21. Dynamic Programming III

FPTAS [Ottman/Widmayer, Kap. 7.2, 7.3, Cormen et al, Kap. 15,35.5]

Approximation

Let $\varepsilon \in (0,1)$ given. Let I_{opt} an optimal selection. No try to find a valid selection I with

$$\sum_{i \in I} v_i \ge (1 - \varepsilon) \sum_{i \in I_{\mathsf{opt}}} v_i$$

Sum of weights may not violate the weight limit.

Different formulation of the algorithm

Before: weight limit $w \rightarrow$ maximal value v**Reversed**: value $v \rightarrow$ minimal weight w

 \Rightarrow alternative table g[i, v] provides the minimum weight with

- **a** selection of the first *i* items ($0 \le i \le n$) that
- provide a value of exactly v ($0 \le v \le \sum_{i=1}^{n} v_i$).

Computation

Initially

 $\blacksquare g[0,0] \leftarrow 0$

• $g[0, v] \leftarrow \infty$ (Value v cannot be achieved with 0 items.).

Computation

$$g[i, v] \leftarrow \begin{cases} g[i-1, v] & \text{falls } v < v_i \\ \min\{g[i-1, v], g[i-1, v - v_i] + w_i\} & \text{sonst.} \end{cases}$$

incrementally in *i* and for fixed *i* increasing in *v*. Solution can be found at largest index *v* with $g[n, v] \le w$.

Example

Read out the solution: if g[i, v] = g[i - 1, v] then item *i* unused and continue with g[i - 1, v] otherwise used and continue with $g[i - 1, b - v_i]$.

The approximation trick

Pseduopolynomial run time gets polynmial if the number of occuring values can be bounded by a polynom of the input length.

Let K > 0 be chosen *appropriately*. Replace values v_i by "rounded values" $\tilde{v}_i = \lfloor v_i/K \rfloor$ delivering a new input $E' = (w_i, \tilde{v}_i)_{i=1...n}$. Apply the algorithm on the input E' with the same weight limit W.

How good is the approximation?

It holds that

$$v_i - K \le K \cdot \left\lfloor \frac{v_i}{K} \right\rfloor = K \cdot \tilde{v}_i \le v_i$$

Let I'_{opt} be an optimal solution of E'. Then

$$\begin{split} \left(\sum_{i \in I_{\mathsf{opt}}} v_i\right) - n \cdot K \stackrel{|I_{\mathsf{opt}}| \le n}{\le} \sum_{i \in I_{\mathsf{opt}}} (v_i - K) \le \sum_{i \in I_{\mathsf{opt}}} (K \cdot \tilde{v}_i) = K \sum_{i \in I_{\mathsf{opt}}} \tilde{v}_i \\ \underset{I_{\mathsf{opt}}' \mathsf{optimal}}{\le} K \sum_{i \in I_{\mathsf{opt}}'} \tilde{v}_i = \sum_{i \in I_{\mathsf{opt}}} K \cdot \tilde{v}_i \le \sum_{i \in I_{\mathsf{opt}}} v_i. \end{split}$$

Choice of K

Requirement:

$$\sum_{i \in I'} v_i \ge (1 - \varepsilon) \sum_{i \in I_{\mathsf{opt}}} v_i$$

Inequality from above:

 $\sum_{i \in I'_{\mathsf{opt}}} v_i \ge \left(\sum_{i \in I_{\mathsf{opt}}} v_i\right) - n \cdot K$

thus: $K = \varepsilon \frac{\sum_{i \in I_{opt}} v_i}{n}$.

${\rm Choice} \ {\rm of} \ K$

Choose $K = \varepsilon \frac{\sum_{i \in I_{opt}} v_i}{n}$. The optimal sum is unknown. Therefore we choose $K' = \varepsilon \frac{v_{max}}{n}$.³⁴

It holds that $v_{\max} \leq \sum_{i \in I_{opt}} v_i$ and thus $K' \leq K$ and the approximation is even slightly better.

The run time of the algorithm is bounded by

$$\mathcal{O}(n^2 \cdot v_{\max}/K') = \mathcal{O}(n^2 \cdot v_{\max}/(\varepsilon \cdot v_{\max}/n)) = \mathcal{O}(n^3/\varepsilon).$$

FPTAS

Such a family of algorithms is called an *approximation scheme*: the choice of ε controls both running time and approximation quality. The runtime $\mathcal{O}(n^3/\varepsilon)$ is a polynom in n and in $\frac{1}{\varepsilon}$. The scheme is therefore also called a *FPTAS - Fully Polynomial Time Approximation Scheme*

 $^{^{34}}$ We can assume that items i with $w_i > W$ have been removed in the first place

The Fractional Knapsack Problem

22. Greedy Algorithms

Fractional Knapsack Problem, Huffman Coding [Cormen et al, Kap. 16.1, 16.3]

set of $n \in \mathbb{N}$ items $\{1, \ldots, n\}$ Each item *i* has value $v_i \in \mathbb{N}$ and weight $w_i \in \mathbb{N}$. The maximum weight is given as $W \in \mathbb{N}$. Input is denoted as $E = (v_i, w_i)_{i=1,\ldots,n}$.

Wanted: Fractions $0 \le q_i \le 1$ $(1 \le i \le n)$ that maximise the sum $\sum_{i=1}^{n} q_i \cdot v_i$ under $\sum_{i=1}^{n} q_i \cdot w_i \le W$.

Greedy heuristics

Sort the items decreasingly by value per weight v_i/w_i .

Assumption $v_i/w_i \ge v_{i+1}/w_{i+1}$ Let $j = \max\{0 \le k \le n : \sum_{i=1}^k w_i \le W\}$. Set $q_i = 1$ for all $1 \le i \le j$. $q_{j+1} = \frac{W - \sum_{i=1}^j w_i}{w_{j+1}}$. $q_i = 0$ for all i > j + 1.

That is fast: $\Theta(n \log n)$ for sorting and $\Theta(n)$ for the computation of the q_i .

Correctness

Assumption: optimal solution (r_i) $(1 \le i \le n)$. The knapsack is full: $\sum_i r_i \cdot w_i = \sum_i q_i \cdot w_i = W$. Consider k: smallest i with $r_i \ne q_i$ Definition of greedy: $q_k > r_k$. Let $x = q_k - r_k > 0$. Construct a new solution (r'_i) : $r'_i = r_i \forall i < k$. $r'_k = q_k$. Remove weight $\sum_{i=k+1}^n \delta_i = x \cdot w_k$ from items k + 1 to n. This works because $\sum_{i=k}^n r_i \cdot w_i = \sum_{i=k}^n q_i \cdot w_i$.

587

Correctness

$$\sum_{i=k}^{n} r'_{i} v_{i} = r_{k} v_{k} + x w_{k} \frac{v_{k}}{w_{k}} + \sum_{i=k+1}^{n} (r_{i} w_{i} - \delta_{i}) \frac{v_{i}}{w_{i}}$$

$$\geq r_{k} v_{k} + x w_{k} \frac{v_{k}}{w_{k}} + \sum_{i=k+1}^{n} r_{i} w_{i} \frac{v_{i}}{w_{i}} - \delta_{i} \frac{v_{k}}{w_{k}}$$

$$= r_{k} v_{k} + x w_{k} \frac{v_{k}}{w_{k}} - x w_{k} \frac{v_{k}}{w_{k}} + \sum_{i=k+1}^{n} r_{i} w_{i} \frac{v_{i}}{w_{i}} = \sum_{i=k}^{n} r_{i} v_{i}$$

Thus (r'_i) is also optimal. Iterative application of this idea generates the solution (q_i) .

Huffman-Codes

Goal: memory-efficient saving of a sequence of characters using a binary code with code words..

Example

File consisting of 100.000 characters from the alphabet $\{a, \ldots, f\}$.

	а	b	С	d	е	f
Frequency (Thousands)	45	13	12	16	9	5
Code word with fix length	000	001	010	011	100	101
Code word variable length	0	101	100	111	1101	1100

File size (code with fix length): 300.000 bits. File size (code with variable length): 224.000 bits.

Huffman-Codes

- Consider prefix-codes: no code word can start with a different codeword.
- Prefix codes can, compared with other codes, achieve the optimal data compression (without proof here).
- Encoding: concatenation of the code words without stop character (difference to morsing).
 - $affe \rightarrow 0 \cdot 1100 \cdot 1100 \cdot 1101 \rightarrow 0110011001101$
- Decoding simple because prefixcode $0110011001101 \rightarrow 0 \cdot 1100 \cdot 1100 \cdot 1101 \rightarrow affe$

58

0

28

0

0

Code words with variable length

Properties of the Code Trees

- An optimal coding of a file is alway represented by a complete binary tree: every inner node has two children.
- Let *C* be the set of all code words, *f*(*c*) the frequency of a codeword *c* and *d*_{*T*}(*c*) the depth of a code word in tree *T*. Define the cost of a tree as

$$B(T) = \sum_{c \in C} f(c) \cdot d_T(c).$$

(cost = number bits of the encoded file)

In the following a code tree is called optimal when it minimizes the costs.

Algorithm Idea

Tree construction bottom up

- Start with the set C of code words
- Replace iteriatively the two nodes with smallest frequency by a new parent node.

Algorithm Huffman(C) Analyse code words $c \in C$ Input : Root of an optimal code tree Output : $n \leftarrow |C|$ $Q \leftarrow C$ Use a heap: build Heap in $\mathcal{O}(n)$. Extract-Min in $O(\log n)$ for nfor i = 1 to n - 1 do Elements. Yields a runtime of $O(n \log n)$. allocate a new node z $z.left \leftarrow ExtractMin(Q)$ // extract word with minimal frequency. $z.right \leftarrow ExtractMin(Q)$ $z.\mathsf{freg} \leftarrow z.\mathsf{left}.\mathsf{freg} + z.\mathsf{right}.\mathsf{freg}$ lnsert(Q, z)

595

return ExtractMin(Q)

The greedy approach is correct

Theorem

Let x, y be two symbols with smallest frequencies in C and let T'(C') be an optimal code tree to the alphabet $C' = C - \{x, y\} + \{z\}$ with a new symbol z with f(z) = f(x) + f(y). Then the tree T(C) that is constructed from T'(C') by replacing the node z by an inner node with children x and y is an optimal code tree for the alphabet C.

Proof

It holds that $f(x) \cdot d_T(x) + f(y) \cdot d_T(y) = (f(x) + f(y)) \cdot (d_{T'}(z) + 1) = f(z) \cdot d_{T'}(x) + f(x) + f(y)$. Thus B(T') = B(T) - f(x) - f(y).

Assumption: T is not optimal. Then there is an optimal tree T'' with B(T'') < B(T). We assume that x and y are brothers in T''. Let T''' be the tree where the inner node with children x and y is replaced by z. Then it holds that

B(T''') = B(T'') - f(x) - f(y) < B(T) - f(x) - f(y) = B(T').Contradiction to the optimality of T'.

The assumption that x and y are brothers in T'' can be justified because a swap of elements with smallest frequency to the lowest level of the tree can at most decrease the value of B.