20. Dynamic Programming i

Subset sum problem, knapsack problem, greedy algorithm vs
dynamic programming [Ottman/Widmayer, Kap. 7.2, 7.3, 5.7,
Cormen et al, Kap. 15,35.5]

550

Quiz Alternative Solution

m 1 x n Table, topologically sorted®! according to half-order
stackability

m Entry at index j: height of highest possible stack with basement
box j.

[wxd [1x2 [1x3] [2x3] [3x4] [3x5] [4x5]
h 3 2 1 5) 4 3
3 2 4 9 8 12

Topological sort in ©(n?). Traverse from left to right in ©(n), overal ©(n?). Traversing back also ©(n?)

3Texplanation soon
552

Quiz Solution

m n x n Table
m Entry at row 7 and column j: height of highest possible stack
formed from maximally ¢ boxes and basement box ;.

[wxd [1x2 [1x3] [2x3] [3x4] [3x5] [4x5]
h 3 2 1) 4 3
1 3 2 1 5 4 3
2 3 2 4 8 8 8
3 3 2 4 9 8 11
4 3 2 4 9 8 12

Determination of the table: ©(n?), for each entry all entries in the row above must be considered. Computation of the

optimal solution by traversing back, worst case ©(n?)
551

Task

Partition the set of the “item” above into two set such that both sets
have the same value.

A solution:

553

Subset Sum Problem

Consider n € N numbers ay,...,a, € N.

Goal: decide if a selection I C {1,...,n} exists such that
doai=) a
iel ie{l,...,n}\I

Algorithm with Partition

m Partition the input into two equally sized parts a4, . ..
a”/2+1, ceoy Qp.

m lterate over all subsets of the two parts and compute partial sum
St,... 58, (k=1,2).

m Sort the partial sums: S} < S5 <--- < S¥ ..

m Check if there are partial sums such that S} + 57 = 33" a; =: h

, /2 @NA

Start with i = 1, j = 2/2.

If S} + S} = h then finished

If S} +57 > hthenj <« j—1
If S} + S7 < htheni < i+ 1

Naive Algorithm

Check for each bit vector b = (by,...,b,) € {0,1}", if

n

1=1

1=1

Worst case: n steps for each of the 2" bit vectors b. Number of
steps: O(n - 2").

Example

Set {1, 6,2, 3,4} with value sum 16 has 32 subsets.

Partitioning into {1,6} , {2, 3,4} yields the following 12 subsets with
value sums:

{1,6} {2,3,4}
{+ {13 {6} {ne}|{} {2t {3} {4} {23} {24} {34} {234}

06702345 6 9

< One possible solution: {1, 3,4}

Analysis

m Generate partial sums for each part: O(2"/% - n).
m Each sorting: O(2"/?10g(2"/?)) = O(n2"/?).
m Merge: O(2"/?)

Overal running time

0 (n-2) =0 (n(v3)").

Substantial improvement over the naive method —
but still exponential!

Example
{1 6.2 5} summe s
0123456 789 10 11 12 13 14

o N O = O
I/I/
/

Determination of the solution: if T'[k, s] = T'[k — 1, s] then aj, unused and continue with T'[k — 1, s] , otherwise aj, used

and continue with T'[k — 1,s — az] .

560

Dynamic programming

Task: let z = 13" | ;. Find a selection I C {1,...,n}, such that
Dier @i = .

DP-table: [0,...,n] x [0,..., z]-table T" with boolean entries. T'[k, s]
specifies if there is a selection I;, C {1,..., k} such that

Zidk a; = s.

Initialization: 70, 0] = true. T'[0, s] = false for s > 1.
Computation:

Tk, s] < {

for increasing £ and then within £ increasing s.

Tlk—1,s]
Tk—1,s|VT[k—1,s— ay]

if s < a
istak

That is mysterious

The algorithm requires a number of O(n - z) fundamental operations.

What is going on now? Does the algorithm suddenly have
polynomial running time?

561

Explained

The algorithm does not necessarily provide a polynomial run time. z
is an number and not a quantity!

Input length of the algorithm = number bits to reasonably represent
the data. With the number = this would be (= log 2.

Consequently the algorithm requires O(n - 2¢) fundamental
operations and has a run time exponential in (.

If, however, z is polynomial in n then the algorithm has polynomial
run time in n. This is called pseudo-polynomial.

562

The knapsack problem

We pack our suitcase with ...

m toothbrush m Toothbrush m toothbrush
m dumbell set m Air balloon m coffe machine
m coffee machine m Pocket knife m pocket knife
m uh oh —too heavy. m identity card m identity card
m dumbell set m Uh oh —too heavy.

m Uh oh —too heavy.

Aim to take as much as possible with us. But some things are more
valuable than others!

564

NP

It is known that the subset-sum algorithm belongs to the class of
NP-complete problems (and is thus NP-hard).

P: Set of all problems that can be solved in polynomial time.

NP: Set of all problems that can be solved Nondeterministically in
Polynomial time.

Implications:

m NP contains P.

m Problems can be verified in polynomial time.

m Under the not (yet?) proven assumption®? that NP # P, there is no

algorithm with polynomial run time for the problem considered
—above.

32The most important unsolved question of theoretical computer science.

Knapsack problem

Given:

m setof n € Nitems {1,...,n}.

m Each item i has value v; € N and weight w; € N.
m Maximum weight W € N.

m Input is denoted as E = (v;, w;)i=1.._n-

Wanted:

a selection I C {1,...,n} that maximises) _._; v; under
Zie] w; < W.

563

Greedy heuristics

Sort the items decreasingly by value per weight v; /w;: Permutation p
Wlth vpi/wpi Z ’UpH_l/pr_l

Add items in this order (I < I U {p;}), if the maximum weight is not
exceeded.

That is fast: ©(nlogn) for sorting and ©(n) for the selection. But is it
good?

566

Dynamic Programming

Partition the maximum weight.

Three dimensional table m/i, w, v] (“doable”) of boolean values.
mli, w,v] = true if and only if

m A selection of the first ¢ parts exists (0 <7 < n)

m with overal weight w (0 < w < W) and
m avalueofatleastv (0 <v <> " | v).

568

Counterexample

Greed algorithm chooses {v; } with value 1.
Best selection: {v,} with value W — 1 and weight .

Greedy heuristics can be arbitrarily bad.

Computation of the DP table

Initially

m mli,w, 0] < true fur alle > 0 und alle w > 0.
m m|0,w,v] < false fur alle w > 0 und alle v > 0.

Computation

mli — Lw, 0] Vm[i — 1,w—w;,v—1v;] ifw>w;undv >,

m[z, W v] - { otherwise.

mli — 1, w,]
increasing in 7 and for each 7 increasing in w and for fixed < and w
increasing by v.

Solution: largest v, such that m[i, w, v] = true for some i and w.

569

Observation 2d DP table

The definition of the problem obviously implies that

m for m[i, w,v] = true it holds:

ml[i',w,v] = true Vi’ > i, Table entry t[i, w] contains, instead of boolean values, the largest v,
mli,w',v] = true Yo' > w that can be achieved? with
mli, w,v'] = true Vv’ < . mitems 1,...,i (0 <i<n)

m fpr m[i, w,v] = false it holds:
mli, w,v] = false Vi’ <i,
mli,w', v] = false Vu' < w,
mli, w,v'| = false Vv’ > v.

m at maximum weight w (0 < w < W).

This strongly suggests that we do not need a 3d table!

33We could have followed a similar idea in order to reduce the size of the sparse table.

Computation Example
Initially 01234567
m t[0, w] < 0 for all w > 0. 0 0.0.0.0.0.0.0 0
We compute (2,3) 0}}}}}}3
ti, w] « {1~ L | ITw < w; il (4,5) om&%
max{t[i — 1,w|,t[i — 1,w —w;] + v;} otherwise. \ \ \ \

013 45 6 89

—~
—_
—_

~—

increasing by + and for fixed ¢ increasing by w.
Solution is located in t[n, w]

Reading out the solution: if ¢[i, w] = ¢[i — 1, w] then item ¢ unused and continue with ¢[i — 1, w] otherwise used and

continue with ¢[i — 1, s — w;] .

Analysis

The two algorithms for the knapsack problem provide a run time in
O(n-W-> ", v;) (3d-table) and ©(n - W) (2d-table) and are thus
both pseudo-polynomial, but they deliver the best possible result.

The greedy algorithm is very fast butmight deliver an arbitrarily bad
result.

Now we consider a solution between the two extremes.

