
21. Dynamic Programming III

FPTAS [Ottman/Widmayer, Kap. 7.2, 7.3, Cormen et al, Kap.
15,35.5]

575

Approximation

Let ε ∈ (0, 1) given. Let Iopt an optimal selection.

No try to find a valid selection I with
∑

i∈I
vi ≥ (1− ε)

∑

i∈Iopt

vi.

Sum of weights may not violate the weight limit.

576

Different formulation of the algorithm

Before: weight limit w→ maximal value v

Reversed: value v→ minimal weight w

⇒ alternative table g[i, v] provides the minimum weight with

a selection of the first i items (0 ≤ i ≤ n) that
provide a value of exactly v (0 ≤ v ≤∑n

i=1 vi).

577

Computation

Initially

g[0, 0]← 0

g[0, v]←∞ (Value v cannot be achieved with 0 items.).

Computation

g[i, v]←
{
g[i− 1, v] falls v < vi

min{g[i− 1, v], g[i− 1, v − vi] + wi} sonst.

incrementally in i and for fixed i increasing in v.

Solution can be found at largest index v with g[n, v] ≤ w.

578

Example
E = {(2, 3), (4, 5), (1, 1)}

0 1 2 3 4 5 6 7 8 9

∅ 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
(2, 3) 0 ∞ ∞ 2 ∞ ∞ ∞ ∞ ∞ ∞
(4, 5) 0 ∞ ∞ 2 ∞ 4 ∞ ∞ 6 ∞
(1, 1) 0 1 ∞ 2 3 4 5 ∞ 6 7

v

i

Read out the solution: if g[i, v] = g[i− 1, v] then item i unused and continue with g[i− 1, v] otherwise used and continue

with g[i− 1, b− vi] .
579

The approximation trick

Pseduopolynomial run time gets polynmial if the number of occuring
values can be bounded by a polynom of the input length.

Let K > 0 be chosen appropriately. Replace values vi by “rounded
values” ṽi = bvi/Kc delivering a new input E ′ = (wi, ṽi)i=1...n.

Apply the algorithm on the input E ′ with the same weight limit W .

580

Idea

Example K = 5

Values

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, . . . , 98, 99, 100

→
0, 0, 0, 0, 1, 1, 1, 1, 1, 2, . . . , 19, 19, 20

Obviously less different values

581

Properties of the new algorithm

Selection of items in E ′ is also admissible in E. Weight remains
unchanged!
Run time of the algorithm is bounded by O(n2 · vmax/K)
(vmax := max{vi|1 ≤ i ≤ n})

582

How good is the approximation?

It holds that
vi −K ≤ K ·

⌊ vi
K

⌋
= K · ṽi ≤ vi

Let I ′opt be an optimal solution of E ′. Then

∑

i∈Iopt

vi

− n ·K

|Iopt|≤n
≤

∑

i∈Iopt

(vi −K) ≤
∑

i∈Iopt

(K · ṽi) = K
∑

i∈Iopt

ṽi

≤
I ′optoptimal

K
∑

i∈I ′opt

ṽi =
∑

i∈I ′opt

K · ṽi ≤
∑

i∈I ′opt

vi.

583

Choice of K

Requirement: ∑

i∈I ′
vi ≥ (1− ε)

∑

i∈Iopt

vi.

Inequality from above:

∑

i∈I ′opt

vi ≥

∑

i∈Iopt

vi

− n ·K

thus: K = ε

∑
i∈Iopt

vi

n .

584

Choice of K

Choose K = ε

∑
i∈Iopt

vi

n . The optimal sum is unknown. Therefore we
choose K ′ = εvmax

n .34

It holds that vmax ≤
∑

i∈Iopt
vi and thus K ′ ≤ K and the

approximation is even slightly better.

The run time of the algorithm is bounded by

O(n2 · vmax/K
′) = O(n2 · vmax/(ε · vmax/n)) = O(n3/ε).

34We can assume that items i with wi > W have been removed in the first place.
585

FPTAS

Such a family of algorithms is called an approximation scheme: the
choice of ε controls both running time and approximation quality.

The runtime O(n3/ε) is a polynom in n and in 1
ε . The scheme is

therefore also called a FPTAS - Fully Polynomial Time
Approximation Scheme

586

22. Greedy Algorithms

Fractional Knapsack Problem, Huffman Coding [Cormen et al, Kap.
16.1, 16.3]

587

The Fractional Knapsack Problem

set of n ∈ N items {1, . . . , n} Each item i has value vi ∈ N and
weight wi ∈ N. The maximum weight is given as W ∈ N. Input is
denoted as E = (vi, wi)i=1,...,n.

Wanted: Fractions 0 ≤ qi ≤ 1 (1 ≤ i ≤ n) that maximise the sum∑n
i=1 qi · vi under

∑n
i=1 qi · wi ≤ W .

588

Greedy heuristics

Sort the items decreasingly by value per weight vi/wi.

Assumption vi/wi ≥ vi+1/wi+1

Let j = max{0 ≤ k ≤ n :
∑k

i=1wi ≤ W}. Set

qi = 1 for all 1 ≤ i ≤ j.

qj+1 =
W−∑j

i=1 wi

wj+1
.

qi = 0 for all i > j + 1.

That is fast: Θ(n log n) for sorting and Θ(n) for the computation of
the qi.

589

Correctness

Assumption: optimal solution (ri) (1 ≤ i ≤ n).

The knapsack is full:
∑

i ri · wi =
∑

i qi · wi = W .

Consider k: smallest i with ri 6= qi Definition of greedy: qk > rk. Let
x = qk − rk > 0.

Construct a new solution (r′i): r
′
i = ri∀i < k. r′k = qk. Remove

weight
∑n

i=k+1 δi = x · wk from items k + 1 to n. This works because∑n
i=k ri · wi =

∑n
i=k qi · wi.

590

Correctness

n∑

i=k

r′ivi = rkvk + xwk
vk
wk

+
n∑

i=k+1

(riwi − δi)
vi
wi

≥ rkvk + xwk
vk
wk

+
n∑

i=k+1

riwi
vi
wi
− δi

vk
wk

= rkvk + xwk
vk
wk
− xwk

vk
wk

+
n∑

i=k+1

riwi
vi
wi

=
n∑

i=k

rivi.

Thus (r′i) is also optimal. Iterative application of this idea generates
the solution (qi).

591

Huffman-Codes

Goal: memory-efficient saving of a sequence of characters using a
binary code with code words..

Example
File consisting of 100.000 characters from the alphabet {a, . . . , f}.

a b c d e f
Frequency (Thousands) 45 13 12 16 9 5
Code word with fix length 000 001 010 011 100 101
Code word variable length 0 101 100 111 1101 1100

File size (code with fix length): 300.000 bits.
File size (code with variable length): 224.000 bits.

592

Huffman-Codes

Consider prefix-codes: no code word can start with a different
codeword.
Prefix codes can, compared with other codes, achieve the optimal
data compression (without proof here).
Encoding: concatenation of the code words without stop character
(difference to morsing).
affe→ 0 · 1100 · 1100 · 1101→ 0110011001101

Decoding simple because prefixcode
0110011001101→ 0 · 1100 · 1100 · 1101→ affe

593

Code trees

100

86

58

a:45 b:13

28

c:12 d:16

14

14

e:9 f:5

0

0

0 0

0

0

1

11

1

1

Code words with fixed length

100

a:45 55

25

c:12 b:13

30

14

f:5 e:9

d:16

0

0

0 0

0

1

1

11

1

Code words with variable length

594

Properties of the Code Trees

An optimal coding of a file is alway represented by a complete
binary tree: every inner node has two children.
Let C be the set of all code words, f(c) the frequency of a
codeword c and dT (c) the depth of a code word in tree T . Define
the cost of a tree as

B(T) =
∑

c∈C
f(c) · dT (c).

(cost = number bits of the encoded file)

In the following a code tree is called optimal when it minimizes the
costs.

595

Algorithm Idea

Tree construction bottom
up

Start with the set C of
code words
Replace iteriatively the
two nodes with smallest
frequency by a new
parent node. a:45 b:13 c:12 d:16 e:9 f:5

1425

30

55

100

596

Algorithm Huffman(C)

Input : code words c ∈ C
Output : Root of an optimal code tree

n← |C|
Q← C
for i = 1 to n− 1 do

allocate a new node z
z.left← ExtractMin(Q) // extract word with minimal frequency.
z.right← ExtractMin(Q)
z.freq← z.left.freq + z.right.freq
Insert(Q, z)

return ExtractMin(Q)

597

Analyse

Use a heap: build Heap in O(n). Extract-Min in O(log n) for n
Elements. Yields a runtime of O(n log n).

598

The greedy approach is correct

Theorem
Let x, y be two symbols with smallest frequencies in C and let T ′(C ′)
be an optimal code tree to the alphabet C ′ = C −{x, y}+ {z} with a
new symbol z with f(z) = f(x) + f(y). Then the tree T (C) that is
constructed from T ′(C ′) by replacing the node z by an inner node
with children x and y is an optimal code tree for the alphabet C.

599

Proof
It holds that f(x) · dT (x) + f(y) · dT (y) =
(f(x) + f(y)) · (dT ′(z) + 1) = f(z) · dT ′(x) + f(x) + f(y). Thus
B(T ′) = B(T)− f(x)− f(y).

Assumption: T is not optimal. Then there is an optimal tree T ′′ with
B(T ′′) < B(T). We assume that x and y are brothers in T ′′. Let T ′′′

be the tree where the inner node with children x and y is replaced by
z. Then it holds that
B(T ′′′) = B(T ′′)− f(x)− f(y) < B(T)− f(x)− f(y) = B(T ′).
Contradiction to the optimality of T ′.

The assumption that x and y are brothers in T ′′ can be justified
because a swap of elements with smallest frequency to the lowest
level of the tree can at most decrease the value of B.

600

