23. Graphs

Notation, Representation, Reflexive transitive closure, Graph
Traversal (DFS, BFS), Connected components, Topological Sorting
Ottman/Widmayer, Kap. 9.1 - 9.4,Cormen et al, Kap. 22

[Multi]Graph

601

edge

() _noce

603

Konigsberg 1736

KONINGSBERGA

Cycles

m Is there a cycle through the town (the
graph) that uses each bridge (each edge)
exactly once?

m Euler (1736): no.

m Such a cycle is called Eulerian path.

m Eulerian path < each node provides an
even number of edges (each node is of an
even degree).

‘=" ist straightforward, “<” ist a bit more difficult

602

604

Notation Notation

A directed graph consists of aset V' = {vy,...,v,} of nodes

\ (Vertices) and a set E C V x V of Edges. The same edges may not
be contained more than once.
undirected directed e‘o Q@

V ={1,2,3,4,5} vV ={1,2,3,4,5}
E ={{1,2},{1,3},{2,3},{2,4}, E ={(1,3),(2,1),(2,5),(3,2), loop
{2,5},{3,4},{3,5},{4,5}} (3,4),(4,2),(4,5),(5,3)}
Notation Notation
An undirected graph consists of a set V' = {vy,...,v,} of nodes a

An undirected graph G = (V, E) without loops where E comprises

C . . : .
andaset £ C {{u,v}|u,v € V} of edges. Edges may bot be all edges between pairwise different nodes is called complete.

contained more than once.®®

a complete undirected graph

undirected graph

35As opposed to the introductory example — it is then called multi-graph.
607 608

Notation Notation

A weighted graph G = (V, E, ¢) is a graph G = (V, E) with an edge
A graph where V' can be partitioned into disjoint sets U and W such weight function ¢ : E — R. c¢(e) is called weight of the edge e.
that each e € E provides a node in U and a node in Wis called
bipartite.

609

Notation Notation

For directed graphs G = (V, F)

m w € Vis called adjacentto v € V, if (v,w) € E For directed graphs G = (V, E)

m Predecessorsof v € V: N~ (v) := {u € V|(u,v) € E}. m In-Degree: deg™ (v) = [N~ (v)],
Successors: N*(v) := {u € V|(v,u) € E} Out-Degree: deg™(v) = |N*(v)|

N o
p—v; = “w
deg™(v) = 3,deg"(v) =2 deg (w) =1,deg" (w) =1

611

Notation

For undirected graphs G = (V, F):
m w € Viscalled adjacenttov € V, if {v,w} € E

m Neighbourhoodof v € V: N(v) = {w € V|{v,w} € E}

m Degree of v: deg(v) = |N(v)| with a special case for the loops:
increase the degree by 2.

N @

deg(v) =5 deg(w) = 2

Paths

m Path: a sequence of nodes (v, ..., v;41) such that for each
i€ {1...k}thereis an edge from v; to v;;1 .

m Length of a path: number of contained edges k.
m Weight of a path (in weighted graphs): Zle c((vi,vi11)) (bzw.
S elfvr v })

m Simple path: path without repeating vertices

613

615

Relationship between node degrees and number of
edges

For each graph G = (V, E) it holds

> ey deg™(v) = 37 oy deg™ (v) = |E|, for G directed
> ,er deg(v) = 2|E|, for G undirected.

614

Connectedness

m An undirected graph is called connected, if for eacheach pair
v,w € V there is a connecting path.

m A directed graph is called strongly connected, if for each pair
v,w € V there is a connecting path.

m A directed graph is called weakly connected, if the corresponding
undirected graph is connected.

616

Simple Observations

m generally: 0 < |E| € O(|V]?)

m connected graph: |E| € Q(|V])

m complete graph: |E| = W (undirected)

m Maximally |E| = |V |? (directed),|E| = W (undirected)

617

Representation using a Matrix

Graph G = (V, E) with nodes v; . .., v, stored as adjacency matrix
Ag = (aij)1<i j<n With entries from {0, 1}. a;; = 1 if and only if edge
from v; to v;.

O OO OO
OO = O =
_ o O O
SO OoO = O =
—_ O = O O

Memory consumption O(|V|?). Ag is symmetric, if G undirected.

619

Cycles

m Cycle: path (v, ..
m Simple cycle: Cycle with pairwise different vy, ..
not use an edge more than once.

m Acyclic: graph without any cycles.

. ,Uk+1> with V1 = Vg1
., Uk, that does

Conclusion: undirected graphs cannot contain cycles with length 2
(loops have length 1)

618

Representation with a List
Many graphs G = (V,FE) with nodes

: 12345
v1,...,v, provide much less than n? []
edges. Representation with adjacency F F?
list: Array A[l],..., A[n|, A; comprises a 3
linked list of nodes in N (v;). I

5

Ar—0O® W0
Q<0 »h<~—0 I

Memory Consumption O(|V| + |E|).

Runtimes of simple Operations

Operation Matrix List

Find neighbours/successorsof v € V. ©(n) O(deg” v)
find v € V without neighbour/successor ©(n?) ©O(n)
(u,v) € E? O(1) O(deg’v)
Insert edge O(1) o)
Delete edge O(1) O(deg’v)

621

Interpretation

LetG = (V, E) be a graph and k € N. Then the element ag“j) of the

matrix (ag“j))lgngn = (Ag)" provides the number of paths with
length k from v; to v; .

623

Adjacency Matrix Product

(1‘\—/@
:;4)/%?
01110\° 01011
00000 00000
B=A2=101011 100101
00000 00000
00101 01112
Proof
By Induction.

Base case: straightforward for & = 1. a; ; = aglj. (0)

Hypothesis: claim is true for all £ <[
Step (I — [+ 1):
aﬁlj Y= Z aflz)f * U j ()
k=1

ar; = 1iff egde k to j, 0 otherwise. Sum counts the number paths
of length [from node v; to all nodes v, that provide a direct direction
to node vj, i.e. all paths with length [+ 1.

624

Example: Shortest Path

Question: is there a path from 7 to j? How long is the shortest path?
(k)
,[:7]‘ > 0-
= 0 for all

Answer: exponentiate Aq until for some £ < n it holds that a

()

k provides the path length of the shortest path. If a;;

1 < k < n, then there is no path from i to j.

625

Relation

Given a finite set V/

(Binary) Relation 2 on V: Subset of the cartesian product
VxV={(a,b)lacV,beV}
Relation R C V' x V is called

m reflexive, if (v,v) € Rforallv e V
m symmetric, if (v,w) € R = (w,v) € R
m fransitive, if (v,z) € R, (x,w) € R= (v,w) € R

The (Reflexive) Transitive Closure R* of R is the smallest extension
R C R* CV x V such that R* is reflexive and transitive.

627

Example: Number triangles

Question: How many triangular path does an undirected graph
contain?

Answer: Remove all cycles (diagonal entries). Compute AZ,. a!?

2

determines the number of paths of length 3 that contain <. There are
6 different permutations of a triangular path. Thus for the number of

triangles: S, a!? /6.
00111\’ 448838
00111 4 48 8 8 _
11011 =]288¢88S3 :>,24/6_4
11100 s 8 8 4 4 | Dreiecke.
11100 8 8 8 4 4

Graphs and Relations

Graph G = (V, E)

adjacencies Ag = Relation E C V x V over V

m reflexive & a;; = 1foralli =1,... n. (loops)

W symmelric < a; j = a;; foralle,5 = 1,...,n (undirected)

m fransitive < (u,v) € E, (v,w) € E = (u,w) € E. (reachability)

Example: Equivalence Relation Reflexive Transitive Closure

Reflexive transitive closure of G < Reachability relation E*:

Equivalence relation < symmetric, transitive, reflexive relation < (v, w) € E" iff 3 path from node v to w.

collection of complete, undirected graphs where each element has a 1o o s L1111
loop. 000 1 0 811;8
0 00 1 0o 01110
W &7 v
Example: Equivalence classes of the num- <@ 1 -
bers {0, ..., 7} modulo 3 = 2/\5
G- v
Computation of the Reflexive Transitive Closure Improvement: Algorithm of Warshall (1962)

Goal: computation of B = (b;;)1<i.i<n With b;; = 1 < (v;,v;) € E* .)
P (bish<i< 7 (vi,v;) Inductive procedure: all paths known over nodes from {v; : i < k}.

Observation: a;; = 1 already implies (v;,v;) € E*. Add node ;..

First idea:

m Start with B < A and set b; = 1 for each i (Reflexivity.). 1 .

m lterate over ¢, j, k and set b;; = 1, if b, = 1 and b;; = 1. Then all Q 8 1 ! 1 8
paths with lenght 1 and 2 taken into account. 0 110

m Repeated iteration = all paths with length 1.. .4 taken into . 01 11 1

account. & L i
m [log, n] iterations required. = running time n? [log, n]

Algorithm TransitiveClosure(A;)

Input : Adjacency matrix Ag = (aij)ij=1..
Output : Reflexive transitive closure B = (b;;)i j=1.., of G

B+ AG
for k < 1 ton do
apr < 1
fori < 1ton do
for j < 1tondo
L bij — Inax{bij, bik . bkj}

// Reflexivity

// All paths via vy

return B

Runtime ©(n?).

633

Depth First Search

II_I_IIIIIII
1T+

635

Correctness of the Algorithm (Induction)

Invariant (k): all paths via nodes with maximal index < k
considered.

m Base case (k = 1): All directed paths (all edges) in Ag
considered.

m Hypothesis: invariant (k) fulfilled.

m Step (k — k + 1): For each path from v; to v; via nodes with
maximal index £: by the hypothesis b, = 1 and b;; = 1. Therefore
in the k-th iteration: b;; < 1.

(V<)

(v2r)

634

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.

o Adjazenzliste
al|llollc|dllelllf)
| Vo
bllcl| fileld hil
! !

d f

!

e
oO—0 0

Order a,b,c, f,d,e, g, h,i

636

Algorithm Depth First visit DFS-Visit(G', v)

Input : graph G = (V, E), Knoten v.

Mark v visited
foreach w € N*(v) do
if —(w visited) then
| DFS-Visit(G, w)

Depth First Search starting from node v. Running time (without
recursion): O(deg™ v)

637

lterative DFS-Visit(G, v)
Input : graph G = (V, E)

Stack S « 0; push(S,v)
while S # () do
w < pop(S)
if —(w visited) then
mark w visited
foreach (w,c) € E do // (in reverse order, potentially)
if —(c visited) then
L . push(S,)

Stack size up to | E|, for each node an extra of ©(deg™ (w) + 1)
operations. Overal: ©(|V| + | E|)

Including all calls from the above main program: ©(|V| + | E|) .

Algorithm Depth First visit DFS-Visit(G)

Input : graph G = (V, E)

foreach v € V do
L Mark v not visited

foreach v € V do
if —(v visited) then
. DFS-Visit(G,v)

Depth First Search for all nodes of a graph. Running time:
O(IV]+ X er(deg™(v) + 1)) = O(V| + | E]).

638

Breadth First Search

640

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.

Adjazenzliste

0O

allol|lcl|dlellf)
| v
blc| flelbd i
I l
d f
!
e

O i

Order a,b,d,e,c, f, g, h,1

641

Connected Components

Connected components of an undirected graph G equivalence
classes of the reflexive, transitive closure of G. Connected
component = subgraph G’ = (V', E'), E' = {{v,w} € Elv,w € V'}
with

{H{v,w} e ElveV'VweV'} = FE={{v,w} € Elv e V' Aw e V'}

®

Graph with connected compo-
9 e nents {1,2,3,4}, {5, 7}, {6}.

643

lterative BFS-Visit(G, v)

Input : graph G = (V, E)
Queue Q < 0

Mark v as active

enqueue(Q), v)

while Q # () do

w < dequeue(Q)

mark w visited

foreach c € N*(w) do

if —(c visited V ¢ active) then
L Mark c as active

enqueue(Q, ¢)

m Algorithm requires extra
space of O(|V]). wnydoes

that simple approach not work with DFS?)

m Running time including
main program:
o([V]+ [E]).

642

Computation of the Connected Components

m Computation of a partitioning of V' into pairwise disjoint subsets
Viyoo o, Vi

m such that each V; contains the nodes of a connected component.

m Algorithm: depth-first search or breadth-first search. Upon each
new start of DFSSearch(G, v) or BFSSearch(G, v) a new empty
connected component is created and all nodes being traversed
are added.

644

Topological Sorting

A B C D E F G H
1 Task 1 Task 2 Task 3 Task 4 Total Note
2 TOTAL 8 16 10
3 Arleen % 5 1) 9 \4\ 4
4 Hans 3 3 S 1.5
5 Mike 7 5 % 18 3
6 |Selina 6 5 8 2 T 3.5 |
7
8 Durchschnitt 18 3
9
10
11
12
13
14

Evaluation Order?
645
(Counter-)Examples

A possible toplogical sorting of the graph:

Cyclic graph: cannot be sorted topologically. Unterhemd,Pullover,Unterhose,Uhr,Hose,Mantel,Socken,Schuhe

647

Topological Sorting

Topological Sorting of an acyclic directed graph G = (V, E):

Bijective mapping
ord : V = {1,...,|V|}

such that
ord(v) < ord(w) V (v,w) € E.

Identify ¢ with Element v; := ord' (). Topological sorting =

<Ula s 7U\V|>'

646

Observation

A directed graph G = (V, E) permits a topological sorting if and only
if it is acyclic.

Proof “=-": If G contains a cycle it cannot permit a topological
sorting, because in a cycle (v;,,...,v;) it would hold that
Vi, < 00 <, < Uy

648

Inductive Proof Opposite Direction

m Base case (n = 1): Graph with a single node without loop can be
sorted topologically, setord(v;) = 1.

m Hypothesis: Graph with n nodes can be sorted topologically
m Step (n = n + 1):

G contains a node v, with in-degree deg™ (v,) = 0. Otherwise iteratively
follow edges backwards — after at most n + 1 iterations a node would be
revisited. Contradiction to the cycle-freeness.

Graph without node v, and without its edges can be topologically sorted
by the hypothesis. Now use this sorting and set ord(v;) < ord(v;) + 1 for
all i # g and set ord(v,) « 1.

649

Improvement

Idea?

Compute the in-degree of all nodes in advance and traverse the
nodes with in-degree 0 while correcting the in-degrees of following
nodes.

Preliminary Sketch of an Algorithm

Graph G = (V,E). d + 1

| Traverse backwards starting from any node until a node v, with
in-degree 0 is found.

If no node with in-degree 0 found after n stepsm, then the graph
has a cycle.

Set ord(v,) <« d.
Remove v, and his edges from G.
IfV #0,thend < d+ 1, goto step 1.

Worst case runtime: O(|V]?).

Algorithm Topological-Sort(()

Input : graph G = (V, E).
Output : Topological sorting ord

Stack S < ()
foreach v € V do Afv] + 0
foreach (v, w) € E do A[w] - AJw]+1 // Compute in-degrees
foreach v € V with A[v] = 0 do push(S,v) // Memorize nodes with in-degree 0
141
while S # () do
v < pop(S); ord[v] «—i; i« i+ 1 // Choose node with in-degree 0
foreach (v, w) € E do // Decrease in-degree of successors
Alw] + Afw] — 1
if Afw] =0 then push(S,w)

if i = |V| + 1 then return ord else return “Cycle Detected”

Algorithm Correctness Algorithm Correctness

Let G = (V, E) be a directed acyclic graph. Algorithm

Topq/ogica/Sort(G) computes a topological sorting ord for G with LetG = (V, E) be a directed graph containing a cycle. Algorithm
runtime O(|V'| + |E]). TopologicalSort(G) terminates within ©(|V'| + |E|) steps and detects
a cycle.

Proof: follows from previous theorem:

Decreasing the in-degree corresponds with node removal. Proof: let (v;,,...,v;,) be acycle in G. In each step of the algorithm remains
In the alaorithm it holds f h nod ith Alu] — 0 that either th q Alv;;] > 1forall j = 1,..., k. Thus k nodes are never pushed on the stack und
n the algorithm it holds for each node v with A[v] = 0 that either the node therefore at the end it holds thati < V + 1 — k.

has in-degree 0 or that previously all predecessors have been assigned a
value ord[u] < i and thus ord[v] > ord[u] for all predecessors u of v. Nodes
are put to the stack only once.

The runtime of the second part of the algorithm can become shorter. But the
computation of the in-degree costs already O(|V| + |E]).

Runtime: inspection of the algorithm (with some arguments like with graph
traversal) - -

Alternative: Algorithm DFS-Topsort(G, v)

Input : graph G = (V, E), node v, node list L.
if v active then
. stop (Cycle)

if v visited then
L return

Mark v active

foreach w € N*(v) do
. DFS-Topsort(G, w)

Mark v visited

Add v to head of L

Call this algorithm for each node that has not yet been visited.
Asymptotic Running Time ©(|V|+ |E|.

655

