and Data-Parallelism



Parallel Programming Paradigms

m Jask Parallel: Programmer explicitly defines parallel tasks.

m Data Parallel: Operations applied simulatenously to an aggregate
of individual items.



Example Data Parallel (OMP)

double sum = 0, A[MAX];
#pragma omp parallel for reduction (+:ave)
for (int i = 0; i< MAX; ++i)
sum += A[i];
return sum;
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Example Task Parallel (C++11 Threads/Futures)

double sum(Iterator from, Iterator to)
{
auto len = from — to;
if (len > threshold){
auto future = std::async(sum, from, from + len / 2);
return sumS(from + len / 2, to) + future.get();
}
else
return sumS(from, to);



Work Partitioning and Scheduling

m Partitioning of the work into parallel task (programmer or system)

m One task provides a unit of work
m Granularity?

m Scheduling (Runtime System)

m Assignment of tasks to processors
m Goal: full resource usage with little overhead



Example: Fibonacci P-Fib

if n <1 then
return n

else
x < spawn P-Fib(n — 1)
y < spawn P-Fib(n — 2)
sync
return x + v;



P-Fib Task Graph
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P-Fib Task Graph




Question

m Each Node (task) takes 1 time unit.
m Arrows depict dependencies.

m Minimal execution time when number
of processors = 00?




Question

m Each Node (task) takes 1 time unit.
m Arrows depict dependencies.

m Minimal execution time when number
of processors = 00?

critical path



Performance Model

B p Processors
m Dynamic scheduling
m 7,: Execution time on p processors



Performance Model

m 7,: Execution time on p processors

m 7: work: time for executing total work
on one processor

m 7 /T,: Speedup



Performance Model

m T..: span: critical path, execution time
on oo processors. Longest path from
root to sink.

m 71 /T.: Parallelism: wider is better
m Lower bounds:

T, >Ti/p Work law
T, > T, Spanlaw



Greedy Scheduler

Greedy scheduler: at each time it schedules as many as availbale
tasks.

Theorem

On an ideal parallel computer with p processors, a greedy scheduler
executes a multi-threaded computation with work T7 and spanl, in
time

Tp S Tl/p"'Too




Beispiel

Assume p = 2.
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Beispiel

Assume p = 2.




Beispiel

Assume p = 2.




Beispiel

Assume p = 2.




Proof of the Theorem

Assume that all tasks provide the same amount of work.

m Complete step: p tasks are available.

m incomplete step: less than p steps available.

Assume that number of complete steps larger than |7} /p|. Executed work

> |Ti/p| -p+p=T —T1 mod p+ p > T). Contradiction. Therefore maximally
| T1/p| complete steps.

We now consider the graph of tasks to be done. Any maximal (critical) path starts
with a node ¢ with deg™ () = 0. An incomplete step executes all available tasks ¢

with deg™ (¢) = 0 and thus decreases the length of the span. Number incomplete

steps thus limited by 7.



Consequence

ifp << Ti/Tw,ie. T, < T1/p, then T, = 11 /p.

Example Fibonacci

Ti(n)/Tx(n) = ©(¢"/n). For moderate sizes of n we can use a lot
of processors yielding linear speedup.




Granularity: how many tasks?

m #Tasks = #Cores?



Granularity: how many tasks?

m #Tasks = #Cores?
m Problem if a core cannot be fully used



Granularity: how many tasks?

m #Tasks = #Cores?
m Problem if a core cannot be fully used

m Example: 9 units of work. 3 core.
Scheduling of 3 sequential tasks.



Granularity: how many tasks?

m #Tasks = #Cores?
m Problem if a core cannot be fully used %

m Example: 9 units of work. 3 core.
Scheduling of 3 sequential tasks.

Exclusive utilization: Foreign thread disturbing:
P1 s1 P1 sl

P2 s2 P2 s2 s
P3 s3 P3 s3

Execution Time: 3 Units Execution Time: 5 Units



Granularity: how many tasks?

m #Tasks = Maximum?

m Example: 9 units of work. 3 cores.
Scheduling of 9 sequential tasks.



Granularity: how many tasks?

m #Tasks = Maximum?

m Example: 9 units of work. 3 cores. e

Scheduling of 9 sequential tasks.

Exclusive utilization: Foreign thread disturbing:

P1 si s4 s7 P1 s1

P2 s2 s5 s8 P2 s2 s4 s5 s8

P3 s3 s6 s9 P3 s3 s6 s7 s9
Execution Time: 3 + ¢ Units Execution Time: 4 Units. Full uti-

lization.



Granularity: how many tasks?

m #Tasks = Maximum?
m Example: 10 tiny units of work.



Granularity: how many tasks?

m #Tasks = Maximum?

m Example: 10 tiny units of work.
P1
P2
P3

Execution time: dominiert vom Overhead.



Granularity: how many tasks?

Answer: as many tasks as possible with a sequential cutoff such that
the overhead can be neglected.



Example: Parallelism of Mergesort

m Work (sequential runtime) of
Mergesort T1(n) = O(nlogn).

m Span T (n) = O(n)

m Parallelism T3 (n)/Tx(n) = ©(logn)
(Maximally achievable speedup with
p = 00 Processors)

merge
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