21. Dynamic Programming lli

FPTAS [Ottman/Widmayer, Kap. 7.2, 7.3, Cormen et al, Kap.
15,35.5]

Different formulation of the algorithm

Before: weight limit w — maximal value v
Reversed: value v — minimal weight w

= alternative table ¢|i, v] provides the minimum weight with

m a selection of the first 7 items (0 < < n) that
m provide a value of exactly v (0 < v < Y7).

Approximation

Lete € (0,1) given. Let Iy, an optimal selection.
No try to find a valid selection I with

Zvi Z (1—8) ZUZ’.

el 1€ opt

Sum of weights may not violate the weight limit.

Computation

Initially

m g[0,0] « 0
m ¢[0, v] < oo (Value v cannot be achieved with 0 items.).

Computation

i, 0] « gli — 1,v] falls v < v;
gt min{g[i — 1,v],g[i — 1,v — v;] + w;} sonst.

incrementally in ¢ and for fixed ¢ increasing in v.

Solution can be found at largest index v with g[n, v] < w

Example

E= {(2’ 3)7 (47 5)? (1’ 1)}
o 1 2 3 4

v
_

5 6 7 8 9

@0%@0000000000000

N AN

(1,1) 0 1 oo 2 3

0 co oo 2 o0 4 o0 o0 6. o0

(2,3) OWOO 00
| @

AN AN

4 5 oo 6 7

Read out the solution: if g[¢, v] = g[¢ — 1,v] then item ¢ unused and continue with g[¢ — 1, v] otherwise used and continue

with g[i — 1,b — v;] .

Idea

Example K =5
Values

1,2,3,4,5,6,7,8,9, 10,
_>
0,0,0,0,1,1,1,1,1,2, .

Obviously less different values

..., 98,99, 100

..,19,19,20

581

The approximation trick

Pseduopolynomial run time gets polynmial if the number of occuring
values can be bounded by a polynom of the input length.

Let K > 0 be chosen appropriately. Replace values v; by “rounded
values” v; = |v;/ K | delivering a new input £ = (w;, 0;)i=1...n-

Apply the algorithm on the input E’ with the same weight limit 1V,

Properties of the new algorithm

m Selection of items in £’ is also admissible in E. Weight remains
unchanged!

m Run time of the algorithm is bounded by O(n? - V. /K)
(Vmax := max{v;|1 <i < n})

582

How good is the approximation?

It holds that v
—K<K‘{—1J:K'~z‘< ;
~ I% Vi S U
Let [;,, be an optimal solution of £’. Then
[Topt| <1
sz —n-K < Z(’U,;—K)_ZKUZ KZUZ
’Lelopt ie[opt Zelopt Zelopt

opt opt opt

Choice of K

Yicr . Vi
Choose K = ¢==—
choose K’/ = gluwas 34

It holds that v, < Zze] v; and thus K’ < K and the
approximation is even sllghtly better.

. The optimal sum is unknown. Therefore we

The run time of the algorithm is bounded by

O(n? - Vmax/K') = O(n* - Umax /(€ - Vmax /1)) = O(n?/2).

34We can assume that items 4 with w; > W have been removed in the first place.

585

Choice of K

Requirement:

Zviz (1—€)Zvi.

iel’ 1€ opt

Inequality from above:

Z%’Z

!
zEIopt

Zvi —n-K

ie[opl

Zielom Vi

n

thus: K = ¢

584

FPTAS

Such a family of algorithms is called an approximation scheme: the
choice of € controls both running time and approximation quality.

The runtime O(n?/¢) is a polynom in n and in L. The scheme is
therefore also called a FPTAS - Fully Polynomial Time
Approximation Scheme

586

22. Greedy Algorithms

Fractional Knapsack Problem, Huffman Coding [Cormen et al, Kap.
16.1, 16.3]

Greedy heuristics

Sort the items decreasingly by value per weight v; /w;.
Assumption v; /w; > ;i1 /w1
Let j = max{0 <k <n:> " w; <W}. Set

mg=1forall <:<y.
W—Zgzl w;

" %= Wi+1

mg=0forall:>j+1.

That is fast: ©(nlogn) for sorting and ©(n) for the computation of
the qi.

589

The Fractional Knapsack Problem

setof n € N items {1,...,n} Each item i has value v; € N and
weight w; € N. The maximum weight is given as W & N. Input is

.....

Wanted: Fractions 0 < ¢; < 1 (1 <17 < n) that maximise the sum
ZL ¢; - v; under Z:’Zl g -w; < W.

588

Correctness

Assumption: optimal solution (7;) (1 < i < n).
The knapsackis full: > . r;-w; =Y. ¢ -w; = W.

Consider k: smallest i with r; # ¢; Definition of greedy: ¢, > 7. Let

x=qp—1 > 0.

Construct a new solution (r}): r; = r;Vi < k. r;, = g;. Remove

weight >°" .| 0; = x - wy, from items k + 1 to n. This works because
R T W= D0 i W

590

Correctness

E r@z—rkwk+xwk—+ E rzw,—

i= k+1

> rLup + xwk— + Z nwl— - 5 —

w W w
k i=k+1 ¢ k
n
Vi Vi V;
= LV + TWE— — xwk— + riw,— = g 0;.
k k i=k+1 ¢ i=k

Thus (r}) is also optimal. Iterative application of this idea generates
the solution (¢;).

591

Huffman-Codes

m Consider prefix-codes: no code word can start with a different
codeword.

m Prefix codes can, compared with other codes, achieve the optimal
data compression (without proof here).

m Encoding: concatenation of the code words without stop character
(difference to morsing).
affe—0-1100-1100-1101 — 0110011001101

m Decoding simple because prefixcode
0110011001101 — 0-1100- 1100 - 1101 — af fe

593

Huffman-Codes

Goal: memory-efficient saving of a sequence of characters using a
binary code with code words..

Example
File consisting of 100.000 characters from the alphabet {a, ..., f}.

a b c d e f
Frequency (Thousands) 45 13 12 16 9 5
Code word with fix length 000 001 010 011 100 101
Code word variable length 0 101 100 111 1101 1100

File size (code with fix length): 300.000 bits.
File size (code with variable length): 224.000 bits.

592

Code trees

ymo\ /\
S & Ao
VAIVANIVAN o @b

c:12 b:13 14 d:16
a45 b3 c12 d:16 e9 O/ \1
-5 e9

Code words with fixed length Code words with variable length

594

Properties of the Code Trees Algorithm Idea

m An optimal coding of a file is alway represented by a complete

binary tree: every inner node has two children. Tree construction bottom 100
m Let C be the set of all code words, f(c) the frequency of a up ~
codeword ¢ and dr(c) the depth of a code word in tree T'. Define m Start with the set C' of 55
the cost of a tree as code words / N 30
m Replace iteriatively the 3
B(T) = Z fle) - dr(e). twopnodes with srrilallest 2 M
ce@ frequency by a new / \ / \
(cost = number bits of the encoded file) parent node. a5 b:13 ci12 d116 e9 f:5

In the following a code tree is called optimal when it minimizes the
costs.

Algorithm Huffman(C) Analyse

Input : code words c € C
Output : Root of an optimal code tree

n < |C|

Q< C . . .
fori—=1ton—1do Use a heap: build Heap in O(n). Extract-Min in O(logn) for n

allocate a new node 2 Elements. Yields a runtime of O(nlogn).
z.left <— ExtractMin(Q) // extract word with minimal frequency.

z.right <— ExtractMin(Q)

z.freq < z.left.freq + z.right.freq

- Insert(Q, z)
return ExtractMin(Q)

The greedy approach is correct

Theorem

Let x, y be two symbols with smallest frequencies in C and let T'(C")
be an optimal code tree to the alphabet C' = C' — {z,y} + {z} with a
new symbol z with f(z) = f(x) + f(y). Then the tree T(C) that is
constructed from T'(C") by replacing the node = by an inner node
with children x and y is an optimal code tree for the alphabet C.

599

Proof

It holds that f(z) - dr(x) + f(y) - dT() =
(f(z)+ f(y)) - (dr(z) + 1) = f(2) - dp(2) +
B(T") = B(T) — f(z) — f(y).
Assumption: 7" is not optimal. Then there is an optimal tree 7" with
B(T") < B(T). We assume that = and y are brothers in 7. Let 7"
be the tree where the inner node with children = and y is replaced by
z. Then it holds that

B(T") = B(T") — f(x) — f(y) < B(T) —
Contradiction to the optimality of 7”.

f(x) + f(y). Thus

f(x) = fly) = B(T").
The assumption that = and y are brothers in 7" can be justified
because a swap of elements with smallest frequency to the lowest
level of the tree can at most decrease the value of B.

600

