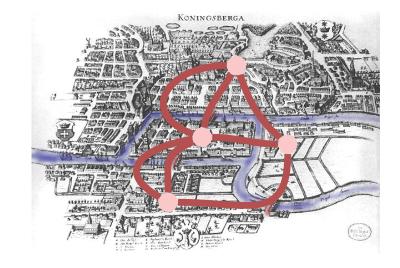
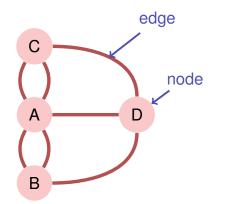
Königsberg 1736

23. Graphs

Notation, Representation, Reflexive transitive closure, Graph Traversal (DFS, BFS), Connected components, Topological Sorting Ottman/Widmayer, Kap. 9.1 - 9.4, Cormen et al, Kap. 22



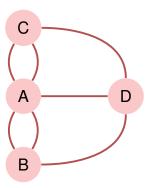
[Multi]Graph



Cycles

- Is there a cycle through the town (the graph) that uses each bridge (each edge) exactly once?
- Euler (1736): no.
- Such a *cycle* is called *Eulerian path*.
- Eulerian path ⇔ each node provides an even number of edges (each node is of an even degree).

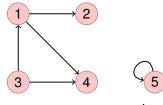
' \Rightarrow " ist straightforward, " \Leftarrow " ist a bit more difficult



602

Notation

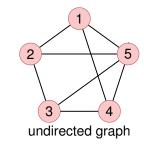
A *directed graph* consists of a set $V = \{v_1, \ldots, v_n\}$ of nodes (*Vertices*) and a set $E \subseteq V \times V$ of Edges. The same edges may not be contained more than once.



loop

Notation

An *undirected graph* consists of a set $V = \{v_1, \ldots, v_n\}$ of nodes a and a set $E \subseteq \{\{u, v\} | u, v \in V\}$ of edges. Edges may bot be contained more than once.³⁵

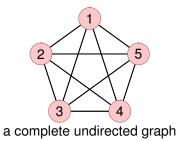


Notation

605

607

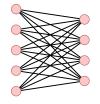
An undirected graph G = (V, E) without loops where E comprises all edges between pairwise different nodes is called *complete*.



608

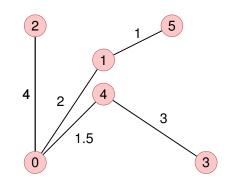
Notation

A graph where V can be partitioned into disjoint sets U and W such that each $e \in E$ provides a node in U and a node in W is called *bipartite*.



Notation

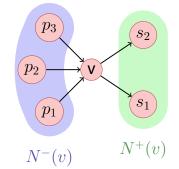
A weighted graph G = (V, E, c) is a graph G = (V, E) with an edge weight function $c : E \to \mathbb{R}$. c(e) is called weight of the edge e.



Notation

For directed graphs G = (V, E)

- $w \in V$ is called adjacent to $v \in V$, if $(v, w) \in E$
- Predecessors of $v \in V$: $N^-(v) := \{u \in V | (u, v) \in E\}$. Successors: $N^+(v) := \{u \in V | (v, u) \in E\}$



Notation

For directed graphs G = (V, E)

■ In-Degree: $\deg^{-}(v) = |N^{-}(v)|$, Out-Degree: $\deg^{+}(v) = |N^{+}(v)|$

 $\deg^{-}(v) = 3, \deg^{+}(v) = 2$ $\deg^{-}(w) = 1, \deg^{+}(w) = 1$

Notation

For undirected graphs G = (V, E):

- $w \in V$ is called *adjacent* to $v \in V$, if $\{v, w\} \in E$
- Neighbourhood of $v \in V$: $N(v) = \{w \in V | \{v, w\} \in E\}$
- **Degree** of v: deg(v) = |N(v)| with a special case for the loops: increase the degree by 2.

Relationship between node degrees and number of edges

For each graph G = (V, E) it holds

 $\sum_{v \in V} \deg^{-}(v) = \sum_{v \in V} \deg^{+}(v) = |E|, \text{ for } G \text{ directed}$ 2 $\sum_{v \in V} \deg(v) = 2|E|$, for G undirected.

- **Path**: a sequence of nodes $\langle v_1, \ldots, v_{k+1} \rangle$ such that for each $i \in \{1 \dots k\}$ there is an edge from v_i to v_{i+1} .
- **Length** of a path: number of contained edges k.
- Weight of a path (in weighted graphs): $\sum_{i=1}^{k} c((v_i, v_{i+1}))$ (bzw. $\sum_{i=1}^{k} c(\{v_i, v_{i+1}\}))$
- Simple path: path without repeating vertices

Connectedness

- An undirected graph is called *connected*, if for eacheach pair $v, w \in V$ there is a connecting path.
- A directed graph is called *strongly connected*, if for each pair $v, w \in V$ there is a connecting path.
- A directed graph is called weakly connected, if the corresponding undirected graph is connected.

613

Simple Observations

- generally: $0 \le |E| \in \mathcal{O}(|V|^2)$
- connected graph: $|E| \in \Omega(|V|)$
- complete graph: $|E| = \frac{|V| \cdot (|V|-1)}{2}$ (undirected)
- Maximally $|E| = |V|^2$ (directed), $|E| = \frac{|V| \cdot (|V|+1)}{2}$ (undirected)

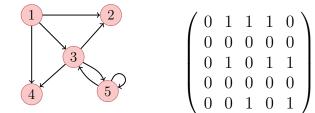
Cycles

- Cycle: path $\langle v_1, \ldots, v_{k+1} \rangle$ with $v_1 = v_{k+1}$
- Simple cycle: Cycle with pairwise different v_1, \ldots, v_k , that does not use an edge more than once.
- Acyclic: graph without any cycles.

Conclusion: undirected graphs cannot contain cycles with length 2 (loops have length 1)

Representation using a Matrix

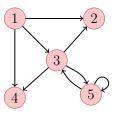
Graph G = (V, E) with nodes $v_1 \dots, v_n$ stored as *adjacency matrix* $A_G = (a_{ij})_{1 \le i,j \le n}$ with entries from $\{0,1\}$. $a_{ij} = 1$ if and only if edge from v_i to v_j .

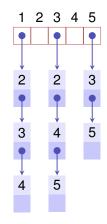


Memory consumption $\Theta(|V|^2)$. A_G is symmetric, if G undirected.

Representation with a List

Many graphs G = (V, E) with nodes v_1, \ldots, v_n provide much less than n^2 edges. Representation with *adjacency list*: Array $A[1], \ldots, A[n], A_i$ comprises a linked list of nodes in $N^+(v_i)$.



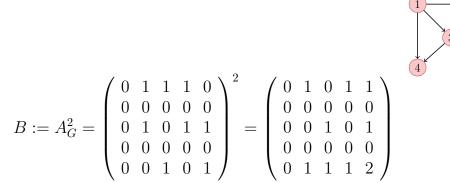


Memory Consumption $\Theta(|V| + |E|)$.

Runtimes of simple Operations

Operation	Matrix	List
Find neighbours/successors of $v \in V$	$\Theta(n)$	$\Theta(\deg^+ v)$
find $v \in V$ without neighbour/successor	$\Theta(n^2)$	$\Theta(n)$
$(u,v) \in E$?	$\Theta(1)$	$\Theta(\deg^+ v)$
Insert edge	$\Theta(1)$	$\Theta(1)$
Delete edge	$\Theta(1)$	$\Theta(\deg^+ v)$

Adjacency Matrix Product



622

Interpretation

Theorem

Let G = (V, E) be a graph and $k \in \mathbb{N}$. Then the element $a_{i,j}^{(k)}$ of the matrix $(a_{i,j}^{(k)})_{1 \le i,j \le n} = (A_G)^k$ provides the number of paths with length k from v_i to v_j .

Proof

By Induction.

Base case: straightforward for k = 1. $a_{i,j} = a_{i,j}^{(1)}$. Hypothesis: claim is true for all $k \le l$ Step $(l \to l + 1)$: $a_{i,j}^{(l+1)} = \sum_{k=1}^{n} a_{i,k}^{(l)} \cdot a_{k,j}$ (l)

 $a_{k,j} = 1$ iff egde k to j, 0 otherwise. Sum counts the number paths of length l from node v_i to all nodes v_k that provide a direct direction to node v_j , i.e. all paths with length l + 1.

Example: Shortest Path

Question: is there a path from *i* to *j*? How long is the shortest path? *Answer:* exponentiate A_G until for some k < n it holds that $a_{i,j}^{(k)} > 0$. *k* provides the path length of the shortest path. If $a_{i,j}^{(k)} = 0$ for all $1 \le k < n$, then there is no path from *i* to *j*.

Example: Number triangles

Question: How many triangular path does an undirected graph contain?

Answer: Remove all cycles (diagonal entries). Compute A_G^3 . $a_{ii}^{(3)}$ determines the number of paths of length 3 that contain *i*. There are 6 different permutations of a triangular path. Thus for the number of triangles: $\sum_{i=1}^{n} a_{ii}^{(3)}/6$.

626

Relation

Given a finite set V

(Binary) **Relation** *R* on *V*: Subset of the cartesian product $V \times V = \{(a, b) | a \in V, b \in V\}$

Relation $R \subseteq V \times V$ is called

- **reflexive**, if $(v, v) \in R$ for all $v \in V$
- **symmetric**, if $(v, w) \in R \Rightarrow (w, v) \in R$
- **transitive**, if $(v, x) \in R$, $(x, w) \in R \Rightarrow (v, w) \in R$

The (Reflexive) Transitive Closure R^* of R is the smallest extension $R \subseteq R^* \subseteq V \times V$ such that R^* is reflexive and transitive.

Graphs and Relations

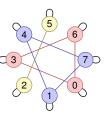
Graph G = (V, E)adjacencies $A_G \cong$ Relation $E \subseteq V \times V$ over V

- reflexive $\Leftrightarrow a_{i,i} = 1$ for all $i = 1, \dots, n$. (loops)
- symmetric $\Leftrightarrow a_{i,j} = a_{j,i}$ for all $i, j = 1, \dots, n$ (undirected)
- **transitive** \Leftrightarrow $(u, v) \in E$, $(v, w) \in E \Rightarrow (u, w) \in E$. (reachability)

Example: Equivalence Relation

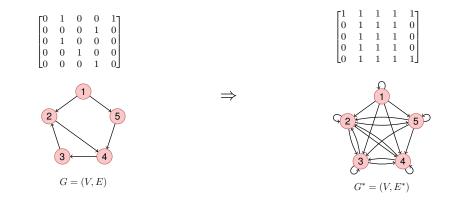
Equivalence relation \Leftrightarrow symmetric, transitive, reflexive relation \Leftrightarrow collection of complete, undirected graphs where each element has a loop.

Example: Equivalence classes of the numbers $\{0, ..., 7\}$ modulo 3



Reflexive Transitive Closure

Reflexive transitive closure of $G \Leftrightarrow$ *Reachability relation* E^* : $(v, w) \in E^*$ iff \exists path from node v to w.



Computation of the Reflexive Transitive Closure

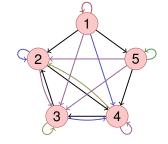
Goal: computation of $B = (b_{ij})_{1 \le i,j \le n}$ with $b_{ij} = 1 \Leftrightarrow (v_i, v_j) \in E^*$ *Observation:* $a_{ij} = 1$ already implies $(v_i, v_j) \in E^*$.

First idea:

- Start with $B \leftarrow A$ and set $b_{ii} = 1$ for each *i* (Reflexivity.).
- Iterate over i, j, k and set $b_{ij} = 1$, if $b_{ik} = 1$ and $b_{kj} = 1$. Then all paths with lenght 1 and 2 taken into account.
- Repeated iteration ⇒ all paths with length 1...4 taken into account.
- $\blacksquare \lceil \log_2 n \rceil \text{ iterations required.} \Rightarrow \text{running time } n^3 \lceil \log_2 n \rceil$

Improvement: Algorithm of Warshall (1962)

Inductive procedure: all paths known over nodes from $\{v_i : i < k\}$. Add node v_k .



1	1	1	1	1
0	1	1	1	0
0	1	1	1	0
0	1	1	1	0
0	1	1	1	1 0 0 0 1

Algorithm TransitiveClosure(A_G)

 $\begin{array}{l} \text{Input : Adjacency matrix } A_G = (a_{ij})_{i,j=1\dots n} \\ \text{Output : Reflexive transitive closure } B = (b_{ij})_{i,j=1\dots n} \text{ of } G \\ B \leftarrow A_G \\ \text{for } k \leftarrow 1 \text{ to } n \text{ do} \\ & \left| \begin{array}{c} a_{kk} \leftarrow 1 \\ \text{for } i \leftarrow 1 \text{ to } n \text{ do} \\ & \left| \begin{array}{c} b_{ij} \leftarrow 1 \text{ to } n \text{ do} \\ & \left| \begin{array}{c} b_{ij} \leftarrow \max\{b_{ij}, b_{ik} \cdot b_{kj}\} \end{array} \right| \end{array} \right. \end{array} \right.$

return B

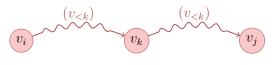
Runtime $\Theta(n^3)$.

Depth First Search

Correctness of the Algorithm (Induction)

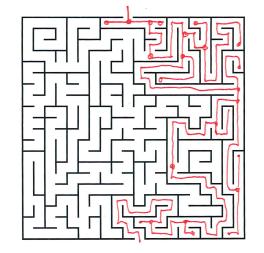
Invariant (k**)**: all paths via nodes with maximal index < k considered.

- **Base case (**k = 1**)**: All directed paths (all edges) in A_G considered.
- **Hypothesis**: invariant (*k*) fulfilled.
- **Step** $(k \rightarrow k + 1)$: For each path from v_i to v_j via nodes with maximal index k: by the hypothesis $b_{ik} = 1$ and $b_{kj} = 1$. Therefore in the *k*-th iteration: $b_{ij} \leftarrow 1$.



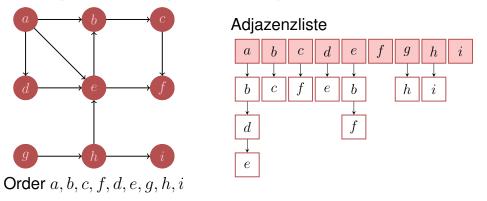
// Reflexivity

// All paths via v_k



Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.



633

Algorithm Depth First visit DFS-Visit(G, v)

Depth First Search starting from node v. Running time (without recursion): $\Theta(\deg^+ v)$

Algorithm Depth First visit DFS-Visit(G)

Input : graph G = (V, E)foreach $v \in V$ do $\ Mark v \text{ not visited}$ foreach $v \in V$ do if $\neg(v \text{ visited})$ then $\ DFS-Visit(G,v)$

Depth First Search for all nodes of a graph. Running time: $\Theta(|V| + \sum_{v \in V} (\deg^+(v) + 1)) = \Theta(|V| + |E|).$

Iterative DFS-Visit(G, v)

```
Input : graph G = (V, E)

Stack S \leftarrow \emptyset; push(S, v)

while S \neq \emptyset do

w \leftarrow pop(S)

if \neg(w \text{ visited}) then

mark w visited

foreach (w, c) \in E do // (in reverse order, potentially)

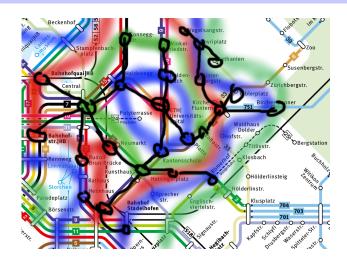
if \neg(c \text{ visited}) then

\mu push(S, c)
```

Stack size up to |E|, for each node an extra of $\Theta(\deg^+(w) + 1)$ operations. Overal: $\Theta(|V| + |E|)$

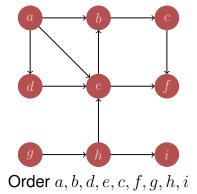
Including all calls from the above main program: $\Theta(|V| + |E|)$

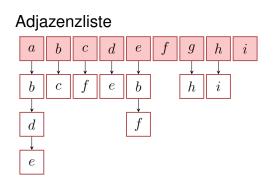
Breadth First Search



Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.





Iterative BFS-Visit(G, v)

Input : graph G = (V, E)

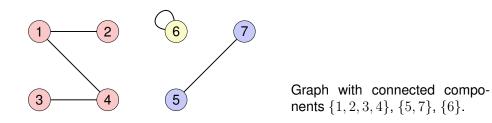
Algorithm requires extra space of O(|V|). (Why does that simple approach not work with DFS?)
 Running time including main program:

 $\Theta(|V| + |E|).$

Connected Components

Connected components of an undirected graph G: equivalence classes of the reflexive, transitive closure of G. Connected component = subgraph G' = (V', E'), $E' = \{\{v, w\} \in E | v, w \in V'\}$ with

 $\{\{v,w\} \in E | v \in V' \lor w \in V'\} = E = \{\{v,w\} \in E | v \in V' \land w \in V'\}$



Computation of the Connected Components

- Computation of a partitioning of V into pairwise disjoint subsets V_1, \ldots, V_k
- **u** such that each V_i contains the nodes of a connected component.
- Algorithm: depth-first search or breadth-first search. Upon each new start of DFSSearch(G, v) or BFSSearch(G, v) a new empty connected component is created and all nodes being traversed are added.

641

644

Topological Sorting

E ·	D·· (³ · = Home Insert Page L	ayout Formulas 0	lata Beview	View Add-ins								
fx Inset unction	AutoSum Recently Financial L	ogical Text Date & Loc Time - Refe unction Library	۹ 0	Acre Ctions - Manager	Define Name • 😵 Trai Use in Formula • 😪 Trai	te Precedents 🚿 Show Formulas te Dependents 🌾 Error Checking sove Arrows - 🛞 Evaluate Formu Formula Auditing	. 60	Calculation mm				
	A	В		С	D	E		F	G		н	1
1		Task 1	Tas	< 2	Task 3	Task 4	Tota	1		Note		
2	TOTAL	•	8	8	10	10		36				
3	Arleen	•	4	5	6	; 9		- 24			4	
4	Hans	•	1		2	3	-	9	\sim	-	1.5	
5	Mike	•	2	7	5	i 4	-	18			3	
6	Selina	•	6	5	. 8	2	-	21			3.5	
7												
8						Durchschnitt		18		*	3	
9												
10												
11												
12												
13												
14												

Evaluation Order?

Topological Sorting

Topological Sorting of an acyclic directed graph G = (V, E):

Bijective mapping

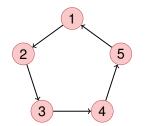
ord : $V \to \{1, \ldots, |V|\}$

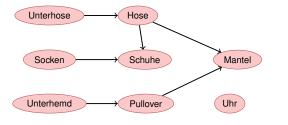
such that

$$\operatorname{ord}(v) < \operatorname{ord}(w) \ \forall \ (v, w) \in E.$$

Identify *i* with Element $v_i := \operatorname{ord}^1(i)$. Topological sorting $\widehat{=} \langle v_1, \ldots, v_{|V|} \rangle$.

(Counter-)Examples





Cyclic graph: cannot be sorted topologically.

A possible toplogical sorting of the graph: Unterhemd,Pullover,Unterhose,Uhr,Hose,Mantel,Socken,Schuhe

Observation

Theorem

A directed graph G = (V, E) permits a topological sorting if and only if it is acyclic.

Proof " \Rightarrow ": If *G* contains a cycle it cannot permit a topological sorting, because in a cycle $\langle v_{i_1}, \ldots, v_{i_m} \rangle$ it would hold that $v_{i_1} < \cdots < v_{i_m} < v_{i_1}$.

645

Inductive Proof Opposite Direction

- Base case (n = 1): Graph with a single node without loop can be sorted topologically, setord $(v_1) = 1$.
- Hypothesis: Graph with n nodes can be sorted topologically
- Step $(n \rightarrow n+1)$:
 - **1** *G* contains a node v_q with in-degree deg⁻(v_q) = 0. Otherwise iteratively follow edges backwards after at most n + 1 iterations a node would be revisited. Contradiction to the cycle-freeness.
 - **2** Graph without node v_q and without its edges can be topologically sorted by the hypothesis. Now use this sorting and set $\operatorname{ord}(v_i) \leftarrow \operatorname{ord}(v_i) + 1$ for all $i \neq q$ and set $\operatorname{ord}(v_q) \leftarrow 1$.

Preliminary Sketch of an Algorithm

Graph G = (V, E). $d \leftarrow 1$

- **1** Traverse backwards starting from any node until a node v_q with in-degree 0 is found.
- If no node with in-degree 0 found after *n* stepsm, then the graph has a cycle.
- \exists Set $\operatorname{ord}(v_q) \leftarrow d$.
- **4** Remove v_q and his edges from G.
- **s** If $V \neq \emptyset$, then $d \leftarrow d + 1$, go to step 1.

Worst case runtime: $\Theta(|V|^2)$.

649

Improvement

Idea?

Compute the in-degree of all nodes in advance and traverse the nodes with in-degree 0 while correcting the in-degrees of following nodes.

Algorithm Topological-Sort(G)

 $\begin{array}{l} \text{Input : graph } G = (V, E). \\ \textbf{Output : Topological sorting ord} \\ \text{Stack } S \leftarrow \emptyset \\ \textbf{foreach } v \in V \ \textbf{do } A[v] \leftarrow 0 \\ \textbf{foreach } (v,w) \in E \ \textbf{do } A[w] \leftarrow A[w] + 1 \ // \ \text{Compute in-degrees} \\ \textbf{foreach } v \in V \ \text{with } A[v] = 0 \ \textbf{do } \text{push}(S,v) \ // \ \text{Memorize nodes with in-degree 0} \\ i \leftarrow 1 \\ \textbf{while } S \neq \emptyset \ \textbf{do} \\ & v \leftarrow \text{pop}(S); \ \text{ord}[v] \leftarrow i; \ i \leftarrow i+1 \ // \ \text{Choose node with in-degree 0} \\ \textbf{foreach } (v,w) \in E \ \textbf{do } // \ \text{Decrease in-degree of successors} \\ & \left\lfloor \begin{array}{c} A[w] \leftarrow A[w] - 1 \\ \textbf{if } A[w] = 0 \ \textbf{then } \text{push}(S,w) \end{array} \right. \end{array} \right. \end{array}$

if i = |V| + 1 then return ord else return "Cycle Detected"

Algorithm Correctness

Theorem

Let G = (V, E) be a directed acyclic graph. Algorithm TopologicalSort(G) computes a topological sorting ord for G with runtime $\Theta(|V| + |E|)$.

Proof: follows from previous theorem:

- 1 Decreasing the in-degree corresponds with node removal.
- In the algorithm it holds for each node v with A[v] = 0 that either the node has in-degree 0 or that previously all predecessors have been assigned a value ord[u] ← i and thus ord[v] > ord[u] for all predecessors u of v. Nodes are put to the stack only once.
- 3 Runtime: inspection of the algorithm (with some arguments like with graph traversal)

Algorithm Correctness

Theorem

Let G = (V, E) be a directed graph containing a cycle. Algorithm TopologicalSort(G) terminates within $\Theta(|V| + |E|)$ steps and detects a cycle.

Proof: let $\langle v_{i_1}, \ldots, v_{i_k} \rangle$ be a cycle in G. In each step of the algorithm remains $A[v_{i_j}] \ge 1$ for all $j = 1, \ldots, k$. Thus k nodes are never pushed on the stack und therefore at the end it holds that $i \le V + 1 - k$.

The runtime of the second part of the algorithm can become shorter. But the computation of the in-degree costs already $\Theta(|V| + |E|)$.

654

Alternative: Algorithm DFS-Topsort(G, v)

```
Input : graph G = (V, E), node v, node list L.

if v active then

\lfloor stop (Cycle)

if v visited then

\lfloor return

Mark v active

foreach w \in N^+(v) do

\lfloor DFS-Topsort(G, w)

Mark v visited

Add v to head of L

Call this algorithm for each node that has not yet been visited.
```

Asymptotic Running Time $\Theta(|V| + |E|)$.