
24. Shortest Paths

Motivation, Dijkstra’s algorithm on distance graphs, Bellman-Ford
Algorithm, Floyd-Warshall Algorithm

[Ottman/Widmayer, Kap. 9.5 Cormen et al, Kap. 24.1-24.3,
25.2-25.3]

656

River Crossing (Missionaries and Cannibals)
Problem: Three cannibals and three missionaries are standing at a
river bank. The available boat can carry two people. At no time may
at any place (banks or boat) be more cannibals than missionaries.
How can the missionaries and cannibals cross the river as fast as
possible? 36

K K K

M M M
B

36There are slight variations of this problem. It is equivalent to the jealous husbands problem.
657

Problem as Graph

Enumerate permitted configurations as nodes and connect them
with an edge, when a crossing is allowed. The problem then
becomes a shortest path problem.

Example

links rechts
Missionare 3 0
Kannibalen 3 0
Boot x

links rechts
Missionare 2 1
Kannibalen 2 1
Boot x

Überfahrt möglich

6 Personen am linken Ufer 4 Personen am linken Ufer

658

The whole problem as a graph

3 0
3 0
x

3 0
2 1
x

3 0
1 2
x

3 0
0 3
x

2 1
2 1
x

1 2
1 2
x

0 3
1 2
x

0 3
2 1
x

0 3
3 0
x

6 5 4 3 4 2 1 2 3

3 0
2 1

x

3 0
1 2

x

3 0
0 3

x

2 1
2 1

x

1 2
1 2

x

0 3
1 2

x

0 3
2 1

x

0 3
3 0

x

0 3
0 3

x

5 4 3 4 2 1 2 3 0

659

Example Mystic Square

Want to find the fastest solution for

2 4 6
7 5 3
1 8

1 2 3
4 5 6
7 8

660

Problem as Graph
1 2 3
4 5 6
7 8

1 2 3
4 5 6
7 8

1 2 3
4 5 6

7 8

1 2 3
4 5
7 8 6

1 2 3
4 5
7 8 6

1 2 3
4 8 5
7 6

1 2 3
4 5

7 8 6

2 4 6
7 5 3
1 8

661

Route Finding
Provided cities A - Z and Distances between cities.

A

B

C

D

E

F

G

H

I Z

3

1

6

4

1

3

5

7

1

4 5

1

4

1

7 4

3
8

5

10

5

What is the shortest path from A to Z?
662

Simplest Case
Constant edge weight 1 (wlog)

Solution: Breadth First Search

S

t

663

Graphs with positive weights
Given: G = (V,E, c), c : E → R

+, s, t ∈ V .
Wanted: Length of a shortest path (weight) from s to t.
Path: 〈s = v0, v1, . . . , vk = t〉, (vi, vi+1) ∈ E (0 ≤ i < k)
Weight:

∑k−1
i=0 c((vi, vi+1)).

S

t2 1

3

2

1

Path with weight 9

664

Existence of Shortest Path
Assumption: There is a path from s to t in G.
Claim: There is a shortest path from s to t in G.

Proof: There can be infinitely many paths from s to t (cycles are
possible). However, since c is positive, a shortest path must be
acyclic. Thus the maximal length of a shortest path is bounded by
some n ∈ N and there are only finitely many candidates for a
shortest path.

Remark: There can be exponentially many paths. Example

s

t
665

Observation

s

u

v

w

4

7

2

t
0

4

7

2

upper bounds

Smallest upper bound
global minimum!

666

Basic Idea

Set V of nodes is partitioned into
the set M of nodes for which a
shortest path from s is already known,
the set R =

⋃
v∈M N+(v) \M of

nodes where a shortest path is not yet
known but that are accessible directly
from M ,
the set U = V \ (M ∪R) of nodes that
have not yet been considered.

s

2

2

5

3

5

2

1

2

667

Induction

Induction over |M |: choose nodes from
R with smallest upper bound. Add r to M
and update R and U accordingly.

Correctness: if within the “wavefront” a
node with minimal weight has been found
then no path with greater weight over dif-
ferent nodes can provide any improve-
ment.

s

2

2

5

3

5

2

1

2

668

Algorithm Dijkstra(G, s) [formal]

Input : Positively weighted Graph G = (V,E, c), starting point s ∈ V ,
Output : Minimal weights d of the shortest paths.

M = {s}; R = N+(s), U = V \R
d(s)← 0; d(u)←∞ ∀u 6= s
while R 6= ∅ do

r ← arg minr∈R minm∈N−(r)∩M d(m) + c(m, r)
d(r)← minm∈N−(r)∩M d(m) + c(m, r)
M ←M ∪ {r}
R← R− {r} ∪N+(r) \M

return d

669

Algorithmus Dijkstra

Initial: PL(n)←∞ für alle Knoten.

Set PL(s)← 0

Start with M = {s}. Set k ← s.
While a new node k is added and this is not the target node

1 For each neighbour node n of k:
compute path length x to n via k
If PL(n) =∞, than add n to R
If x < PL(n) <∞, then set PL(n)← x and adapt R .

2 Choose as new node k the node with smallest path length in R.

670

Example

s

a

b

c

d

e

2

3

2

6

1

3

1

1

0

∞

∞

∞

∞

∞
ss

a

b

2

3

a c
8

M = {s, a}
R = {b, c}
U = {d, e}

671

Implementation: Naive Variant

Find minimum: traverse all edges (u, v) for u ∈M, v ∈ R .
Overal costs: O(|V | · |E|)

672

Implementation: Better Variant

Update of all outgoing edges when inserting new w in M :
foreach v ∈ N+(w) do

if d(w) + c(w, v) < d(v) then
d(v)← d(w) + c(w, v)

Costs of updates: O(|E|), Find minima: O(|V |2), overal costs
O(|V |2)

673

Implementation: Data Structure for R?
Required operations:

Insert (add to R)
ExtractMin (over R) and DecreaseKey (Update in R)
foreach v ∈ N+(m) do

if d(m) + c(m, v) < d(v) then
d(v)← d(m) + c(m, v)
if v ∈ R then

DecreaseKey(R, v) // Update of a d(v) in the heap of R
else

R← R ∪ {v} // Update of d(v) in the heap of R

MinHeap!
674

DecreaseKey

DecreaseKey: climbing in MinHeap in O(log |V |)
Position in the heap?

alternative (a): Store position at the nodes
alternative (b): Hashtable of the nodes
alterantive (c): re-insert node after update-operation and mark it "deleted"
once extracted (Lazy Deletion)

675

Runtime

|V |× ExtractMin: O(|V | log |V |)
|E|× Insert or DecreaseKey: O(|E| log |V |)
1× Init: O(|V |)
Overal: O(|E| log |V |).

Can be improved when a data structure optimized for ExtractMin and
DecreaseKey ist used (Fibonacci Heap), then runtime
O(|E|+ |V | log |V |).

676

Reconstruct shortest Path

Memorize best predecessor during the update step in the
algorithm above. Store it with the node or in a separate data
structure.
Reconstruct best path by traversing backwards via best
predecessor

677

Example

s

a

b

c

d

e

2

3

2

6

1

3

1

1

0

∞

∞

∞

∞

∞
ss

a

b

2

3

a c
8

b d
4

M = {s, a, b}
R = {c, d}
U = {e}

678

General Weighted Graphs

Relaxing Step as with Dijkstra:

Relax(u, v) (u, v ∈ V , (u, v) ∈ E)
if ds(v) > ds(u) + c(u, v) then

ds(v)← ds(u) + c(u, v)
return true

return false
s

u

v

ds(u)

ds(v)

Problem: cycles with negative weights can shorten the path, a
shortest path is not guaranteed to exist.

679

Observations

Observation 1: Sub-paths of shortest paths are shortest paths.
Let p = 〈v0, . . . , vk〉 be a shortest path from v0 to vk. Then each of
the sub-paths pij = 〈vi, . . . , vj〉 (0 ≤ i < j ≤ k) is a shortest path
from vi to vj.
Proof: if not, then one of the sub-paths could be shortened which
immediately leads to a contradiction.
Observation: If there is a shortest path then it is simple, thus does
not provide a node more than once.
Immediate Consequence of observation 1.

680

Dynamic Programming Approach (Bellman)

Induction over number of edges ds[i, v]: Shortest path from s to v via
maximally i edges.

ds[i, v] = min{ds[i− 1, v], min
(u,v)∈E

(ds[i− 1, u] + c(u, v))

ds[0, s] = 0, ds[0, v] =∞ ∀v 6= s.

681

Dynamic Programming Approach (Bellman)

s · · · v · · · w
0 0 ∞ ∞ ∞ ∞
1 0 ∞ 7 ∞ −2
...

n− 1 0 · · · · · · · · · · · ·

s

u

v

w

4

7

−2

Algorithm: Iterate over last row until the relaxation steps do not
provide any further changes, maximally n− 1 iterations. If still
changes, then there is no shortest path.

682

Algorithm Bellman-Ford(G, s)
Input : Graph G = (V,E, c), starting point s ∈ V
Output : If return value true, minimal weights d for all shortest paths from s,

otherwise no shortest path.

d(v)←∞ ∀v ∈ V ; d(s)← 0
for i← 1 to |V | do

f ← false
foreach (u, v) ∈ E do

f ← f ∨ Relax(u, v)

if f = false then return true

return false;

Runtime O(|E| · |V |).
683

All shortest Paths

Compute the weight of a shortest path for each pair of nodes.

|V |× Application of Dijkstra’s Shortest Path algorithm
O(|V | · |E| · log |V |) (with Fibonacci Heap:
O(|V |2 log |V |+ |V | · |E|))
|V |× Application of Bellman-Ford: O(|E| · |V |2)
There are better ways!

684

Induction via node number37

Consider weights of all shortest paths Sk with intermediate nodes in
V k := {v1, . . . , vk}, provided that weights for all shortest paths Sk−1

with intermediate nodes in V k−1 are given.

vk no intermediate node of a shortest path of vi vj in V k:
Weight of a shortest path vi vj in Sk−1 is then also weight of
shortest path in Sk.
vk intermediate node of a shortest path vi vj in V k: Sub-paths
vi vk and vk vj contain intermediate nodes only from Sk−1.

37like for the algorithm of the reflexive transitive closure of Warshall
685

DP Induction

dk(u, v) = Minimal weight of a path u v with intermediate nodes in
V k

Induktion

dk(u, v) = min{dk−1(u, v), dk−1(u, k) + dk−1(k, v)}(k ≥ 1)

d0(u, v) = c(u, v)

686

DP Algorithm Floyd-Warshall(G)

Input : Acyclic Graph G = (V,E, c)
Output : Minimal weights of all paths d
d0 ← c
for k ← 1 to |V | do

for i← 1 to |V | do
for j ← 1 to |V | do

dk(vi, vj) = min{dk−1(vi, vj), dk−1(vi, vk) + dk−1(vk, vj)}

Runtime: Θ(|V |3)
Remark: Algorithm can be executed with a single matrix d (in place).

687

Reweighting

Idea: Reweighting the graph in order to apply Dijkstra’s algorithm.

The following does not work. The graphs are not equivalent in terms
of shortest paths.

s

t

u

v

1

1

1

1

−1 c→c+2
=⇒ s’

t’

u’

v’

3

3

3

3

1

688

Reweighting

Other Idea: “Potential” (Height) on the nodes

G = (V,E, c) a weighted graph.
Mapping h : V → R

New weights

c̃(u, v) = c(u, v) + h(u)− h(v), (u, v ∈ V)

689

Reweighting

Observation: A path p is shortest path in in G = (V,E, c) iff it is
shortest path in in G̃ = (V,E, c̃)

c̃(p) =
k∑

i=1

c̃(vi−1, vi) =
k∑

i=1

c(vi−1, vi) + h(vi−1)− h(vi)

= h(v0)− h(vk) +
k∑

i=1

c(vi−1, vi) = c(p) + h(v0)− h(vk)

Thus c̃(p) minimal in all v0 vk ⇐⇒ c(p) minimal in all v0 vk.

Weights of cycles are invariant: c̃(v0, . . . , vk = v0) = c(v0, . . . , vk = v0)

690

Johnson’s Algorithm

Add a new node s 6∈ V :

G′ = (V ′, E ′, c′)

V ′ = V ∪ {s}
E ′ = E ∪ {(s, v) : v ∈ V }

c′(u, v) = c(u, v), u 6= s

c′(s, v) = 0(v ∈ V)

691

Johnson’s Algorithm

If no negative cycles, choose as height function the weight of the
shortest paths from s,

h(v) = d(s, v).

For a minimal weight d of a path the following triangular inequality holds:

d(s, v) ≤ d(s, u) + c(u, v).

Substitution yields h(v) ≤ h(u) + c(u, v). Therefore

c̃(u, v) = c(u, v) + h(u)− h(v) ≥ 0.

692

Algorithm Johnson(G)
Input : Weighted Graph G = (V,E, c)
Output : Minimal weights of all paths D.

New node s. Compute G′ = (V ′, E ′, c′)
if BellmanFord(G′, s) = false then return “graph has negative cycles”
foreach v ∈ V ′ do

h(v)← d(s, v) // d aus BellmanFord Algorithmus

foreach (u, v) ∈ E ′ do
c̃(u, v)← c(u, v) + h(u)− h(v)

foreach u ∈ V do
d̃(u, ·)← Dijkstra(G̃′, u)
foreach v ∈ V do

D(u, v)← d̃(u, v) + h(v)− h(u)

693

Analysis

Runtimes

Computation of G′: O(|V |)
Bellman Ford G′: O(|V | · |E|)
|V |× Dijkstra O(|V | · |E| · log |V |)
(with Fibonacci Heap: O(|V |2 log |V |+ |V | · |E|))

Overal O(|V | · |E| · log |V |)
(O(|V |2 log |V |+ |V | · |E|))

694

