21. Dynamic Programming |li

FPTAS [Ottman/Widmayer, Kap. 7.2, 7.3, Cormen et al, Kap.
15,35.5]

Approximation

Let e € (0,1) given. Let I,y an optimal selection.
No try to find a valid selection I with

Zviz (1—¢) Zvi.

iel i€lopt

Sum of weights may not violate the weight limit.

Different formulation of the algorithm

Before: weight limit w — maximal value v
Reversed: value v — minimal weight w

= alternative table g[i, v] provides the minimum weight with

m a selection of the first 2 items (0 < 7 < n) that
m provide a value of exactly v (0 < v < Y7 | v;).

Computation

Initially

m g[0,0] « 0
m ¢[0,v] + oo (Value v cannot be achieved with 0 items.).

Computation

i gli — 1,9] falls v < v;
gt min{g[i — 1,v],g[i — 1,v — v;] + w;} sonst.

incrementally in ¢ and for fixed ¢ increasing in v.
Solution can be found at largest index v with g[n, v] < w.

Example
B = {(27 3)7 (47 5)7 (17 1)}
0 1

2

3

4

Example

E=1{(2,3),(4,5),(1,1)} v
o 1 2 3 4 5 6 7 &8 9
0 0 co 0O 00O 00O 00O 00 00 OO0 OO

Example

E=1{(23),(4,5),(1,1)} v
01 2 3 4 5 6 7 8 9

0
(2,3)

0
0

woooooooooooooo
2

o &0 © OINC O CHENC ONC O INNC ¢

Example
E= {(273) ()7 L, 1)} v

_

1 2 3 4 5 6 7 8 9

(
0
D 000 00 0O 00 00 00 00 00 OO
(2,3)0@0@0@
0 2

00 0 4 oo oo 6 ™

Example
E= {(273) ()7 L, 1)} v

_

1 2 3 4 5 6 7 8 9

(
0
D 000 00 0O 00 00 00 00 00 OO
0 2
0

00 0 4. oo o0 6.

PN N

1 oo 2 3 4 5 o0 6 7

Example
E= {(273) ()7 L, 1)} v

_

1 2 3 4 5 6 7 8 9

(
0
0 0o o0 0 0 O O O 00 ©©
(2,3)0@0@0@
ik(45)00®oo2oo4oooo6oo
(1,1) 0

\ AVEEUAN N

1 oo 2 3 4 5 o0 6 7

Read out the solution: if g[i, v] = g[¢ — 1, v] then item ¢ unused and continue with g[¢ — 1, v] otherwise used and continue

with g[i — 1,b — v;] .

The approximation trick

Pseduopolynomial run time gets polynmial if the number of occuring
values can be bounded by a polynom of the input length.

Let K > 0 be chosen appropriately. Replace values v; by “rounded

values” v; = |v;/ K | delivering a new input £ = (w;, 0;)i=1..n-
Apply the algorithm on the input £’ with the same weight limit 11/

Idea

Example K =5
Values

1,2,3,4,5,6,7,8,9,10,...,98,99, 100
_>
0,0,0,0,1,1,1,1,1,2,...,19,19,20

Obviously less different values

Properties of the new algorithm

m Selection of items in E’ is also admissible in . Weight remains
unchanged!

m Run time of the algorithm is bounded by O(n? - Vyax/K)
(Vmax := max{v;|1 < i < n})

How good is the approximation?

It holds that "
Let I, be an optimal solution of £’. Then
|Iopt|§n 5 5
Zvi —n-K < Z(Ui_K)SZ(K'Ui):KZUi
i€ Iopt i€ Iopt i€ Iopt i€ Iopt
Lopoptimal zezl’: zezl’: zg’:

opt opt

Choice of K

Requirement:

Zviz (1—¢) Zvi.

el’ 1€ 1opt

Inequality from above:

Zviz Zvi —-n-

iGIépt 1€ opt

Zie[opt Ui
n

thus: K = ¢

Choice of K

Diclyy Ui . .
Choose K = e—>2— el°"t . The optimal sum is unknown. Therefore we
choose K’ = s“nax 34

It holds that v, < Zidopt v; and thus K’ < K and the
approximation is even slightly better.

The run time of the algorithm is bounded by

ON? - Vpax/K') = O(n* - Vax /(€ - Vmax /1)) = O(n?/e).

34We can assume that items 4 with w; > W have been removed in the first place.

FPTAS

Such a family of algorithms is called an approximation scheme: the
choice of e controls both running time and approximation quality.

The runtime O(n?/e) is a polynom in n and in <. The scheme is
therefore also called a FPTAS - Fully Polynomial Time
Approximation Scheme

22. Greedy Algorithms

Fractional Knapsack Problem, Huffman Coding [Cormen et al, Kap.
16.1, 16.3]

The Fractional Knapsack Problem

set of n € Nitems {1,...,n} Each item i has value v; € N and
weight w; € N. The maximum weight is given as W € N. Input is

—1,...

Wanted: Fractions 0 < ¢; < 1 (1 <12 < n) that maximise the sum
> i1 @i viunder Y g - w; < WL

Greedy heuristics

Sort the items decreasingly by value per weight v; /w;.
Assumption v; /w; > v;11 /Wi

Let j = max{0 < k <n:>" , w; < W}. Set
mg=1foralll < <y.

W gj+1 = %ﬁ‘llwl

mqg=0forall:>j+1.

That is fast: ©(nlogn) for sorting and ©(n) for the computation of
the qi-

Correctness

Assumption: optimal solution (7;) (1 < i < n).

The knapsack is full: >, r; - w; = >, ¢ - w; = W.

Consider k: smallest ¢ with r; £ ¢; Definition of greedy: ¢, > 7. Let
r=q — 1 > 0.

Construct a new solution (77): r; = r;Vi < k. . = q;. Remove
weight >, | 0; = = - wy, from items k + 1 to n. This works because
D i i Wy = D iy G Wi

Correctness

n

n
Vg (%
/
E TV = TRk + TWp— + E (riw; — 6;)—
i=k i=k+1
Vk V; Vg
> ryvp + TWE— + E W — — 0;—
wg . wj Wk
i=k+1
n
Vg (%)
= 1L + :z:wk— — :z:wk— + rlwl = o
W ;
i=k+1 =k

Thus (r}) is also optimal. lterative application of this idea generates
the solution (g;).

591

Huffman-Codes

Goal: memory-efficient saving of a sequence of characters using a
binary code with code words..

Huffman-Codes

Goal: memory-efficient saving of a sequence of characters using a
binary code with code words..

Example
File consisting of 100.000 characters from the alphabet {a, ..., f}.

a b c d e f
Frequency (Thousands) 45 13 12 16 9 5
Code word with fix length 000 001 010 011 100 101
Code word variable length 0 101 100 111 1101 1100

Huffman-Codes

Goal: memory-efficient saving of a sequence of characters using a
binary code with code words..

Example
File consisting of 100.000 characters from the alphabet {a, ..., f}.

a b c d e f
Frequency (Thousands) 45 13 12 16 9 5
Code word with fix length 000 001 010 011 100 101
Code word variable length 0 101 100 111 1101 1100

File size (code with fix length): 300.000 bits.
File size (code with variable length): 224.000 bits.

592

Huffman-Codes

m Consider prefix-codes: no code word can start with a different
codeword.

Huffman-Codes

m Consider prefix-codes: no code word can start with a different
codeword.

m Prefix codes can, compared with other codes, achieve the optimal
data compression (without proof here).

Huffman-Codes

m Consider prefix-codes: no code word can start with a different
codeword.

m Prefix codes can, compared with other codes, achieve the optimal
data compression (without proof here).

m Encoding: concatenation of the code words without stop character
(difference to morsing).

affe—0-1100-1100-1101 — 0110011001101

Huffman-Codes

m Consider prefix-codes: no code word can start with a different
codeword.

m Prefix codes can, compared with other codes, achieve the optimal
data compression (without proof here).

m Encoding: concatenation of the code words without stop character
(difference to morsing).
affe— 0-1100-1100-1101 — 0110011001101

m Decoding simple because prefixcode
0110011001101 — 0 - 1100 - 1100 - 1101 — af fe

Code trees

100
PN
6 14

N Y
O/ \1 0/ \1 0/ \1

a:45 b:13 c:12 d:16 e:9

Code words with fixed length

N
VaN
N g
g

Code words with variable length

Properties of the Code Trees

m An optimal coding of a file is alway represented by a complete
binary tree: every inner node has two children.

Properties of the Code Trees

m An optimal coding of a file is alway represented by a complete
binary tree: every inner node has two children.

m Let C be the set of all code words, f(c) the frequency of a

codeword ¢ and dr(c) the depth of a code word in tree 7. Define
the cost of a tree as

B(T) =3 £(e) - dr(o).

ceC

(cost = number bits of the encoded file)

Properties of the Code Trees

m An optimal coding of a file is alway represented by a complete
binary tree: every inner node has two children.

m Let C be the set of all code words, f(c) the frequency of a
codeword ¢ and dr(c) the depth of a code word in tree 7. Define
the cost of a tree as

B(T) =3 £(e) - dr(o).

ceC

(cost = number bits of the encoded file)

In the following a code tree is called optimal when it minimizes the
costs.

Algorithm Idea

Tree construction bottom

up

m Start with the set C of
code words

m Replace iteriatively the
two nodes with smallest

frequency by a new
parent node. ai45 b:13 ci12 d:16 e9 f5

Algorithm Idea

Tree construction bottom

up

m Start with the set C of
code words

m Replace iteriatively the 14
two nodes with smallest / \

frequency by a new
parent node. ai45 b:13 ci12 d:16 e9 f5

Algorithm Idea

Tree construction bottom

up

m Start with the set C of
code words

m Replace iteriatively the 25 14
two nodes with smallest / \ / \

frequency by a new
parent node. ai45 b:13 ci12 d:16 e9 f5

Algorithm Idea

Tree construction bottom

up

m Start with the set C of
code words 30

m Replace iteriatively the 95 14
two nodes with smallest
frequency by a new / \ / \

parent node. a45 b:13 c12 d:16 e9 f5

Algorithm Idea

Tree construction bottom

up
m Start with the set C of
code words / \ 30
m Replace iteriatively the
two nodes with smallest
frequency by a new / \ / \

SR TR ai45 b3 ci2 d:16 e9 f5

Algorithm Idea

Tree construction bottom

up

m Start with the set C of
code words

m Replace iteriatively the
two nodes with smallest
frequency by a new
parent node.

100

/ \30

/\ /\

a:45 b:13 ci12 d:16 e9

f:5

Algorithm Huffman(C)

Input : code words ¢ € C

Output : Root of an optimal code tree
n <+ |C|

Q<+ C

fori=1ton—1do
allocate a new node z
z.left <— ExtractMin(Q)
z.right <— ExtractMin(Q)
z.freq « z.left.freq + z.right.freq

 Insert(Q, 2)
return ExtractMin(Q)

// extract word with minimal frequency.

597

Analyse

Use a heap: build Heap in O(n). Extract-Min in O(logn) for n
Elements. Yields a runtime of O(nlogn).

The greedy approach is correct

Theorem

Let x, y be two symbols with smallest frequencies in C' and let T (C")
be an optimal code tree to the alphabet C' = C' — {x,y} + {z} with a
new symbol z with f(z) = f(x) + f(y). Then the tree T(C') that is
constructed from T'(C") by replacing the node = by an inner node
with children x and y is an optimal code tree for the alphabet C'.

Proof

It holds that f(x) - dr(z) + f(y) - dr(y) =

(f(x) + f(y)) - (dr(2) +1) = f(2) - drr(x) + f(x) + f(y). Thus
B(T") = B(T) — f(z) = f(y)-

Assumption: 7" is not optimal. Then there is an optimal tree 7" with
B(T") < B(T). We assume that x and y are brothers in T". Let T""
be the tree where the inner node with children x and y is replaced by
z. Then it holds that

B(T") = B(T") — f(z) — f(y) < B(T) — f(z) — f(y) = B(T").
Contradiction to the optimality of 7".

The assumption that = and y are brothers in 7" can be justified
because a swap of elements with smallest frequency to the lowest
level of the tree can at most decrease the value of B.

	Dynamic Programming III
	Fully Polynomial Approximation

	Greedy Algorithms
	Gebrochenes RucksackproblemFractional Knapsack Problem
	Huffman-CodierungHufmann Coding

