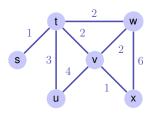
25. Minimum Spanning Trees

Motivation, Greedy, Algorithm Kruskal, General Rules, ADT Union-Find, Algorithm Jarnik, Prim, Dijkstra, Fibonacci Heaps [Ottman/Widmayer, Kap. 9.6, 6.2, 6.1, Cormen et al, Kap. 23, 19]

Problem

Given: Undirected, weighted, connected graph G = (V, E, c).

Wanted: Minimum Spanning Tree T=(V,E'): connected subgraph $E'\subset E$, such that $\sum_{e\in E'}c(e)$ minimal.



Application: cheapest / shortest cable network

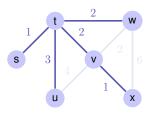
Greedy Procedure

Recall:

- Greedy algorithms compute the solution stepwise choosing locally optimal solutions.
- Most problems cannot be solved with a greedy algorithm.
- The Minimum Spanning Tree problem constitutes one of the exceptions.

Greedy Idea

Construct T by adding the cheapest edge that does not generate a cycle.



(Solution is not unique.)

Algorithm MST-Kruskal(G)

Input : Weighted Graph G = (V, E, c)

 $\mbox{\bf Output}$: Minimum spanning tree with edges A.

Sort edges by weight $c(e_1) \leq ... \leq c(e_m)$

 $A \leftarrow \emptyset$

 $\begin{array}{ll} \text{for } k=1 \text{ to } |E| \text{ do} \\ & | \text{ if } (V,A \cup \{e_k\}) \text{ acyclic then} \\ & | A \leftarrow A \cup \{e_k\} \end{array}$

return (V, A, c)

Correctness

At each point in the algorithm (V, A) is a forest, a set of trees.

MST-Kruskal considers each edge e_k exactly once and either chooses or rejects e_k

Notation (snapshot of the state in the running algorithm)

■ *A*: Set of selected edges

R: Set of rejected edges

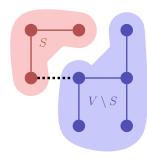
■ *U*: Set of yet undecided edges

699

Cut

A cut of G is a partition S, V - S of V. $(S \subseteq V)$.

An edge crosses a cut when one of its endpoints is in S and the other is in $V\setminus S$.



Rules

- Selection rule: choose a cut that is not crossed by a selected edge. Of all undecided edges that cross the cut, select the one with minimal weight.
- Rejection rule: choose a circle without rejected edges. Of all undecided edges of the circle, reject those with minimal weight.

Rules

Correctness

Kruskal applies both rules:

- A selected e_k connects two connection components, otherwise it would generate a circle. e_k is minimal, i.e. a cut can be chosen such that e_k crosses and e_k has minimal weight.
- ${\bf 2}$ A rejected e_k is contained in a circle. Within the circle e_k has minimal weight.

Theorem

Every algorithm that applies the rules above in a step-wise manner until $U = \emptyset$ is correct.

Consequence: MST-Kruskal is correct.

703

Selection invariant

Invariant: At each step there is a minimal spanning tree that contains all selected and none of the rejected edges.

If both rules satisfy the invariant, then the algorithm is correct. Induction:

- At beginning: U = E, $R = A = \emptyset$. Invariant obviously holds.
- Invariant is preserved.
- At the end: $U = \emptyset$, $R \cup A = E \Rightarrow (V, A)$ is a spanning tree.

Proof of the theorem: show that both rules preserve the invariant.

Selection rule preserves the invariant

At each step there is a minimal spanning tree T that contains all selected and none of the rejected edges.

Choose a cut that is not crossed by a selected edge. Of all undecided edges that cross the cut, select the egde e with minimal weight.

- Case 1: $e \in T$ (done)
- Case 2: $e \notin T$. Then $T \cup \{e\}$ contains a circle that contains e Circle must have a second edge e' that also crosses the cut.³⁸ Because $e' \notin R$, $e' \in U$. Thus $c(e) \le c(e')$ and $T' = T \setminus \{e'\} \cup \{e\}$ is also a minimal spanning tree (and c(e) = c(e')).

 $^{^{38}}$ Such a circle contains at least one node in S and one node in $V\setminus S$ and therefore at lease to edges between S and $V\setminus S$.

Rejection rule preserves the invariant

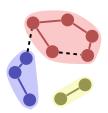
At each step there is a minimal spanning tree T that contains all selected and none of the rejected edges.

Choose a circle without rejected edges. Of all undecided edges of the circle, reject an edge e with minimal weight.

- \blacksquare Case 1: $e \notin T$ (done)
- Case 2: $e \in T$. Remove e from T, This yields a cut. This cut must be crossed by another edge e' of the circle. Because $c(e') \le c(e)$, $T' = T \setminus \{e\} \cup \{e'\}$ is also minimal (and c(e) = c(e')).

Implementation Issues

Consider a set of sets $i \equiv A_i \subset V$. To identify cuts and circles: membership of the both ends of an edge to sets?



707

Implementation Issues

General problem: partition (set of subsets) .e.g. $\{\{1, 2, 3, 9\}, \{7, 6, 4\}, \{5, 8\}, \{10\}\}$

Required: ADT (Union-Find-Structure) with the following operations

- \blacksquare Make-Set(*i*): create a new set represented by *i*.
- Find(e): name of the set i that contains e.
- Union(i, j): union of the sets with names i and j.

Union-Find Algorithm MST-Kruskal(*G*)

```
Input: Weighted Graph G = (V, E, c)
```

Output : Minimum spanning tree with edges A.

Sort edges by weight $c(e_1) \leq ... \leq c(e_m)$ $A \leftarrow \emptyset$

for
$$k = 1$$
 to $|V|$ do $|$ MakeSet (k)

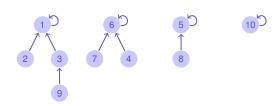
$$\begin{array}{c|c} \textbf{for } k = 1 \textbf{ to } |E| \textbf{ do} \\ & (u,v) \leftarrow e_k \\ & \textbf{if } \mathsf{Find}(u) \neq \mathsf{Find}(v) \textbf{ then} \\ & & \mathsf{Union}(\mathsf{Find}(u),\mathsf{Find}(v)) \end{array}$$

 $A \leftarrow A \cup e_k$

return
$$(V, A, c)$$

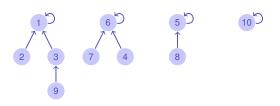
Implementation Union-Find

Idea: tree for each subset in the partition, e.g. $\{\{1, 2, 3, 9\}, \{7, 6, 4\}, \{5, 8\}, \{10\}\}$



roots = names of the sets, trees = elements of the sets

Implementation Union-Find



Representation as array:

Index 1 2 3 4 5 6 7 8 9 10 Parent 1 1 1 6 5 6 5 5 3 10

711

Implementation Union-Find

Index 1 2 3 4 5 6 7 8 9 10 Parent 1 1 1 6 5 6 5 5 3 10

Operations:

- Make-Set(i): $p[i] \leftarrow i$; return i
- Find(i): while $(p[i] \neq i)$ do $i \leftarrow p[i]$ return i
- Union(i, j): ³⁹ $p[j] \leftarrow i$; return i

Optimisation of the runtime for Find

Tree may degenerate. Example: Union(1, 2), Union(2, 3), Union(3, 4), ...

Idea: always append smaller tree to larger tree. Additionally required: size information g

Operations:

■ Make-Set(i): $p[i] \leftarrow i; g[i] \leftarrow 1;$ return i

if g[j] > g[i] then swap(i, j)

Union(i, j): $p[j] \leftarrow i$ $g[i] \leftarrow g[i] + g[j]$ return i

 $^{^{39}}i$ and j need to be names (roots) of the sets. typically: $\,$ Union(Find(a),Find(b)) $\,$

Observation

Theorem

The method above (union by size) preserves the following property of the trees: a tree of height h has at least 2^h nodes.

Immediate consequence: runtime Find = $O(\log n)$.

Proof

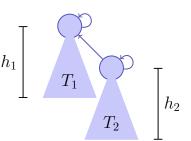
Induction: by assumption, sub-trees have at least 2^{h_i} nodes. WLOG: $h_2 \le h_1$

 $h(T_1 \oplus T_2) = h_1 \Rightarrow g(T_1 \oplus T_2) \ge 2^h$

 $h_2 = h_1$:

$$g(T_1) \ge g(T_2) \ge 2^{h_2}$$

 $\Rightarrow g(T_1 \oplus T_2) = g(T_1) + g(T_2) \ge 2 \cdot 2^{h_2} = 2^{h(T_1 \oplus T_2)}$



715

Further improvement

Link all nodes to the root when Find is called.

$$\begin{aligned} j &\leftarrow i \\ \text{while } (p[i] \neq i) \text{ do } i \leftarrow p[i] \\ \text{while } (j \neq i) \text{ do} \\ & \quad t \leftarrow j \\ & \quad j \leftarrow p[j] \\ & \quad p[t] \leftarrow i \end{aligned}$$

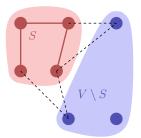
return i

Amortised cost: amortised *nearly* constant (inverse of the Ackermann-function).

MST algorithm of Jarnik, Prim, Dijkstra

Idea: start with some $v \in V$ and grow the spanning tree from here by the acceptance rule.

$$\begin{split} S &\leftarrow \{v_0\} \\ \text{for } i &\leftarrow 1 \text{ to } |V| \text{ do} \\ & | \quad \text{Choose cheapest } (u,v) \text{ mit } u \in S, v \not \in S \\ & | \quad A \leftarrow A \cup \{(u,v)\} \\ & | \quad S \leftarrow S \cup \{v\} \end{split}$$



7

Running time

Trivially $\mathcal{O}(|V| \cdot |E|)$.

Improvements (like with Dijkstra's ShortestPath)

- Memorize cheapest edge to S: for each $v \in V \setminus S$. $\deg^+(v)$ many updates for each new $v \in S$. Costs: |V| many minima and updates: $\mathcal{O}(|V|^2 + \sum_{v \in V} \deg^+(v)) = \mathcal{O}(|V|^2 + |E|)$
- With Minheap: costs |V| many minima = $\mathcal{O}(|V|\log|V|)$, |E| Updates: $\mathcal{O}(|E|\log|V|)$, Initialization $\mathcal{O}(|V|)$: $\mathcal{O}(|E|\cdot\log|V|)$
- With a Fibonacci-Heap: $\mathcal{O}(|E| + |V| \cdot \log |V|)$.

Fibonacci Heaps

Data structure for elements with key with operations

- MakeHeap(): Return new heap without elements
- Insert(H, x): Add x to H
- \blacksquare Minimum(H): return a pointer to element m with minimal key
- **ExtractMin**(H): return and remove (from H) pointer to the element m
- Union (H_1, H_2) : return a heap merged from H_1 and H_2
- DecreaseKey(H, x, k): decrease the key of x in H to k
- Delete (H, x): remove element x from H

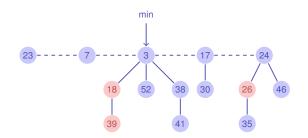
719

Advantage over binary heap?

	Binary Heap (worst-Case)	Fibonacci Heap (amortized)
MakeHeap	$\Theta(1)$	$\Theta(1)$
Insert	$\Theta(\log n)$	$\Theta(1)$
Minimum	$\Theta(1)$	$\Theta(1)$
ExtractMin	$\Theta(\log n)$	$\Theta(\log n)$
Union	$\Theta(n)$	$\Theta(1)$
DecreaseKey	$\Theta(\log n)$	$\Theta(1)$
Delete	$\Theta(\log n)$	$\Theta(\log n)$

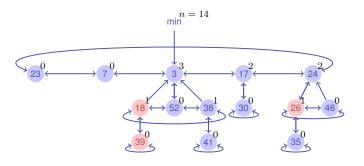
Structure

Set of trees that respect the Min-Heap property. Nodes that can be marked.



Implementation

Doubly linked lists of nodes with a marked-flag and number of children. Pointer to minimal Element and number nodes.



Simple Operations

- MakeHeap (trivial)
- Minimum (trivial)
- Insert(H, e)
 - Insert new element into root-list
 - 2 If key is smaller than minimum, reset min-pointer.
- Union (H_1, H_2)
 - 1 Concatenate root-lists of H_1 and H_2
 - Reset min-pointer.
- \blacksquare Delete(H, e)
 - **1** DecreaseKey $(H, e, -\infty)$
 - ExtractMin(H)

723

ExtractMin

- \blacksquare Remove minimal node m from the root list
- Insert children of m into the root list
- Merge heap-ordered trees with the same degrees until all trees have a different degree:

Array of degrees $a[0, \ldots, n]$ of elements, empty at beginning. For each element e of the root list:

- a Let g be the degree of e
- **b** If a[g] = nil: $a[g] \leftarrow e$.
- c If $e' := a[g] \neq nil$: Merge e with e' resulting in e'' and set $a[g] \leftarrow nil$. Set e'' unmarked. Re-iterate with $e \leftarrow e''$ having degree g + 1.

DecreaseKey (H, e, k)

- Remove e from its parent node p (if existing) and decrease the degree of p by one.
- 2 Insert(H, e)
- 3 Avoid too thin trees:
 - a If p = nil then done.
 - **b** If p is unmarked: mark p and done.
 - c If p marked: unmark p and cut p from its parent pp. Insert (H,p). Iterate with $p \leftarrow pp$.

Estimation of the degree

Theorem

Let p be a node of a F-Heap H. If child nodes of p are sorted by time of insertion (Union), then it holds that the ith child node has a degree of at least i-2.

Proof: p may have had more children and lost by cutting. When the ith child p_i was linked, p and p_i must at least have had degree i-1. p_i may have lost at least one child (marking!), thus at least degree i-2 remains.

Estimation of the degree

Theorem

Every node p with degree k of a F-Heap is the root of a subtree with at least F_{k+1} nodes. (F: Fibonacci-Folge)

Proof: Let S_k be the minimal number of successors of a node of degree k in a F-Heap plus 1 (the node itself). Clearly $S_0=1$, $S_1=2$. With the previous theorem $S_k \geq 2 + \sum_{i=0}^{k-2} S_i, k \geq 2$ (p and nodes p_1 each 1). For Fibonacci numbers it holds that (induction) $F_k \geq 2 + \sum_{i=2}^k F_i, k \geq 2$ and thus (also induction) $S_k \geq F_{k+2}$.

Fibonacci numbers grow exponentially fast $(\mathcal{O}(\varphi^k))$ Consequence: maximal degree of an arbitrary node in a Fibonacci-Heap with n nodes is $\mathcal{O}(\log n)$.

727

Amortized worst-case analysis Fibonacci Heap

t(H): number of trees in the root list of H, m(H): number of marked nodes in H not within the root-list, Potential function $\Phi(H) = t(H) + 2 \cdot m(H)$. At the beginning $\Phi(H) = 0$. Potential always non-negative.

Amortized costs:

- Insert(H, x): t'(H) = t(H) + 1, m'(H) = m(H), Increase of the potential: 1, Amortized costs $\Theta(1) + 1 = \Theta(1)$
- Minimum(H): Amortized costs = real costs = $\Theta(1)$
- Union(H_1, H_2): Amortized costs = real costs = $\Theta(1)$

Amortized costs of ExtractMin

- Number trees in the root list t(H).
- Real costs of ExtractMin operation $\mathcal{O}(\log n + t(H))$.
- When merged still $\mathcal{O}(\log n)$ nodes.
- Number of markings can only get smaller when trees are merged
- Thus maximal amortized costs of ExtractMin

$$\mathcal{O}(\log n + t(H)) + \mathcal{O}(\log n) - \mathcal{O}(t(H)) = \mathcal{O}(\log n).$$

Amortized costs of DecreaseKey

- Assumption: DecreaseKey leads to c cuts of a node from its parent node, real costs $\mathcal{O}(c)$
- c nodes are added to the root list
- Delete (c-1) mark flags, addition of at most one mark flag
- Amortized costs of DecreaseKey:

$$\mathcal{O}(c) + (t(H) + c) + 2 \cdot (m(H) - c + 2)) - (t(H) + 2m(H)) = \mathcal{O}(1)$$