27. Parallel Programming |

Moore’s Law and the Free Lunch, Hardware Architectures, Parallel
Execution, Flynn’s Taxonomy, Scalability: Amdahl and Gustafson,
Data-parallelism, Task-parallelism, Scheduling

[Task-Scheduling: Cormen et al, Kap. 27] [Concurrency, Scheduling:

Williams, Kap. 1.1 —1.2]

Moore’s Law

Observation by Gordon E. Moore:

Gordon E Moore (1 929)

The number of transistors on integrated circuits doubles

approximately every two years.

760

762

The Free Lunch

The free lunch is over *°

40"The Free Lunch is Over", a fundamental turn toward concurrency in software, Herb Sutter, Dr. Dobb’s Journal, 2005

Moore’s Law — The number of transistors on 1ntegrated circuit chips (1971-2016) ourWorld

Moore'saw describes the cmpmm x(‘g\\l’n ity that the number of transistors on ml(‘gl ated circuits doubles approximately every two ye

anc
strongly lmked to Muure’s aw.

20,000,000,000

1BM 213 Storage Controler

10,000,000,000 18-core Xeon Haswel-£5. o‘”““f il
Xbox One main S0C, 9 o?i w?x?-ﬂogwe” £5
S1ogore Xeon P e Xeon hy Bricg
5/000.000,000 g8 §om
S Xeonninaen B A AR ircore ARME4 “moblle S0C")
Eondy il 8 oo Corg s RS
Dut oIS BLE Core 7 Broacueliu
P 9¢ Glscicore s GPU G Core 1 Stake K
Peatium D Prsier Rsac-core + GPU Core 7 Heswel
1,000,000,000 e, FOWER cﬁ-) Onopio A7 Gual-core ARMIGS ‘mabie SoC")
B e 7 (Qu
500,000,000 o eadfildTam e

taniam 2 cison 61O,
D Smitfld . oo Duo Gomos
Harium 2KV 9 $C° 0 Cove s Do waitsais 3u
Pentum ¢ rescott 29 S @iore Dug Alencale
2 Codar il

100,000,000 AMDKOD i 4 prancon

_ o ¢ Nortwoodey @
g S0000.000 Pem;@;‘;;‘;;“;;wO%Ewmmm o
3 78 @pentum 1 Goppermine PARM Cortex-A9
8 o Ko
5 10,000,000 ANDKSg _Qpami ol
G 5,000,000 g,
2 being ke
£ P
1,000,000 noasny,
500,000 ISmhtite anroo
neiasscg igols O
oo g 9w
hec WAL
100,000 " o REHES o
50,000 ® onams e
Intel 8086 € Intel 8088 °n KA e
10,000 gm0 oz g & o Bire
RCAZ802 ne\ 8085
5,000 jeigoogy ~ Ginge050
A 4W) Technolo
Vol QB Technoloay
ot a8
1,000
V" P FF ST TS S S S N
S8 g FFF PP S S ES S S S

Year of introduction
Data source: Wikipedia (https://en.wikipedia.org/wiki/Transistor_count)

The data visualization is available at OurWorldinData.org. There you find more visualizations and research on this topic. Licensed under GC-BY-SA by the author Max Roser.

761

Slourworldindata.org, https://en.wikipedia.org/wiki/Transistor_count

For a long time...

m the sequential execution became faster ("Instruction Level
Parallelism”, "Pipelining", Higher Frequencies)

m more and smaller transistors = more performance
m programmers simply waited for the next processor generation

Trends

10,000,000

vl
Intel CPU Trends e

(sources: Intel, Wikipedia, K. Olukotun) y

1,000,000

100,000

10,000

1,000

100

@ Clock Speed (W)
PP aPower (W)
@ Pert/Clock (LP)

0
1970 1975 1980 1985 1990 1995 2000 2005 2010

764

ca/publications/concurrency-ddj.htm

.gotw.

ttp://www

766

Today

m the frequency of processors does not increase significantly and
more (heat dissipation problems)

m the instruction level parallelism does not increase significantly any
more

m the execution speed is dominated by memory access times (but
caches still become larger and faster)

Multicore

m Use transistors for more compute cores
m Parallelism in the software

m Programmers have to write parallel programs to benefit from new
hardware

~
o
N

Forms of Parallel Execution

m Vectorization

m Pipelining

m Instruction Level Parallelism
m Multicore / Multiprocessing
m Distributed Computing

Home Work

R

B =i

Parallel Execution of the same operations on elements of a vector

Vectorization
(register)

s
skalar :@—»

Yy

T1|To | T3 | T4
vector

Y| Y2 | Y3 | Y

1| T | X3 | X4
vector

Y| Y2 | Y3 | Ya
More efficient

770

O

T4+ Ys

_rgéi
1st batch Io7| 1o

(Input @)

2nd batch |

(Input 1)

]

I
[

Pipeline

T@
Io|Se
I1
I2
I3
I4
I5
I6

T9

Inputs

S3
>

Lead In Full Utilization Lead out

Throughput

m Throughput = Input or output data rate
m Number operations per time unit
m larger througput is better

]
1

max(computationtime(stages))

throughput =

ignores lead-in and lead-out times

774

Balanced / Unbalanced Pipeline

A pipeline is called balanced, if each step takes the same
computation time.

Software-Pipelines are often unbalanced.

In the following we assume that each step of the pipeline takes as
long as the longest step.

773

Latency

m Time to perform a computation
m latency = #stages - max(computationtime(stages))

775

Homework Example

Washing Ty = 1h, Drying T} = 2h, Ironing 75 = 1A, Tidy up
T35 = 0.5h

m Latency L = 8h
m In the long run: 1 batch every 2h (0.5/h).

Pipelines in CPUs

Fetch Decode Execute Data Fetch Writeback

Multiple Stages

m Every instruction takes 5 time units (cycles)
m In the best case: 1 instruction per cycle, not always possible
(“stalls”)

Paralellism (several functional units) leads to faster execution.

Throughput vs. Latency

m Increasing throughput can increase latency
m Stages of the pipeline need to communicate and synchronize:

overhead

ILP - Instruction Level Parallelism

Modern CPUs provide several hardware units and execute
independent instructions in parallel.

m Pipelining

m Superscalar CPUs (multiple instructions per cycle)

m Out-Of-Order Execution (Programmer observes the sequential
execution)

m Speculative Execution ()

27.2 Hardware Architectures

Shared vs. Distributed Memory Programming

m Categories of programming interfaces

m Communication via message passing
m Communication via memory sharing

m It is possible:

m to program shared memory systems as distributed systems (e.g. with
message passing MPI)

m program systems with distributed memory as shared memory systems
(e.g. partitioned global address space PGAS)

780

782

Shared vs. Distributed Memory

Shared Memory Distributed Memory
CPU||CPU | |CPU CPU||CPU || CPU
Mem

Mem | Mem || Mem

Interconnect

Shared Memory Architectures

m Multicore (Chip Multiprocessor - CMP)

m Symmetric Multiprocessor Systems (SMP)
m Simultaneous Multithreading (SMT = Hyperthreading)

m one physical core, Several Instruction Streams/Threads: several virtual
cores

m Between ILP (several units for a stream) and multicore (several units for
several streams). Limited parallel performance.

m Non-Uniform Memory Access (NUMA)

Same programming interface

783

Overview

core core

CPU CPU

CPU CPU
| [v |
Memory ol -
CMP SMP NUMA
784
Flynn’s Taxonomy
Single-Core Fehlertoleranz
SISD MISD
M |Instruction|Instruction||nstruction|
Sl = Single | i Data
T eaerns
SD = Single Data
| Instruction | | Instructionl Instruction Ilnstru ction |
| | } ! | l
| Data | Data I Data | | Data | Data I Data |

Vector Computing / GPU

Multi-Core

786

An Example

AMD Bulldozer: be-
tween CMP and SMT

m 2x integer core
m 1x floating point core

Massively Parallel Hardware

[General Purpose] Graphical Processing

Units ([GP]GPUs)

m Revolution in High Performance

Computing

m Calculation 4.5 TFlops vs. 500 GFlops
m Memory Bandwidth 170 GB/s vs. 40

GB/s
m SIMD

m High data parallelism

m Requires own programming model. Z.B.

CUDA / OpenCL

Theoretical GFLOP/s

SWikipedia

787

27.3 Multi-Threading, Parallelism and Concurrency

788

Why Multithreading?

m Avoid “polling” resources (files, network, keyboard)
m Interactivity (e.g. responsivity of GUI programs)

m Several applications / clients in parallel

m Parallelism (performance!)

790

Processes and Threads

m Process: instance of a program

B each process has a separate context, even a separate address space
m OS manages processes (resource control, scheduling, synchronisation)

m Threads: threads of execution of a program

m Threads share the address space
m fast context switch between threads

Multithreading conceptually

Thread 1 ----- [[—— -
Single Core Thread 2 --------- T -
Thread3 -------------- - - -
Thread 1 ----- I, - - - -
Multi Core Thread 2 ----- I - - - -

Thread 3 ----- I - - -

789

791

Thread switch on one core (Preemption)

thread 1 thread 2
busyJ{ |
Interrupt Vidl
: » Store State ¢; e
! ¥
| Load State ¢9
idle i busy
i Interrupt
: Store State 5 < .
| ¥ |
¢ Load State ¢; idle
busyl |
Thread Safety

Thread Safety means that in a concurrent application of a program
this always yields the desired results.

Many optimisations (Hardware, Compiler) target towards the correct
execution of a sequential program.

Concurrent programs need an annotation that switches off certain
optimisations selectively.

794

Parallelitat vs. Concurrency

m Farallelism: Use extra resources to solve a problem faster

m Concurrency: Correctly and efficiently manage access to shared
resources

m Begriffe Uberlappen offensichtlich. Bei parallelen Berechnungen
besteht fast immer Synchronisierungsbedarf.

Parallelism Concurrency
Work Requests
Resources Resources

793

Example: Caches

m Access to registers faster than to
shared memory.

m Principle of locality.
m Use of Caches (transparent to the
programmer)

If and how far a cache coherency is guar-
anteed depends on the used system.

27.4 Scalability: Amdahl and Gustafson

Parallel Performance

Given a fixed amount of computing work 1 (number computing
steps)

Sequential execution time T}

Parallel execution time on p CPUs

m Perfection: T, =T’ /p
m Performance loss: T}, > T} /p (usual case)
m Sorcery: T, < T1/p

798

Scalability

In parallel Programming:

m Speedup when increasing number p of processors
m What happens if p — 00?
m Program scales linearly: Linear speedup.

Parallel Speedup

Parallel speedup S, on p CPUs:
_WyT, I

W/ T,

Sp

m Perfection: linear speedup S, = p
m Performance loss: sublinear speedup S, < p (the usual case)
m Sorcery: superlinear speedup S, > p

Efficiency:E, = S,/p

799

Reachable Speedup?
Parallel Program
Parallel Part Seq. Part
80% 20%
T, =10
Ty =7
=008 02— 142-3
T 1
58::1:70%33<8 (') 800
Amdahl’s Law
Tl Ws + W,
Sp=—=< =
g p - W+

802

Amdahl’s Law: Ingredients

Computational work W falls into two categories

m Paralellisable part W,
m Not parallelisable, sequential part W,

Assumption: 1V can be processed sequentially by one processor in
W time units (77 = W):

T1:I/V5+Wp
T, > Ws+W,/p

801

Amdahl’s Law

With sequential, not parallelizable fraction A\: W, = AW,
W,=(1-NW:
1

e

Thus

1
< =

lllustration Amdahl’s Law Amdahl’s Law is bad news

p=1 p=2 p=4
W, W W
W,
T i All non-parallel parts of a program can cause problems
P

t T

W,
Gustafson’s Law lllustration Gustafson’s Law

p=1 p=2 p=4
W, W, W,
m Fix the time of execution
m Vary the problem size.
m Assumption: the sequential part stays constant, the parallel part t
becomes larger Wy W, W W, W, W, W,

806

Gustafson’s Law
Work that can be executed by one processor in time T
Wi+ W, =T
Work that can be executed by p processors in time 7'
Ws+p - Wy=X-T+p-(1=X)-T
Speedup:

st p-
g Wetp- Wy 3y 4
P TW, W, prI=A)+

=p—Ap-—1)

Amdahl vs. Gustafson

The laws of Amdahl and Gustafson are models of speedup for
parallelization.

Amdahl assumes a fixed relative sequential portion, Gustafson
assumes a fixed absolute sequential part (that is expressed as
portion of the work 1/} and that does not increase with increasing
work).

The two models do not contradict each other but describe the
runtime speedup of different problems and algorithms.

808

810

Amdahl vs. Gustafson

Amdabhl

p=4

27.5 Task- and Data-Parallelism

Gustafson
—_—
p=4

809

811

Parallel Programming Paradigms

m Task Parallel: Programmer explicitly defines parallel tasks.

m Data Parallel: Operations applied simulatenously to an aggregate
of individual items.

812

Example Task Parallel (C++11 Threads/Futures)

double sum(Iterator from, Iterator to)
{
auto len = from — to;
if (len > threshold){
auto future = std::async(sum, from, from + len / 2);
return sumS(from + len / 2, to) + future.get();
}
else
return sumS(from, to);

814

Example Data Parallel (OMP)

double sum = 0, A[MAX];
#pragma omp parallel for reduction (+:ave)
for (int i = 0; i< MAX; ++i)
sum += A[i];
return sum;

813

Work Partitioning and Scheduling

m Partitioning of the work into parallel task (programmer or system)

m One task provides a unit of work
m Granularity?

m Scheduling (Runtime System)

m Assignment of tasks to processors
m Goal: full resource usage with little overhead

815

Example: Fibonacci P-Fib

if n <1 then
| return n

else
x < spawn P-Fib(n — 1)
y < spawn P-Fib(n — 2)
sync
. return x + v,

P-Fib Task Graph

HO))

".lI'lI|I:::::!!I‘||iil‘|'iiii!l’
f(1)
£(1) £(0)

P-Fib Task Graph

£(3) £(2)

£(2) 0

sSpawn

join

816 817

Question

m Each Node (task) takes 1 time unit.
m Arrows depict dependencies.

m Minimal execution time when number
of processors = 00?

C
A

critical pat
"

818 819

Performance Model Performance Model

m T},: Execution time on p processors

m 7': work: time for executing total work
on one processor

m T3 /T,: Speedup

B D Processors
m Dynamic scheduling
m 7,: Execution time on p processors

820 821

Performance Model Greedy Scheduler
m 7T..: span: critical path, execution time Greedy scheduler: at each time it schedules as many as availbale
on oo processors. Longest path from tasks.
root to sink.
m 11 /T: Parallelism: wider is better On an ideal parallel computer with p processors, a greedy scheduler
m Lower bounds: executes a multi-threaded computation with work Ty and span T, in
time
T,>Ti/p Work law T, <Ti/p+Tx
T, > Ty Spanlaw

822 823

Beispiel

Assume p = 2.

Consequence

ifp <11 /T, ie. Too < T1/p, then T, = T} /p.

Example Fibonacci

Ti(n)/Tx(n) = ©(¢"/n). For moderate sizes of n we can use a lot
of processors yielding linear speedup.

824

826

Proof of the Theorem

Assume that all tasks provide the same amount of work.

m Complete step: p tasks are available.

m incomplete step: less than p steps available.

Assume that number of complete steps larger than |7} /p|. Executed work
> |Tv/p] -p+p=T,—T1 mod p—+p > T,. Contradiction. Therefore maximally
| T1/p| complete steps.

We now consider the graph of tasks to be done. Any maximal (critical) path starts
with a node t with deg™ (¢) = 0. An incomplete step executes all available tasks ¢
with deg™ (¢) = 0 and thus decreases the length of the span. Number incomplete
steps thus limited by T..

Granularity: how many tasks?

m #Tasks = #Cores?
m Problem if a core cannot be fully used

m Example: 9 units of work. 3 core.
Scheduling of 3 sequential tasks.

Exclusive utilization: Foreign thread disturbing:

P1 s1 P1 sl
P2 s2 P2 s2 s1
P3 s3 P3 s3

Execution Time: 3 Units Execution Time: 5 Units

825

827

Granularity: how many tasks?

m #Tasks = Maximum?

m Example: 9 units of work. 3 cores.

Scheduling of 9 sequential tasks.
Exclusive utilization:

P1 s1 s4 s7

P2 s2 sb s8

P3 s3 s6 s9
Execution Time: 3 + ¢ Units

A D0

Foreign thread disturbing:

P1
P2
P3

Execution Time: 4 Units. Full uti-

lization.

Granularity: how many tasks?

Answer: as many tasks as possible with a sequential cutoff such that

the overhead can be neglected.

s
s2
s3

s4
s6

s5
s7

s8
s9

30

Granularity: how many tasks?

m #Tasks = Maximum?
m Example: 10° tiny units of work.

P1
P2
P3

Execution time: dominiert vom Overhead.

Example: Parallelism of Mergesort

f\‘//:\%\
*{/ 7\?'\ (’\'/7\/'\
Hdbdbdh
: : ¥ &j R
m Work (sequential runtime) of Lok ‘ZK‘ fi
Mergesort 71 (n) = ©(nlogn). Ny
m Span T,,(n) = O(n) é é

m Parallelism T (n)/Tw(n) = O(logn)
(Maximally achievable speedup with
P = OO Processors)

C*-Q‘-O‘—C‘-O‘-O‘-C‘-C,‘\

split

merge

831

