20. Dynamic Programming II

Subset sum problem, knapsack problem, greedy algorithm vs dynamic programming [Ottman/Widmayer, Kap. 7.2, 7.3, 5.7, Cormen et al, Kap. 15,35.5]

Quiz Solution

- $n \times n$ Table
- Entry at row i and column j: height of highest possible stack formed from maximally i boxes and basement box j.

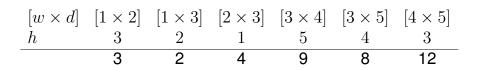
$[w \times d]$	$[1 \times 2]$	$[1 \times 3]$	$[2 \times 3]$	$[3 \times 4]$	$[3 \times 5]$	$[4 \times 5]$	
h	3	2	1	5	4	3	
 1	3	2	1	5	4	3	
2	3	2	<u>4</u>	8	8	8	
3	3	2	4	<u>9</u>	8	11	
4	3	2	4	9	8	<u>12</u>	

Determination of the table: $\Theta(n^3)$, for each entry all entries in the row above must be considered. Computation of the optimal solution by traversing back, worst case $\Theta(n^2)$

550

Quiz Alternative Solution

- $1 \times n$ Table, topologically sorted³¹ according to half-order stackability
- Entry at index j: height of highest possible stack with basement box j.



 $\mbox{Topological sort in } \Theta(n^2). \mbox{ Traverse from left to right in } \Theta(n), \mbox{ overal } \Theta(n^2). \mbox{ Traversing back also } \Theta(n^2)$

Task

Partition the set of the "item" above into two set such that both sets have the same value.

A solution:

³¹ explanation soon

Subset Sum Problem

Consider $n \in \mathbb{N}$ numbers $a_1, \ldots, a_n \in \mathbb{N}$. Goal: decide if a selection $I \subseteq \{1, \ldots, n\}$ exists such that

$$\sum_{i \in I} a_i = \sum_{i \in \{1, \dots, n\} \setminus I} a_i$$

Naive Algorithm

Check for each bit vector $b = (b_1, \ldots, b_n) \in \{0, 1\}^n$, if

$$\sum_{i=1}^{n} b_i a_i \stackrel{?}{=} \sum_{i=1}^{n} (1 - b_i) a_i$$

Worst case: n steps for each of the 2^n bit vectors b. Number of steps: $\mathcal{O}(n \cdot 2^n)$.

554

Algorithm with Partition

- Partition the input into two equally sized parts $a_1, \ldots, a_{n/2}$ and $a_{n/2+1}, \ldots, a_n.$
- Iterate over all subsets of the two parts and compute partial sum $S_1^k, \ldots, S_{2^{n/2}}^k \ (k = 1, 2).$
- Sort the partial sums: $S_1^k \leq S_2^k \leq \cdots \leq S_{2^{n/2}}^k$.
- Check if there are partial sums such that $S_i^1 + S_j^2 = \frac{1}{2} \sum_{i=1}^n a_i =: h$

Start with $i = 1, j = 2^{n/2}$.

- If $S_i^1 + S_j^2 = h$ then finished If $S_i^1 + S_j^2 > h$ then $j \leftarrow j 1$ If $S_i^1 + S_j^2 > h$ then $i \leftarrow i + 1$

Example

Set $\{1, 6, 2, 3, 4\}$ with value sum 16 has 32 subsets.

Partitioning into $\{1, 6\}$, $\{2, 3, 4\}$ yields the following 12 subsets with value sums:

 \Leftrightarrow One possible solution: $\{1, 3, 4\}$

Analysis

- Generate partial sums for each part: $\mathcal{O}(2^{n/2} \cdot n)$.
- Each sorting: $\mathcal{O}(2^{n/2}\log(2^{n/2})) = \mathcal{O}(n2^{n/2}).$
- Merge: $\mathcal{O}(2^{n/2})$

Overal running time

$$\mathcal{O}\left(n\cdot 2^{n/2}\right) = \mathcal{O}\left(n\left(\sqrt{2}\right)^n\right).$$

Substantial improvement over the naive method – but still exponential!

Dynamic programming

Task: let $z = \frac{1}{2} \sum_{i=1}^{n} a_i$. Find a selection $I \subset \{1, ..., n\}$, such that $\sum_{i \in I} a_i = z$.

DP-table: $[0, \ldots, n] \times [0, \ldots, z]$ -table T with boolean entries. T[k, s] specifies if there is a selection $I_k \subset \{1, \ldots, k\}$ such that $\sum_{i \in I_k} a_i = s$.

Initialization: T[0,0] =true. T[0,s] =false for s > 1.

Computation:

$$T[k,s] \leftarrow \begin{cases} T[k-1,s] & \text{if } s < a_k \\ T[k-1,s] \lor T[k-1,s-a_k] & \text{if } s \ge a_k \end{cases}$$

for increasing k and then within k increasing s.

558

561

Determination of the solution: if T[k, s] = T[k - 1, s] then a_k unused and continue with T[k - 1, s], otherwise a_k used and continue with $T[k - 1, s - a_k]$.

That is mysterious

The algorithm requires a number of $\mathcal{O}(n \cdot z)$ fundamental operations. What is going on now? Does the algorithm suddenly have polynomial running time?

Explained

The algorithm does not necessarily provide a polynomial run time. z is an *number* and not a *quantity*!

Input length of the algorithm \cong number bits to *reasonably* represent the data. With the number z this would be $\zeta = \log z$.

Consequently the algorithm requires $\mathcal{O}(n \cdot 2^{\zeta})$ fundamental operations and has a run time exponential in ζ .

If, however, z is polynomial in n then the algorithm has polynomial run time in n. This is called *pseudo-polynomial*.

NP

It is known that the subset-sum algorithm belongs to the class of *NP*-complete problems (and is thus *NP-hard*).

P: Set of all problems that can be solved in polynomial time.

NP: Set of all problems that can be solved Nondeterministically in Polynomial time.

Implications:

- NP contains P.
- Problems can be *verified* in polynomial time.
- Under the not (yet?) proven assumption³² that NP ≠ P, there is no algorithm with polynomial run time for the problem considered

563

565

above.

³²The most important unsolved question of theoretical computer science.

Knapsack problem The knapsack problem We pack our suitcase with ... Given: toothbrush Toothbrush toothbrush set of $n \in \mathbb{N}$ items $\{1, \ldots, n\}$. Each item *i* has value $v_i \in \mathbb{N}$ and weight $w_i \in \mathbb{N}$. Air balloon coffe machine dumbell set Maximum weight $W \in \mathbb{N}$. coffee machine Pocket knife pocket knife Input is denoted as $E = (v_i, w_i)_{i=1,\dots,n}$. ■ uh oh – too heavy. identity card identity card Wanted: ■ Uh oh – too heavy. dumbell set a selection $I \subseteq \{1, \ldots, n\}$ that maximises $\sum_{i \in I} v_i$ under Uh oh – too heavy. $\sum_{i \in I} w_i \leq W.$ Aim to take as much as possible with us. But some things are more valuable than others!

Greedy heuristics

Sort the items decreasingly by value per weight v_i/w_i : Permutation p with $v_{p_i}/w_{p_i} \geq v_{p_{i+1}}/w_{p_{i+1}}$

Add items in this order ($I \leftarrow I \cup \{p_i\}$), if the maximum weight is not exceeded.

That is fast: $\Theta(n\log n)$ for sorting and $\Theta(n)$ for the selection. But is it good?

Counterexample

$$v_1 = 1$$
 $w_1 = 1$ $v_1/w_1 = 1$
 $v_2 = W - 1$ $w_2 = W$ $v_2/w_2 = \frac{W - 1}{W}$

Greed algorithm chooses $\{v_1\}$ with value 1. Best selection: $\{v_2\}$ with value W - 1 and weight W. Greedy heuristics can be arbitrarily bad.

Dynamic Programming

Partition the maximum weight.

Three dimensional table m[i, w, v] ("doable") of boolean values.

m[i, w, v] = true if and only if

- A selection of the first *i* parts exists ($0 \le i \le n$)
- with overal weight w ($0 \le w \le W$) and
- a value of at least v ($0 \le v \le \sum_{i=1}^{n} v_i$).

Computation of the DP table

Initially

- $\blacksquare m[i, w, 0] \leftarrow \text{true für alle } i \ge 0 \text{ und alle } w \ge 0.$
- $\blacksquare m[0, w, v] \leftarrow \text{false für alle } w \ge 0 \text{ und alle } v > 0.$

Computation

$$m[i, w, v] \leftarrow \begin{cases} m[i-1, w, v] \lor m[i-1, w-w_i, v-v_i] & \text{if } w \ge w_i \text{ und } v \ge v_i \\ m[i-1, w, v] & \text{otherwise.} \end{cases}$$

increasing in i and for each i increasing in w and for fixed i and w increasing by v.

Solution: largest v, such that m[i, w, v] = true for some i and w.

Observation

2d DP table

The definition of the problem obviously implies that

• for m[i, w, v] = true it holds: m[i', w, v] = true $\forall i' \geq i$, m[i, w', v] = true $\forall w' \geq w$, m[i, w, v'] = true $\forall v' \leq v$.

fpr m[i, w, v] = false it holds:

$$m[i', w, v] =$$
false $\forall i' \leq i$,

 $m[i,w',v] = \mathsf{false} \; \forall w' \leq w$,

m[i, w, v'] =false $\forall v' \ge v.$

This strongly suggests that we do not need a 3d table!

Table entry t[i, w] contains, instead of boolean values, the largest v, that can be achieved³³ with

- items $1, \ldots, i \ (0 \le i \le n)$
- at maximum weight w ($0 \le w \le W$).

³³We could have followed a similar idea in order to reduce the size of the sparse table.

Computation

Initially

• $t[0,w] \leftarrow 0$ for all $w \ge 0$.

We compute

$$t[i, w] \leftarrow \begin{cases} t[i-1, w] & \text{if } w < w_i \\ \max\{t[i-1, w], t[i-1, w - w_i] + v_i\} & \text{otherwise} \end{cases}$$

increasing by i and for fixed i increasing by w.

Solution is located in t[n, w]

Example

$$E = \{(2,3), (4,5), (1,1)\} \qquad \qquad \underbrace{w}_{0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7} \\ \emptyset \qquad 0_{\kappa} \ 0_{0} \\ (2,3) \qquad 0_{\kappa} \ 0_{\kappa} \\ i \qquad (4,5) \qquad 0_{\kappa} \ 0 \ 3_{\kappa} \ 3 \ 5_{\kappa} \ 5 \ 8_{\kappa} \ 8 \\ (1,1) \qquad 0 \ 1 \ 3 \ 4 \ 5 \ 6 \ 8 \ 9$$

Reading out the solution: if t[i, w] = t[i - 1, w] then item i unused and continue with t[i - 1, w] otherwise used and continue with $t[i - 1, s - w_i]$.

570

Analysis

The two algorithms for the knapsack problem provide a run time in $\Theta(n \cdot W \cdot \sum_{i=1}^{n} v_i)$ (3d-table) and $\Theta(n \cdot W)$ (2d-table) and are thus both pseudo-polynomial, but they deliver the best possible result.

The greedy algorithm is very fast butmight deliver an arbitrarily bad result.

574

Now we consider a solution between the two extremes.