
20. Dynamic Programming II

Subset sum problem, knapsack problem, greedy algorithm vs
dynamic programming [Ottman/Widmayer, Kap. 7.2, 7.3, 5.7,
Cormen et al, Kap. 15,35.5]
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Quiz Solution
n× n Table
Entry at row i and column j: height of highest possible stack
formed from maximally i boxes and basement box j.

[w × d] [1× 2] [1× 3] [2× 3] [3× 4] [3× 5] [4× 5]
h 3 2 1 5 4 3
1 3 2 1 5 4 3
2 3 2 4 8 8 8
3 3 2 4 9 8 11
4 3 2 4 9 8 12

Determination of the table: Θ(n3), for each entry all entries in the row above must be considered. Computation of the

optimal solution by traversing back, worst case Θ(n2)
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Quiz Alternative Solution

1× n Table, topologically sorted31 according to half-order
stackability
Entry at index j: height of highest possible stack with basement
box j.

[w × d] [1× 2] [1× 3] [2× 3] [3× 4] [3× 5] [4× 5]
h 3 2 1 5 4 3

3 2 4 9 8 12

Topological sort in Θ(n2). Traverse from left to right in Θ(n), overal Θ(n2). Traversing back also Θ(n2)

31explanation soon
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Task

Partition the set of the “item” above into two set such that both sets
have the same value.

A solution:
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Subset Sum Problem

Consider n ∈ N numbers a1, . . . , an ∈ N.

Goal: decide if a selection I ⊆ {1, . . . , n} exists such that∑
i∈I

ai =
∑

i∈{1,...,n}\I

ai.
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Naive Algorithm

Check for each bit vector b = (b1, . . . , bn) ∈ {0, 1}n, if

n∑
i=1

biai
?
=

n∑
i=1

(1− bi)ai

Worst case: n steps for each of the 2n bit vectors b. Number of
steps: O(n · 2n).
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Algorithm with Partition

Partition the input into two equally sized parts a1, . . . , an/2 and
an/2+1, . . . , an.

Iterate over all subsets of the two parts and compute partial sum
Sk1 , . . . , S

k
2n/2

(k = 1, 2).
Sort the partial sums: Sk1 ≤ Sk2 ≤ · · · ≤ Sk

2n/2
.

Check if there are partial sums such that S1
i + S2

j = 1
2

∑n
i=1 ai =: h

Start with i = 1, j = 2n/2.
If S1

i + S2
j = h then finished

If S1
i + S2

j > h then j ← j − 1

If S1
i + S2

j < h then i← i+ 1
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Example

Set {1, 6, 2, 3, 4} with value sum 16 has 32 subsets.

Partitioning into {1, 6} , {2, 3, 4} yields the following 12 subsets with
value sums:

{1, 6} {2, 3, 4}

{} {1} {6} {1, 6} {} {2} {3} {4} {2, 3} {2, 4} {3, 4} {2, 3, 4}

0 1 6 7 0 2 3 4 5 6 7 9

⇔ One possible solution: {1, 3, 4}
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Analysis

Generate partial sums for each part: O(2n/2 · n).
Each sorting: O(2n/2 log(2n/2)) = O(n2n/2).
Merge: O(2n/2)

Overal running time

O
(
n · 2n/2

)
= O

(
n
(√

2
)n)

.

Substantial improvement over the naive method –
but still exponential!
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Dynamic programming
Task: let z = 1

2

∑n
i=1 ai. Find a selection I ⊂ {1, . . . , n}, such that∑

i∈I ai = z.

DP-table: [0, . . . , n]× [0, . . . , z]-table T with boolean entries. T [k, s]
specifies if there is a selection Ik ⊂ {1, . . . , k} such that∑

i∈Ik ai = s.

Initialization: T [0, 0] = true. T [0, s] = false for s > 1.

Computation:

T [k, s]←

{
T [k − 1, s] if s < ak

T [k − 1, s] ∨ T [k − 1, s− ak] if s ≥ ak

for increasing k and then within k increasing s.
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Example

{1, 6, 2, 5}
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 • · · · · · · · · · · · · · ·
1 • • · · · · · · · · · · · · ·
6 • • · · · · • • · · · · · · ·
2 • • • • · · • • • • · · · · ·
5 • • • • · • • • • • · • • • •

summe s

k

Determination of the solution: if T [k, s] = T [k − 1, s] then ak unused and continue with T [k − 1, s] , otherwise ak used

and continue with T [k − 1, s− ak] .
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That is mysterious

The algorithm requires a number of O(n · z) fundamental operations.

What is going on now? Does the algorithm suddenly have
polynomial running time?
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Explained

The algorithm does not necessarily provide a polynomial run time. z
is an number and not a quantity!

Input length of the algorithm ∼= number bits to reasonably represent
the data. With the number z this would be ζ = log z.

Consequently the algorithm requires O(n · 2ζ) fundamental
operations and has a run time exponential in ζ.

If, however, z is polynomial in n then the algorithm has polynomial
run time in n. This is called pseudo-polynomial.
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NP
It is known that the subset-sum algorithm belongs to the class of
NP-complete problems (and is thus NP-hard).

P: Set of all problems that can be solved in polynomial time.

NP: Set of all problems that can be solved Nondeterministically in
Polynomial time.

Implications:

NP contains P.
Problems can be verified in polynomial time.
Under the not (yet?) proven assumption32 that NP 6= P, there is no
algorithm with polynomial run time for the problem considered
above.

32The most important unsolved question of theoretical computer science. 563
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The knapsack problem
We pack our suitcase with ...

toothbrush

dumbell set

coffee machine

uh oh – too heavy.

Toothbrush

Air balloon

Pocket knife

identity card

dumbell set

Uh oh – too heavy.

toothbrush

coffe machine

pocket knife

identity card

Uh oh – too heavy.

Aim to take as much as possible with us. But some things are more
valuable than others!
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Knapsack problem

Given:

set of n ∈ N items {1, . . . , n}.
Each item i has value vi ∈ N and weight wi ∈ N.
Maximum weight W ∈ N.
Input is denoted as E = (vi, wi)i=1,...,n.

Wanted:

a selection I ⊆ {1, . . . , n} that maximises
∑

i∈I vi under∑
i∈I wi ≤ W .
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Greedy heuristics

Sort the items decreasingly by value per weight vi/wi: Permutation p
with vpi/wpi ≥ vpi+1

/wpi+1

Add items in this order (I ← I ∪ {pi}), if the maximum weight is not
exceeded.

That is fast: Θ(n log n) for sorting and Θ(n) for the selection. But is it
good?

566
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Counterexample

v1 = 1 w1 = 1 v1/w1 = 1

v2 = W − 1 w2 = W v2/w2 = W−1
W

Greed algorithm chooses {v1} with value 1.
Best selection: {v2} with value W − 1 and weight W .

Greedy heuristics can be arbitrarily bad.

567
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Dynamic Programming

Partition the maximum weight.

Three dimensional table m[i, w, v] (“doable”) of boolean values.

m[i, w, v] = true if and only if

A selection of the first i parts exists (0 ≤ i ≤ n)
with overal weight w (0 ≤ w ≤ W ) and
a value of at least v (0 ≤ v ≤

∑n
i=1 vi) .
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Computation of the DP table
Initially

m[i, w, 0]← true für alle i ≥ 0 und alle w ≥ 0.
m[0, w, v]← false für alle w ≥ 0 und alle v > 0.

Computation

m[i, w, v]←
{
m[i− 1, w, v] ∨m[i− 1, w − wi, v − vi] if w ≥ wi und v ≥ vi
m[i− 1, w, v] otherwise.

increasing in i and for each i increasing in w and for fixed i and w
increasing by v.

Solution: largest v, such that m[i, w, v] = true for some i and w.
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Observation

The definition of the problem obviously implies that

for m[i, w, v] = true it holds:
m[i′, w, v] = true ∀i′ ≥ i ,
m[i, w′, v] = true ∀w′ ≥ w ,
m[i, w, v′] = true ∀v′ ≤ v.
fpr m[i, w, v] = false it holds:
m[i′, w, v] = false ∀i′ ≤ i ,
m[i, w′, v] = false ∀w′ ≤ w ,
m[i, w, v′] = false ∀v′ ≥ v.

This strongly suggests that we do not need a 3d table!
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2d DP table

Table entry t[i, w] contains, instead of boolean values, the largest v,
that can be achieved33 with

items 1, . . . , i (0 ≤ i ≤ n)
at maximum weight w (0 ≤ w ≤ W ).

33We could have followed a similar idea in order to reduce the size of the sparse table.
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Computation

Initially

t[0, w]← 0 for all w ≥ 0.

We compute

t[i, w]←
{
t[i− 1, w] if w < wi

max{t[i− 1, w], t[i− 1, w − wi] + vi} otherwise.

increasing by i and for fixed i increasing by w.

Solution is located in t[n,w]
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Example
E = {(2, 3), (4, 5), (1, 1)}

0 1 2 3 4 5 6 7

∅ 0 0 0 0 0 0 0 0

(2, 3) 0 0 3 3 3 3 3 3

(4, 5) 0 0 3 3 5 5 8 8

(1, 1) 0 1 3 4 5 6 8 9

w

i

Reading out the solution: if t[i, w] = t[i− 1, w] then item i unused and continue with t[i− 1, w] otherwise used and

continue with t[i− 1, s− wi] .
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Analysis

The two algorithms for the knapsack problem provide a run time in
Θ(n ·W ·

∑n
i=1 vi) (3d-table) and Θ(n ·W ) (2d-table) and are thus

both pseudo-polynomial, but they deliver the best possible result.

The greedy algorithm is very fast butmight deliver an arbitrarily bad
result.

Now we consider a solution between the two extremes.
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