26. Flow in Networks

Flow Network, Maximal Flow, Cut, Rest Network, Max-flow Min-cut Theorem, Ford-Fulkerson Method, Edmonds-Karp Algorithm, Maximal Bipartite Matching [Ottman/Widmayer, Kap. 9.7, 9.8.1], [Cormen et al, Kap. 26.1-26.3]

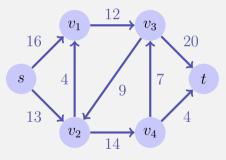
Motivation

- Modelling flow of fluents, components on conveyors, current in electrical networks or information flow in communication networks.
- Connectivity of Communication Networks, Bipartite Matching, Circulation, Scheduling, Image Segmentation, Baseball Eliminination...

Flow Network

Flow network G = (V, E, c): directed graph with *capacities*

- Antiparallel edges forbidden: $(u,v) \in E \Rightarrow (v,u) \notin E.$
- Model a missing edge (u, v) by c(u, v) = 0.
- Source s and sink t: special nodes. Every node v is on a path between s and t : s → v → t

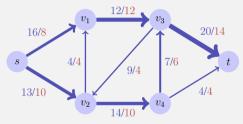


Flow

A *Flow* $f: V \times V \rightarrow \mathbb{R}$ fulfills the following conditions:

- Bounded Capacity: For all $u, v \in V$: $f(u, v) \le c(u, v)$.
- Skew Symmetry: For all $u, v \in V$: f(u, v) = -f(v, u).
- Conservation of flow: For all $u \in V \setminus \{s, t\}$:

$$\sum_{v \in V} f(u, v) = 0.$$



Value of the flow: $|f| = \sum_{v \in V} f(s, v).$ Here |f| = 18.

How large can a flow possibly be?

Limiting factors: cuts

• cut separating s from t: Partition of V into S and T with $s \in S$, $t \in T$.

- Capacity of a cut: $c(S,T) = \sum_{v \in S, v' \in T} c(v,v')$
- Minimal cut: cut with minimal capacity.
- Flow over the cut: $f(S,T) = \sum_{v \in S, v' \in T} f(v,v')$

Implicit Summation

Notation: Let $U, U' \subseteq V$

$$f(U,U') := \sum_{\substack{u \in U \\ u' \in U'}} f(u,u'), \qquad f(u,U') := f(\{u\},U')$$

Thus

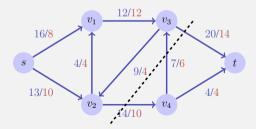
$$\bullet |f| = f(s, V)$$

- $\bullet f(U,U) = 0$
- $\bullet f(U,U') = -f(U',U)$
- $f(X \cup Y, Z) = f(X, Z) + f(Y, Z), \text{ if } X \cap Y = \emptyset.$
- f(R,V) = 0 if $R \cap \{s,t\} = \emptyset$. [flow conversation!]

How large can a flow possibly be?

For each flow and each cut it holds that f(S,T) = |f|:

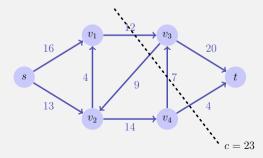
$$f(S,T) = f(S,V) - \underbrace{f(S,S)}_{0} = f(S,V)$$
$$= f(s,V) + f(\underbrace{S-\{s\}}_{\not\ni t,\not\ni s},V) = |f|.$$

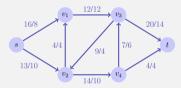


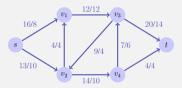
In particular, for each cut (S,T) of V.

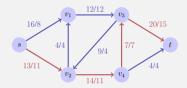
$$|f| \le \sum_{v \in S, v' \in T} c(v, v') = c(S, T)$$

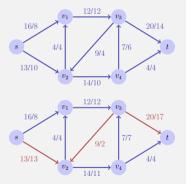
Will discover that equality holds for $\min_{S,T} c(S,T)$.

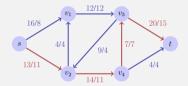


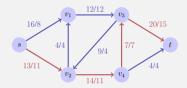


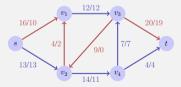




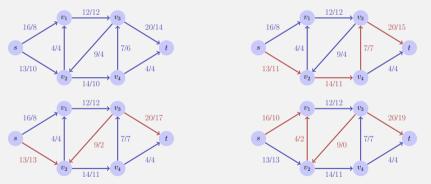








Naive Procedure



Conclusion: greedy increase of flow does not solve the problem.

The Method of Ford-Fulkerson

- Start with f(u, v) = 0 for all $u, v \in V$
- **Determine rest network**^{*} G_f and expansion path in G_f
- Increase flow via expansion path*
- Repeat until no expansion path available.

$$G_f := (V, E_f, c_f)$$

$$c_f(u, v) := c(u, v) - f(u, v) \quad \forall u, v \in V$$

$$E_f := \{(u, v) \in V \times V | c_f(u, v) > 0\}$$

*Will now be explained

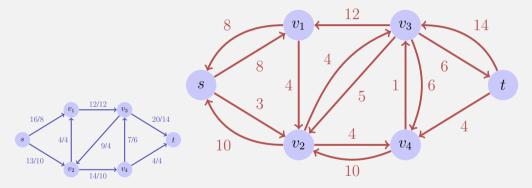
Let some flow \boldsymbol{f} in the network be given.

Finding:

- Increase of the flow along some edge possible, when flow can be increased along the edge,i.e. if f(u, v) < c(u, v).
 Rest capacity c_f(u, v) = c(u, v) f(u, v) > 0.
- Increase of flow against the direction of the edge possible, if flow can be reduced along the edge, i.e. if f(u, v) > 0. Rest capacity c_f(v, u) = f(u, v) > 0.

Rest Network

Rest network G_f provided by the edges with positive rest capacity:



Rest networks provide the same kind of properties as flow networks with the exception of permitting antiparallel capacity-edges

Observation

Theorem

Let G = (V, E, c) be a flow network with source s and sink t and f a flow in G. Let G_f be the corresponding rest networks and let f' be a flow in G_f . Then $f \oplus f'$ with

$$(f \oplus f')(u, v) = f(u, v) + f'(u, v)$$

defines a flow in G with value |f| + |f'|.

Proof

$f\oplus f'$ defines a flow in G:

capacity limit

$$(f \oplus f')(u,v) = f(u,v) + \underbrace{f'(u,v)}_{\leq c(u,v) - f(u,v)} \leq c(u,v)$$

skew symmetry

$$(f \oplus f')(u, v) = -f(v, u) + -f'(v, u) = -(f \oplus f')(v, u)$$

If flow conservation $u \in V - \{s, t\}$:

$$\sum_{v \in V} (f \oplus f')(u, v) = \sum_{v \in V} f(u, v) + \sum_{v \in V} f'(u, v) = 0$$

Proof

Value of $f\oplus f'$

$$f \oplus f'| = (f \oplus f')(s, V)$$
$$= \sum_{u \in V} f(s, u) + f'(s, u)$$
$$= f(s, V) + f'(s, V)$$
$$= |f| + |f'|$$

expansion path p: simple path from s to t in the rest network G_f . *Rest capacity* $c_f(p) = \min\{c_f(u, v) : (u, v) \text{ edge in } p\}$

Flow in G_f

Theorem

The mapping $f_p: V \times V \to \mathbb{R}$,

$$f_p(u,v) = \begin{cases} c_f(p) & \text{if } (u,v) \text{ edge in } p \\ -c_f(p) & \text{if } (v,u) \text{ edge in } p \\ 0 & \text{otherwise} \end{cases}$$

provides a flow in G_f with value $|f_p| = c_f(p) > 0$.

 f_p is a flow (easy to show). there is one and only one $u \in V$ with $(s, u) \in p$. Thus $|f_p| = \sum_{v \in V} f_p(s, v) = f_p(s, u) = c_f(p)$.

Strategy for an algorithm:

With an expansion path p in G_f the flow $f \oplus f_p$ defines a new flow with value $|f \oplus f_p| = |f| + |f_p| > |f|$.

Max-Flow Min-Cut Theorem

Theorem

Let f be a flow in a flow network G = (V, E, c) with source s and sink t. The following statements are equivalent:

- **1** f is a maximal flow in G
- **2** The rest network G_f does not provide any expansion paths
- It holds that |f| = c(S,T) for a cut (S,T) of G.

- (3) ⇒ (1): It holds that |f| ≤ c(S,T) for all cuts S,T. From |f| = c(S,T) it follows that |f| is maximal.
 (1) ⇒ (2): f maximal Flow in G. Assumption: G_f has some expansion path
 - $|f \oplus f_p| = |f| + |f_p| > |f|$. Contradiction.

$$\mathbf{Proof}\left(2\right) \Rightarrow \left(3\right)$$

Assumption: G_f has no expansion path Define $S = \{v \in V : \text{ there is a path } s \rightsquigarrow v \text{ in } G_f\}.$ $(S,T) := (S,V \setminus S) \text{ is a cut: } s \in S, t \in T.$ Let $u \in S$ and $v \in T$. Then $c_f(u,v) = 0$, also $c_f(u,v) = c(u,v) - f(u,v) = 0$. Somit f(u,v) = c(u,v). Thus

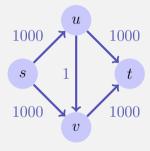
$$|f| = f(S,T) = \sum_{u \in S} \sum_{v \in T} f(u,v) = \sum_{u \in S} \sum_{v \in T} c(u,v) = C(S,T).$$

Algorithm Ford-Fulkerson(G, s, t)

```
Input : Flow network G = (V, E, c)
Output : Maximal flow f.
for (u, v) \in E do
    f(u,v) \leftarrow 0
while Exists path p: s \rightsquigarrow t in rest network G_f do
    c_f(p) \leftarrow \min\{c_f(u, v) : (u, v) \in p\}
    foreach (u, v) \in p do
         if (u, v) \in E then
              f(u,v) \leftarrow f(u,v) + c_f(p)
         else
       f(v,u) \leftarrow f(u,v) - c_f(p)
```

Analysis

- The Ford-Fulkerson algorithm does not necessarily have to converge for irrational capacities. For integers or rational numbers it terminates.
- For an integer flow, the algorithms requires maximally |f_{max}| iterations of the while loop (because the flow increases minimally by 1). Search a single increasing path (e.g. with DFS or BFS) O(|E|) Therefore O(f_{max}|E|).



With an unlucky choice the algorithm may require up to 2000 iterations here.

Edmonds-Karp Algorithm

Choose in the Ford-Fulkerson-Method for finding a path in G_f the expansion path of shortest possible length (e.g. with BFS)

Edmonds-Karp Algorithm

Theorem

When the Edmonds-Karp algorithm is applied to some integer valued flow network G = (V, E) with source s and sink t then the number of flow increases applied by the algorithm is in $\mathcal{O}(|V| \cdot |E|)$. \Rightarrow Overal asymptotic runtime: $\mathcal{O}(|V| \cdot |E|^2)$

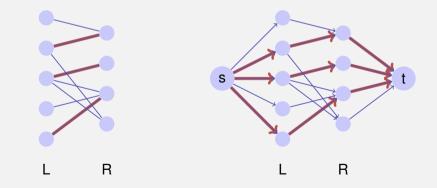
[Without proof]

Application: maximal bipartite matching

Given: bipartite undirected graph G = (V, E). Matching $M: M \subseteq E$ such that $|\{m \in M : v \in m\}| \le 1$ for all $v \in V$. Maximal Matching M: Matching M, such that $|M| \ge |M'|$ for each matching M'.

Corresponding flow network

Construct a flow network that corresponds to the partition L, R of a bipartite graph with source s and sink t, with directed edges from s to L, from L to R and from R to t. Each edge has capacity 1.



Integer number theorem

Theorem

If the capacities of a flow network are integers, then the maximal flow generated by the Ford-Fulkerson method provides integer numbers for each f(u, v), $u, v \in V$.

[without proof]

Consequence: Ford-Fulkerson generates for a flow network that corresponds to a bipartite graph a maximal matching $M = \{(u, v) : f(u, v) = 1\}.$