21. Dynamic Programming III

FPTAS [Ottman/Widmayer, Kap. 7.2, 7.3, Cormen et al, Kap. 15,35.5]

Approximation

Let $\varepsilon \in (0,1)$ given. Let I_{opt} an optimal selection.

No try to find a valid selection I with

$$\sum_{i \in I} v_i \ge (1 - \varepsilon) \sum_{i \in I_{\mathsf{opt}}} v_i.$$

Sum of weights may not violate the weight limit.

Different formulation of the algorithm

Before: weight limit $w \to \text{maximal value } v$

Reversed: value $v \to \text{minimal weight } w$

- \Rightarrow alternative table g[i, v] provides the minimum weight with
- \blacksquare a selection of the first i items ($0 \le i \le n$) that
- provide a value of exactly v ($0 \le v \le \sum_{i=1}^n v_i$).

Computation

Initially

- $g[0,0] \leftarrow 0$
- $g[0,v] \leftarrow \infty$ (Value v cannot be achieved with 0 items.).

Computation

$$g[i,v] \leftarrow \begin{cases} g[i-1,v] & \text{falls } v < v_i \\ \min\{g[i-1,v], g[i-1,v-v_i] + w_i\} & \text{sonst.} \end{cases}$$

incrementally in i and for fixed i increasing in v.

Solution can be found at largest index v with $g[n, v] \leq w$.

$$E = \{(2,3), (4,5), (1,1)\}$$

$$0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9$$

$$E = \{(2,3), (4,5), (1,1)\}$$

$$0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9$$

$$\emptyset \quad 0 \quad \infty \quad \infty$$

$$E = \{(2,3), (4,5), (1,1)\}$$

$$0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9$$

$$\emptyset \quad 0 \quad \infty \quad \infty$$

$$(2,3) \quad 0 \quad \infty \quad \infty \quad 2 \quad \infty \quad \infty \quad \infty \quad \infty \quad \infty$$

$$E = \{(2,3), (4,5), (1,1)\}$$

$$0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9$$

$$\emptyset \quad 0 \leftarrow \infty \quad \infty \quad \infty \quad \infty \quad \infty \quad \infty \quad \infty$$

$$(2,3) \quad 0 \leftarrow \infty \quad \infty \quad 2 \leftarrow \infty \quad \infty \quad \infty \quad \infty$$

$$i \quad (4,5) \quad 0 \quad \infty \quad \infty \quad 2 \quad \infty \quad 4 \quad \infty \quad \infty \quad 6 \quad \infty$$

$$E = \{(2,3), (4,5), (1,1)\} \qquad v \longrightarrow 0 \qquad 1 \qquad 2 \qquad 3 \qquad 4 \qquad 5 \qquad 6 \qquad 7 \qquad 8 \qquad 9$$

$$\emptyset \qquad 0 \longleftarrow \infty \quad \infty$$

$$(2,3) \qquad 0 \longleftarrow \infty \quad \infty \quad 2 \longleftarrow \infty \quad \infty \quad \infty \quad \infty$$

$$i \qquad (4,5) \qquad 0_{\kappa} \quad \infty \quad \infty \quad 2_{\kappa} \quad \infty \quad 4_{\kappa} \quad \infty \quad \infty \quad 6_{\kappa} \quad \infty$$

$$(1,1) \qquad 0 \qquad 1 \quad \infty \quad 2 \quad 3 \quad 4 \quad 5 \quad \infty \quad 6 \quad 7$$

$$E = \{(2,3), (4,5), (1,1)\}$$

$$0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9$$

$$\emptyset \quad 0 \leftarrow \infty \quad \infty$$

$$(2,3) \quad 0 \leftarrow \infty \quad \infty \quad 2 \leftarrow \infty \quad \infty \quad \infty \quad \infty$$

$$i \quad (4,5) \quad 0_{\kappa} \quad \infty \quad \infty \quad 2_{\kappa} \quad \infty \quad 4_{\kappa} \quad \infty \quad \infty \quad 6_{\kappa} \quad \infty$$

$$(1,1) \quad 0 \quad 1 \quad \infty \quad 2 \quad 3 \quad 4 \quad 5 \quad \infty \quad 6 \quad 7$$

Read out the solution: if g[i,v]=g[i-1,v] then item i unused and continue with g[i-1,v] otherwise used and continue with $g[i-1,b-v_i]$.

The approximation trick

Pseduopolynomial run time gets polynmial if the number of occuring values can be bounded by a polynom of the input length.

Let K>0 be chosen appropriately. Replace values v_i by "rounded values" $\tilde{v_i}=\lfloor v_i/K \rfloor$ delivering a new input $E'=(w_i,\tilde{v_i})_{i=1...n}$.

Apply the algorithm on the input E^\prime with the same weight limit W.

Idea

Example
$$K=5$$

Values

$$1, 2, 3, 4, 5, 6, 7, 8, 9, 10, \dots, 98, 99, 100$$
 \rightarrow
 $0, 0, 0, 0, 1, 1, 1, 1, 1, 2, \dots, 19, 19, 20$

Obviously less different values

Properties of the new algorithm

- Selection of items in E' is also admissible in E. Weight remains unchanged!
- Run time of the algorithm is bounded by $\mathcal{O}(n^2 \cdot v_{\max}/K)$ $(v_{\max} := \max\{v_i | 1 \le i \le n\})$

How good is the approximation?

It holds that

$$v_i - K \le K \cdot \left| \frac{v_i}{K} \right| = K \cdot \tilde{v_i} \le v_i$$

Let I'_{ont} be an optimal solution of E'. Then

$$\left(\sum_{i \in I_{\mathrm{opt}}} v_i \right) - n \cdot K \overset{|I_{\mathrm{opt}}| \leq n}{\leq} \sum_{i \in I_{\mathrm{opt}}} (v_i - K) \leq \sum_{i \in I_{\mathrm{opt}}} (K \cdot \tilde{v_i}) = K \sum_{i \in I_{\mathrm{opt}}} \tilde{v_i}$$

$$\leq K \sum_{i \in I_{\mathrm{opt}}'} K \sum_{i \in I_{\mathrm{opt}}'} \tilde{v_i} = \sum_{i \in I_{\mathrm{opt}}'} K \cdot \tilde{v_i} \leq \sum_{i \in I_{\mathrm{opt}}'} v_i.$$

Choice of K

Requirement:

$$\sum_{i \in I'} v_i \ge (1 - \varepsilon) \sum_{i \in I_{\mathsf{opt}}} v_i.$$

Inequality from above:

$$\sum_{i \in I_{\mathsf{opt}}'} v_i \ge \left(\sum_{i \in I_{\mathsf{opt}}} v_i\right) - n \cdot K$$

thus:
$$K = \varepsilon \frac{\sum_{i \in I_{\mathsf{opt}}} v_i}{n}$$
.

Choice of K

Choose $K=arepsilon rac{\sum_{i\in I_{\mathrm{opt}}} v_i}{n}$. The optimal sum is unknown. Therefore we choose $K'=arepsilon rac{v_{\mathrm{max}}}{n}.^{34}$

It holds that $v_{\max} \leq \sum_{i \in I_{\text{opt}}} v_i$ and thus $K' \leq K$ and the approximation is even slightly better.

The run time of the algorithm is bounded by

$$\mathcal{O}(n^2 \cdot v_{\text{max}}/K') = \mathcal{O}(n^2 \cdot v_{\text{max}}/(\varepsilon \cdot v_{\text{max}}/n)) = \mathcal{O}(n^3/\varepsilon).$$

 $^{^{34}}$ We can assume that items i with $w_i>W$ have been removed in the first place.

FPTAS

Such a family of algorithms is called an *approximation scheme*: the choice of ε controls both running time and approximation quality.

The runtime $\mathcal{O}(n^3/\varepsilon)$ is a polynom in n and in $\frac{1}{\varepsilon}$. The scheme is therefore also called a *FPTAS* - *Fully Polynomial Time Approximation Scheme*

22. Greedy Algorithms

Fractional Knapsack Problem, Huffman Coding [Cormen et al, Kap. 16.1, 16.3]

The Fractional Knapsack Problem

set of $n \in \mathbb{N}$ items $\{1, \ldots, n\}$ Each item i has value $v_i \in \mathbb{N}$ and weight $w_i \in \mathbb{N}$. The maximum weight is given as $W \in \mathbb{N}$. Input is denoted as $E = (v_i, w_i)_{i=1,\ldots,n}$.

Wanted: Fractions $0 \le q_i \le 1$ ($1 \le i \le n$) that maximise the sum $\sum_{i=1}^{n} q_i \cdot v_i$ under $\sum_{i=1}^{n} q_i \cdot w_i \le W$.

Greedy heuristics

Sort the items decreasingly by value per weight v_i/w_i .

Assumption $v_i/w_i \ge v_{i+1}/w_{i+1}$

Let $j = \max\{0 \le k \le n : \sum_{i=1}^{k} w_i \le W\}$. Set

- $q_i = 1$ for all $1 \le i \le j$.
- $q_{j+1} = \frac{W \sum_{i=1}^{j} w_i}{w_{j+1}}.$
- $q_i = 0$ for all i > j + 1.

That is fast: $\Theta(n \log n)$ for sorting and $\Theta(n)$ for the computation of the q_i .

Correctness

Assumption: optimal solution (r_i) $(1 \le i \le n)$.

The knapsack is full: $\sum_i r_i \cdot w_i = \sum_i q_i \cdot w_i = W$.

Consider k: smallest i with $r_i \neq q_i$ Definition of greedy: $q_k > r_k$. Let $x = q_k - r_k > 0$.

Construct a new solution (r_i') : $r_i' = r_i \forall i < k$. $r_k' = q_k$. Remove weight $\sum_{i=k+1}^n \delta_i = x \cdot w_k$ from items k+1 to n. This works because $\sum_{i=k}^n r_i \cdot w_i = \sum_{i=k}^n q_i \cdot w_i$.

Correctness

$$\sum_{i=k}^{n} r'_{i}v_{i} = r_{k}v_{k} + xw_{k}\frac{v_{k}}{w_{k}} + \sum_{i=k+1}^{n} (r_{i}w_{i} - \delta_{i})\frac{v_{i}}{w_{i}}$$

$$\geq r_{k}v_{k} + xw_{k}\frac{v_{k}}{w_{k}} + \sum_{i=k+1}^{n} r_{i}w_{i}\frac{v_{i}}{w_{i}} - \delta_{i}\frac{v_{k}}{w_{k}}$$

$$= r_{k}v_{k} + xw_{k}\frac{v_{k}}{w_{k}} - xw_{k}\frac{v_{k}}{w_{k}} + \sum_{i=k+1}^{n} r_{i}w_{i}\frac{v_{i}}{w_{i}} = \sum_{i=k}^{n} r_{i}v_{i}.$$

Thus (r'_i) is also optimal. Iterative application of this idea generates the solution (q_i) .

Goal: memory-efficient saving of a sequence of characters using a binary code with code words..

Goal: memory-efficient saving of a sequence of characters using a binary code with code words..

Example

File consisting of 100.000 characters from the alphabet $\{a, \ldots, f\}$.

	а	b	С	d	е	f
Frequency (Thousands)	45	13	12	16	9	5
Code word with fix length	000	001	010	011	100	101
Code word variable length	0	101	100	111	1101	1100

Goal: memory-efficient saving of a sequence of characters using a binary code with code words..

Example

File consisting of 100.000 characters from the alphabet $\{a, \ldots, f\}$.

	а	b	С	d	е	f
Frequency (Thousands)	45	13	12	16	9	5
Code word with fix length	000	001	010	011	100	101
Code word variable length	0	101	100	111	1101	1100

File size (code with fix length): 300.000 bits.

File size (code with variable length): 224.000 bits.

Consider prefix-codes: no code word can start with a different codeword.

- Consider prefix-codes: no code word can start with a different codeword.
- Prefix codes can, compared with other codes, achieve the optimal data compression (without proof here).

- Consider prefix-codes: no code word can start with a different codeword.
- Prefix codes can, compared with other codes, achieve the optimal data compression (without proof here).
- Encoding: concatenation of the code words without stop character (difference to morsing).

$$affe \rightarrow 0 \cdot 1100 \cdot 1100 \cdot 1101 \rightarrow 0110011001101$$

- Consider prefix-codes: no code word can start with a different codeword.
- Prefix codes can, compared with other codes, achieve the optimal data compression (without proof here).
- Encoding: concatenation of the code words without stop character (difference to morsing).
 - $affe \rightarrow 0 \cdot 1100 \cdot 1100 \cdot 1101 \rightarrow 0110011001101$
- Decoding simple because prefixcode $0110011001101 \rightarrow 0 \cdot 1100 \cdot 1100 \cdot 1101 \rightarrow affe$

Code trees

Code words with fixed length

Code words with variable length

Properties of the Code Trees

An optimal coding of a file is alway represented by a complete binary tree: every inner node has two children.

Properties of the Code Trees

- An optimal coding of a file is alway represented by a complete binary tree: every inner node has two children.
- Let C be the set of all code words, f(c) the frequency of a codeword c and $d_T(c)$ the depth of a code word in tree T. Define the cost of a tree as

$$B(T) = \sum_{c \in C} f(c) \cdot d_T(c).$$

(cost = number bits of the encoded file)

Properties of the Code Trees

- An optimal coding of a file is alway represented by a complete binary tree: every inner node has two children.
- Let C be the set of all code words, f(c) the frequency of a codeword c and $d_T(c)$ the depth of a code word in tree T. Define the cost of a tree as

$$B(T) = \sum_{c \in C} f(c) \cdot d_T(c).$$

(cost = number bits of the encoded file)

In the following a code tree is called optimal when it minimizes the costs.

Tree construction bottom up

- Start with the set C of code words
- Replace iteriatively the two nodes with smallest frequency by a new parent node.

a:45 b:13 c:12 d:16 e:9 f:5

- Start with the set C of code words
- Replace iteriatively the two nodes with smallest frequency by a new parent node.

- Start with the set C of code words
- Replace iteriatively the two nodes with smallest frequency by a new parent node.

- Start with the set C of code words
- Replace iteriatively the two nodes with smallest frequency by a new parent node.

- Start with the set C of code words
- Replace iteriatively the two nodes with smallest frequency by a new parent node.

- Start with the set C of code words
- Replace iteriatively the two nodes with smallest frequency by a new parent node.

Algorithm Huffman(C)

```
Input:
                    code words c \in C
Output:
                     Root of an optimal code tree
n \leftarrow |C|
Q \leftarrow C
for i = 1 to n - 1 do
     allocate a new node z
     z.left \leftarrow \mathsf{ExtractMin}(Q)
                                                           extract word with minimal frequency.
     z.right \leftarrow \mathsf{ExtractMin}(Q)
     z.\mathsf{freq} \leftarrow z.\mathsf{left.freq} + z.\mathsf{right.freq}
     Insert(Q, z)
return ExtractMin(Q)
```

Analyse

Use a heap: build Heap in $\mathcal{O}(n)$. Extract-Min in $O(\log n)$ for n Elements. Yields a runtime of $O(n \log n)$.

The greedy approach is correct

Theorem

Let x,y be two symbols with smallest frequencies in C and let T'(C') be an optimal code tree to the alphabet $C' = C - \{x,y\} + \{z\}$ with a new symbol z with f(z) = f(x) + f(y). Then the tree T(C) that is constructed from T'(C') by replacing the node z by an inner node with children x and y is an optimal code tree for the alphabet C.

Proof

It holds that $f(x) \cdot d_T(x) + f(y) \cdot d_T(y) = (f(x) + f(y)) \cdot (d_{T'}(z) + 1) = f(z) \cdot d_{T'}(x) + f(x) + f(y)$. Thus B(T') = B(T) - f(x) - f(y).

Assumption: T is not optimal. Then there is an optimal tree T'' with B(T'') < B(T). We assume that x and y are brothers in T''. Let T''' be the tree where the inner node with children x and y is replaced by z. Then it holds that

B(T''') = B(T'') - f(x) - f(y) < B(T) - f(x) - f(y) = B(T'). Contradiction to the optimality of T'.

The assumption that x and y are brothers in T'' can be justified because a swap of elements with smallest frequency to the lowest level of the tree can at most decrease the value of B.