20. Dynamic Programming II

Subset sum problem, knapsack problem, greedy algorithm vs dynamic programming [Ottman/Widmayer, Kap. 7.2, 7.3, 5.7, Cormen et al, Kap. 15,35.5]

Quiz Solution

- \blacksquare $n \times n$ Table
- Entry at row i and column j: height of highest possible stack formed from maximally i boxes and basement box j.

$[w \times d]$	$[1 \times 2]$	$[1 \times 3]$	$[2 \times 3]$	$[3 \times 4]$	$[3 \times 5]$	$[4 \times 5]$
h	3	2	1	5	4	3
1	<u>3</u>	2	1	5	4	3
2	3	2	<u>4</u>	8	8	8
3	3	2	4	<u>9</u>	8	11
4	3	2	4	9	8	<u>12</u>

Determination of the table: $\Theta(n^3)$, for each entry all entries in the row above must be considered. Computation of the optimal solution by traversing back, worst case $\Theta(n^2)$

Quiz Alternative Solution

- lacksquare 1 imes n Table, topologically sorted³¹ according to half-order stackability
- Entry at index j: height of highest possible stack with basement box j.

Topological sort in $\Theta(n^2)$. Traverse from left to right in $\Theta(n)$, overal $\Theta(n^2)$. Traversing back also $\Theta(n^2)$

³¹explanation soon

Task

Partition the set of the "item" above into two set such that both sets have the same value.

Task

Partition the set of the "item" above into two set such that both sets have the same value.

A solution:

Subset Sum Problem

Consider $n \in \mathbb{N}$ numbers $a_1, \ldots, a_n \in \mathbb{N}$.

Goal: decide if a selection $I \subseteq \{1, \dots, n\}$ exists such that

$$\sum_{i \in I} a_i = \sum_{i \in \{1, \dots, n\} \setminus I} a_i.$$

Naive Algorithm

Check for each bit vector $b = (b_1, \dots, b_n) \in \{0, 1\}^n$, if

$$\sum_{i=1}^{n} b_i a_i \stackrel{?}{=} \sum_{i=1}^{n} (1 - b_i) a_i$$

Naive Algorithm

Check for each bit vector $b = (b_1, \dots, b_n) \in \{0, 1\}^n$, if

$$\sum_{i=1}^{n} b_i a_i \stackrel{?}{=} \sum_{i=1}^{n} (1 - b_i) a_i$$

Worst case: n steps for each of the 2^n bit vectors b. Number of steps: $\mathcal{O}(n \cdot 2^n)$.

■ Partition the input into two equally sized parts $a_1, \ldots, a_{n/2}$ and $a_{n/2+1}, \ldots, a_n$.

- Partition the input into two equally sized parts $a_1, \ldots, a_{n/2}$ and $a_{n/2+1}, \ldots, a_n$.
- Iterate over all subsets of the two parts and compute partial sum $S_1^k, \ldots, S_{2n/2}^k$ (k = 1, 2).

- Partition the input into two equally sized parts $a_1, \ldots, a_{n/2}$ and $a_{n/2+1}, \ldots, a_n$.
- Iterate over all subsets of the two parts and compute partial sum $S_1^k, \ldots, S_{2n/2}^k$ (k = 1, 2).
- Sort the partial sums: $S_1^k \leq S_2^k \leq \cdots \leq S_{2^{n/2}}^k$.

- Partition the input into two equally sized parts $a_1, \ldots, a_{n/2}$ and $a_{n/2+1}, \ldots, a_n$.
- Iterate over all subsets of the two parts and compute partial sum $S_1^k, \ldots, S_{2n/2}^k$ (k = 1, 2).
- Sort the partial sums: $S_1^k \leq S_2^k \leq \cdots \leq S_{2^{n/2}}^k$.
- Check if there are partial sums such that $S_i^1 + S_j^2 = \frac{1}{2} \sum_{i=1}^n a_i =: h$

- Partition the input into two equally sized parts $a_1, \ldots, a_{n/2}$ and $a_{n/2+1}, \ldots, a_n$.
- Iterate over all subsets of the two parts and compute partial sum $S_1^k, \ldots, S_{2^{n/2}}^k$ (k = 1, 2).
- Sort the partial sums: $S_1^k \leq S_2^k \leq \cdots \leq S_{2^{n/2}}^k$.
- Check if there are partial sums such that $S_i^1 + S_j^2 = \frac{1}{2} \sum_{i=1}^n a_i =: h$
 - Start with $i = 1, j = 2^{n/2}$.

- Partition the input into two equally sized parts $a_1, \ldots, a_{n/2}$ and $a_{n/2+1}, \ldots, a_n$.
- Iterate over all subsets of the two parts and compute partial sum $S_1^k, \ldots, S_{2^{n/2}}^k$ (k = 1, 2).
- Sort the partial sums: $S_1^k \leq S_2^k \leq \cdots \leq S_{2^{n/2}}^k$.
- Check if there are partial sums such that $S_i^1 + S_j^2 = \frac{1}{2} \sum_{i=1}^n a_i =: h$
 - Start with $i = 1, j = 2^{n/2}$.
 - If $S_i^1 + S_j^2 = h$ then finished

- Partition the input into two equally sized parts $a_1, \ldots, a_{n/2}$ and $a_{n/2+1}, \ldots, a_n$.
- Iterate over all subsets of the two parts and compute partial sum $S_1^k, \ldots, S_{2^{n/2}}^k$ (k = 1, 2).
- Sort the partial sums: $S_1^k \leq S_2^k \leq \cdots \leq S_{2^{n/2}}^k$.
- Check if there are partial sums such that $S_i^1 + S_j^2 = \frac{1}{2} \sum_{i=1}^n a_i =: h$
 - Start with $i = 1, j = 2^{n/2}$.
 - If $S_i^1 + S_i^2 = h$ then finished
 - If $S_i^1 + \tilde{S_j^2} > h$ then $j \leftarrow j 1$

- Partition the input into two equally sized parts $a_1, \ldots, a_{n/2}$ and $a_{n/2+1}, \ldots, a_n$.
- Iterate over all subsets of the two parts and compute partial sum $S_1^k, \ldots, S_{2^{n/2}}^k$ (k = 1, 2).
- Sort the partial sums: $S_1^k \leq S_2^k \leq \cdots \leq S_{2^{n/2}}^k$.
- Check if there are partial sums such that $S_i^1 + S_j^2 = \frac{1}{2} \sum_{i=1}^n a_i =: h$
 - Start with $i = 1, j = 2^{n/2}$.
 - If $S_i^1 + S_i^2 = h$ then finished
 - If $S_i^1 + S_j^2 > h$ then $j \leftarrow j 1$
 - If $S_i^1 + S_j^2 < h$ then $i \leftarrow i + 1$

Set $\{1, 6, 2, 3, 4\}$ with value sum 16 has 32 subsets.

Set $\{1, 6, 2, 3, 4\}$ with value sum 16 has 32 subsets.

Partitioning into $\{1,6\}$, $\{2,3,4\}$ yields the following 12 subsets with value sums:

Set $\{1, 6, 2, 3, 4\}$ with value sum 16 has 32 subsets.

Partitioning into $\{1,6\}$, $\{2,3,4\}$ yields the following 12 subsets with value sums:

Set $\{1, 6, 2, 3, 4\}$ with value sum 16 has 32 subsets.

Partitioning into $\{1,6\}$, $\{2,3,4\}$ yields the following 12 subsets with value sums:

Set $\{1, 6, 2, 3, 4\}$ with value sum 16 has 32 subsets.

Partitioning into $\{1,6\}$, $\{2,3,4\}$ yields the following 12 subsets with value sums:

Set $\{1, 6, 2, 3, 4\}$ with value sum 16 has 32 subsets.

Partitioning into $\{1,6\}$, $\{2,3,4\}$ yields the following 12 subsets with value sums:

Set $\{1, 6, 2, 3, 4\}$ with value sum 16 has 32 subsets.

Partitioning into $\{1,6\}$, $\{2,3,4\}$ yields the following 12 subsets with value sums:

 \Leftrightarrow One possible solution: $\{1, 3, 4\}$

Analysis

- Generate partial sums for each part: $\mathcal{O}(2^{n/2} \cdot n)$.
- Each sorting: $\mathcal{O}(2^{n/2}\log(2^{n/2})) = \mathcal{O}(n2^{n/2})$.
- Merge: $\mathcal{O}(2^{n/2})$

Overal running time

$$\mathcal{O}\left(n\cdot 2^{n/2}\right) = \mathcal{O}\left(n\left(\sqrt{2}\right)^n\right).$$

Substantial improvement over the naive method – but still exponential!

Task: let $z = \frac{1}{2} \sum_{i=1}^{n} a_i$. Find a selection $I \subset \{1, \dots, n\}$, such that $\sum_{i \in I} a_i = z$.

Task: let $z=\frac{1}{2}\sum_{i=1}^n a_i$. Find a selection $I\subset\{1,\ldots,n\}$, such that $\sum_{i\in I}a_i=z$.

DP-table: $[0,\ldots,n] \times [0,\ldots,z]$ -table T with boolean entries. T[k,s] specifies if there is a selection $I_k \subset \{1,\ldots,k\}$ such that $\sum_{i\in I_k} a_i = s$.

Task: let $z=\frac{1}{2}\sum_{i=1}^n a_i$. Find a selection $I\subset\{1,\ldots,n\}$, such that $\sum_{i\in I}a_i=z$.

DP-table: $[0,\ldots,n] \times [0,\ldots,z]$ -table T with boolean entries. T[k,s] specifies if there is a selection $I_k \subset \{1,\ldots,k\}$ such that $\sum_{i\in I_k} a_i = s$.

Initialization: T[0,0] = true. T[0,s] = false for s > 1.

Task: let $z=\frac{1}{2}\sum_{i=1}^n a_i$. Find a selection $I\subset\{1,\ldots,n\}$, such that $\sum_{i\in I}a_i=z$.

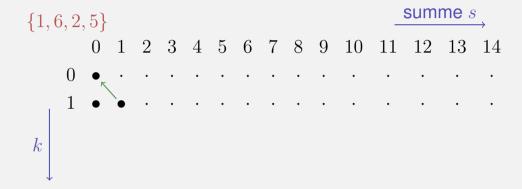
DP-table: $[0,\ldots,n] \times [0,\ldots,z]$ -table T with boolean entries. T[k,s] specifies if there is a selection $I_k \subset \{1,\ldots,k\}$ such that $\sum_{i\in I_k} a_i = s$.

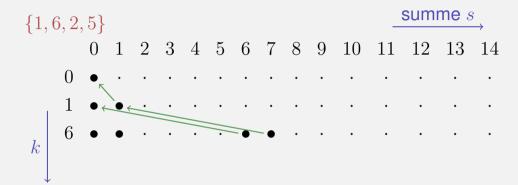
Initialization: T[0,0] = true. T[0,s] = false for s > 1.

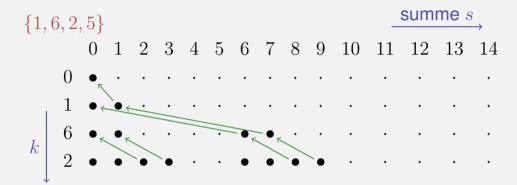
Computation:

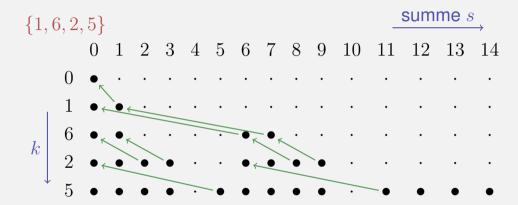
$$T[k,s] \leftarrow \begin{cases} T[k-1,s] & \text{if } s < a_k \\ T[k-1,s] \lor T[k-1,s-a_k] & \text{if } s \ge a_k \end{cases}$$

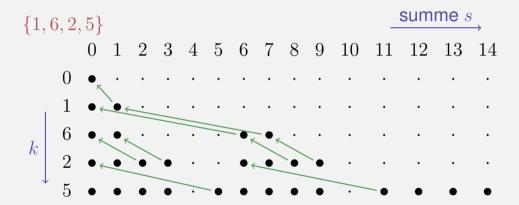
for increasing \boldsymbol{k} and then within \boldsymbol{k} increasing \boldsymbol{s} .











Determination of the solution: if T[k,s]=T[k-1,s] then a_k unused and continue with T[k-1,s] , otherwise a_k used and continue with $T[k-1,s-a_k]$.

That is mysterious

The algorithm requires a number of $\mathcal{O}(n \cdot z)$ fundamental operations.

That is mysterious

The algorithm requires a number of $\mathcal{O}(n \cdot z)$ fundamental operations.

What is going on now? Does the algorithm suddenly have polynomial running time?

That is mysterious

The algorithm requires a number of $\mathcal{O}(n \cdot z)$ fundamental operations.

What is going on now? Does the algorithm suddenly have polynomial running time?

The algorithm does not necessarily provide a polynomial run time. z is an *number* and not a *quantity*!

The algorithm does not necessarily provide a polynomial run time. z is an *number* and not a *quantity*!

Input length of the algorithm \cong number bits to *reasonably* represent the data. With the number z this would be $\zeta = \log z$.

The algorithm does not necessarily provide a polynomial run time. z is an *number* and not a *quantity*!

Input length of the algorithm \cong number bits to *reasonably* represent the data. With the number z this would be $\zeta = \log z$.

Consequently the algorithm requires $\mathcal{O}(n\cdot 2^\zeta)$ fundamental operations and has a run time exponential in ζ .

The algorithm does not necessarily provide a polynomial run time. z is an *number* and not a *quantity*!

Input length of the algorithm \cong number bits to *reasonably* represent the data. With the number z this would be $\zeta = \log z$.

Consequently the algorithm requires $\mathcal{O}(n\cdot 2^\zeta)$ fundamental operations and has a run time exponential in ζ .

If, however, z is polynomial in n then the algorithm has polynomial run time in n. This is called *pseudo-polynomial*.

NP

It is known that the subset-sum algorithm belongs to the class of *NP*-complete problems (and is thus *NP-hard*).

³²The most important unsolved guestion of theoretical computer science.

NP

It is known that the subset-sum algorithm belongs to the class of *NP*-complete problems (and is thus *NP-hard*).

P: Set of all problems that can be solved in polynomial time.

NP: Set of all problems that can be solved Nondeterministically in Polynomial time.

³²The most important unsolved question of theoretical computer science.

NP

It is known that the subset-sum algorithm belongs to the class of *NP*-complete problems (and is thus *NP-hard*).

P: Set of all problems that can be solved in polynomial time.

NP: Set of all problems that can be solved Nondeterministically in Polynomial time.

Implications:

above.

- NP contains P.
- Problems can be verified in polynomial time.
- Under the not (yet?) proven assumption³² that NP ≠ P, there is no algorithm with polynomial run time for the problem considered

³²The most important unsolved question of theoretical computer science.

We pack our suitcase with ...

- toothbrush
- dumbell set
- coffee machine
- uh oh too heavy.

We pack our suitcase with ...

- toothbrush
- dumbell set
- coffee machine
- uh oh too heavy.

- Toothbrush
- Air balloon
- Pocket knife
- identity card
- dumbell set
- Uh oh too heavy.

We pack our suitcase with ...

- toothbrush
- dumbell set
- coffee machine
- uh oh too heavy.

- Toothbrush
- Air balloon
- Pocket knife
- identity card
- dumbell set
- Uh oh too heavy.

- toothbrush
- coffe machine
- pocket knife
- identity card
- Uh oh too heavy.

We pack our suitcase with ...

- toothbrush
- dumbell set
- coffee machine
- uh oh too heavy.

- Toothbrush
- Air balloon
- Pocket knife
- identity card
- dumbell set

- toothbrush
- coffe machine
- pocket knife
- identity card
- Uh oh too heavy.

■ Uh oh – too heavy.

Aim to take as much as possible with us. But some things are more valuable than others!

Knapsack problem

Given:

- \blacksquare set of $n \in \mathbb{N}$ items $\{1, \ldots, n\}$.
- Each item i has value $v_i \in \mathbb{N}$ and weight $w_i \in \mathbb{N}$.
- Maximum weight $W \in \mathbb{N}$.
- Input is denoted as $E = (v_i, w_i)_{i=1,...,n}$.

Knapsack problem

Given:

- \blacksquare set of $n \in \mathbb{N}$ items $\{1, \dots, n\}$.
- Each item i has value $v_i \in \mathbb{N}$ and weight $w_i \in \mathbb{N}$.
- Maximum weight $W \in \mathbb{N}$.
- Input is denoted as $E = (v_i, w_i)_{i=1,...,n}$.

Wanted:

a selection $I \subseteq \{1, \dots, n\}$ that maximises $\sum_{i \in I} v_i$ under $\sum_{i \in I} w_i \leq W$.

Greedy heuristics

Sort the items decreasingly by value per weight v_i/w_i : Permutation p with $v_{p_i}/w_{p_i} \ge v_{p_{i+1}}/w_{p_{i+1}}$

Greedy heuristics

Sort the items decreasingly by value per weight v_i/w_i : Permutation p with $v_{p_i}/w_{p_i} \geq v_{p_{i+1}}/w_{p_{i+1}}$

Add items in this order ($I \leftarrow I \cup \{p_i\}$), if the maximum weight is not exceeded.

Greedy heuristics

Sort the items decreasingly by value per weight v_i/w_i : Permutation p with $v_{p_i}/w_{p_i} \ge v_{p_{i+1}}/w_{p_{i+1}}$

Add items in this order ($I \leftarrow I \cup \{p_i\}$), if the maximum weight is not exceeded.

That is fast: $\Theta(n \log n)$ for sorting and $\Theta(n)$ for the selection. But is it good?

Counterexample

$$v_1 = 1$$
 $w_1 = 1$ $v_1/w_1 = 1$ $v_2 = W - 1$ $w_2 = W$ $v_2/w_2 = \frac{W-1}{W}$

Counterexample

$$v_1 = 1$$
 $w_1 = 1$ $v_1/w_1 = 1$ $v_2 = W - 1$ $w_2 = W$ $v_2/w_2 = \frac{W-1}{W}$

Greed algorithm chooses $\{v_1\}$ with value 1. Best selection: $\{v_2\}$ with value W-1 and weight W. Greedy heuristics can be arbitrarily bad.

Dynamic Programming

Partition the maximum weight.

Dynamic Programming

Partition the maximum weight.

Three dimensional table m[i, w, v] ("doable") of boolean values.

Dynamic Programming

Partition the maximum weight.

Three dimensional table m[i,w,v] ("doable") of boolean values.

m[i, w, v] =true if and only if

- A selection of the first i parts exists $(0 \le i \le n)$
- with overal weight w ($0 \le w \le W$) and
- **a** value of at least v ($0 \le v \le \sum_{i=1}^n v_i$).

Computation of the DP table

Initially

- \blacksquare $m[i, w, 0] \leftarrow$ true für alle $i \ge 0$ und alle $w \ge 0$.
- $lacksquare m[0,w,v] \leftarrow$ false für alle $w \geq 0$ und alle v > 0.

Computation of the DP table

Initially

- \blacksquare $m[i, w, 0] \leftarrow$ true für alle $i \ge 0$ und alle $w \ge 0$.
- \blacksquare $m[0, w, v] \leftarrow$ false für alle $w \ge 0$ und alle v > 0.

Computation

$$m[i,w,v] \leftarrow \begin{cases} m[i-1,w,v] \vee m[i-1,w-w_i,v-v_i] & \text{if } w \geq w_i \text{ und } v \geq v_i \\ m[i-1,w,v] & \text{otherwise.} \end{cases}$$

increasing in i and for each i increasing in w and for fixed i and w increasing by v.

Solution: largest v, such that m[i, w, v] = true for some i and w.

Observation

The definition of the problem obviously implies that

- for m[i,w,v]= true it holds: m[i',w,v]= true $\forall i'\geq i$, m[i,w',v]= true $\forall w'\geq w$, m[i,w,v']= true $\forall v'\leq v.$
- fpr m[i, w, v] = false it holds: m[i', w, v] = false $\forall i' \leq i$, m[i, w', v] = false $\forall w' \leq w$, m[i, w, v'] = false $\forall v' \geq v$.

This strongly suggests that we do not need a 3d table!

2d DP table

Table entry t[i, w] contains, instead of boolean values, the largest v, that can be achieved³³ with

- items $1, \ldots, i \ (0 \le i \le n)$
- **a**t maximum weight w ($0 \le w \le W$).

³³We could have followed a similar idea in order to reduce the size of the sparse table.

Computation

Initially

 \bullet $t[0,w] \leftarrow 0$ for all $w \geq 0$.

We compute

$$t[i,w] \leftarrow \begin{cases} t[i-1,w] & \text{if } w < w_i \\ \max\{t[i-1,w],t[i-1,w-w_i]+v_i\} & \text{otherwise.} \end{cases}$$

increasing by i and for fixed i increasing by w.

Solution is located in t[n, w]

$$E = \{(2,3), (4,5), (1,1)\}$$
 $w \longrightarrow 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7$

$$E = \{(2,3), (4,5), (1,1)\}$$

$$0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7$$

$$\emptyset \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$E = \{(2,3), (4,5), (1,1)\}$$

$$0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7$$

$$0 \quad 0 \quad 0$$

$$(2,3) \quad 0 \quad 0 \quad 3 \quad 3 \quad 3 \quad 3$$

$$E = \{(2,3), (4,5), (1,1)\} \qquad \underbrace{w} \qquad 0 \qquad 1 \qquad 2 \qquad 3 \qquad 4 \qquad 5 \qquad 6 \qquad 7$$

$$\emptyset \qquad 0 \qquad 0$$

$$(2,3) \qquad 0 \qquad 0 \qquad 3 \qquad 3 \qquad 3 \qquad 3 \qquad 3$$

$$i \qquad (4,5) \qquad 0 \qquad 0 \qquad 3 \qquad 3 \qquad 5 \qquad 5 \qquad 8 \qquad 8$$

$$E = \{(2,3), (4,5), (1,1)\} \qquad \underbrace{w} \qquad 0 \qquad 1 \qquad 2 \qquad 3 \qquad 4 \qquad 5 \qquad 6 \qquad 7$$

$$\emptyset \qquad 0_{\kappa} \qquad 0_{\kappa} \qquad 0_{\kappa} \qquad 0_{\kappa} \qquad 0_{\kappa} \qquad 0_{\kappa} \qquad 0 \qquad 0 \qquad 0$$

$$(2,3) \qquad 0_{\kappa} \qquad 0_{\kappa} \qquad 0_{\kappa} \qquad 0_{\kappa} \qquad 0 \qquad 0 \qquad 0$$

$$(4,5) \qquad 0_{\kappa} \qquad 0 \qquad 3_{\kappa} \qquad 3 \qquad 5_{\kappa} \qquad 5 \qquad 8_{\kappa} \qquad 8$$

$$(1,1) \qquad 0 \qquad 1 \qquad 3 \qquad 4 \qquad 5 \qquad 6 \qquad 8 \qquad 9$$

$$E = \{(2,3), (4,5), (1,1)\} \qquad \underbrace{w} \qquad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7$$

$$\emptyset \qquad 0_{\kappa} \quad 0_{\kappa} \quad 0_{\kappa} \quad 0_{\kappa} \quad 0_{\kappa} \quad 0_{\kappa} \quad 0 \quad 0$$

$$(2,3) \qquad 0 \quad 0 \quad 3 \quad 3 \quad 3 \quad 3 \quad 3$$

$$i \qquad (4,5) \qquad 0_{\kappa} \quad 0 \quad 3_{\kappa} \quad 3 \quad 5_{\kappa} \quad 5 \quad 8_{\kappa} \quad 8$$

$$(1,1) \qquad 0 \quad 1 \quad 3 \quad 4 \quad 5 \quad 6 \quad 8 \quad 9$$

Reading out the solution: if t[i,w]=t[i-1,w] then item i unused and continue with t[i-1,w] otherwise used and continue with $t[i-1,s-w_i]$.

Analysis

The two algorithms for the knapsack problem provide a run time in $\Theta(n\cdot W\cdot \sum_{i=1}^n v_i)$ (3d-table) and $\Theta(n\cdot W)$ (2d-table) and are thus both pseudo-polynomial, but they deliver the best possible result.

The greedy algorithm is very fast butmight deliver an arbitrarily bad result.

Now we consider a solution between the two extremes.