
19. Dynamic Programming I

Fibonacci, Längste aufsteigende Teilfolge, längste gemeinsame
Teilfolge, Editierdistanz, Matrixkettenmultiplikation,
Matrixmultiplikation nach Strassen [Ottman/Widmayer, Kap. 1.2.3,
7.1, 7.4, Cormen et al, Kap. 15]

502

Quiz: Stacking Boxes

Given: n boxes with sizes wi × di × hi
Wanted: maximal height of a permitted stack
Permitted stack: the base area of stacked
boxes must become strictly smaller in both
directions (width and depth)

503

Boxen Stapeln

We assume that there are enough boxes of a
kind such that each box is available in all orien-
tations (right hand side of the figure below).

Solution: later

w
h d

Box 1 2 3 4 5 6
[w × d× h] [1× 2× 3] [1× 3× 2] [2× 3× 1] [3× 4× 5] [3× 5× 4] [4× 5× 3]

504

Simpler: Fibonacci Numbers

(again)

Fn :=

{
n if n < 2

Fn−1 + Fn−2 if n ≥ 2.

Analysis: why ist the recursive algorithm so slow?

505



Algorithm FibonacciRecursive(n)

Input : n ≥ 0
Output : n-th Fibonacci number

if n < 2 then
f ← n

else
f ← FibonacciRecursive(n− 1) + FibonacciRecursive(n− 2)

return f

506

Analysis

T (n): Number executed operations.

n = 0, 1: T (n) = Θ(1)

n ≥ 2: T (n) = T (n− 2) + T (n− 1) + c.

T (n) = T (n− 2) + T (n− 1) + c ≥ 2T (n− 2) + c ≥ 2n/2c′ = (
√

2)nc′

Algorithm is exponential in n.

507

Reason (visual)

F47

F46

F45

F44 F43

F44

F43 F42

F45

F44

F43 F42

F43

F42 F41

Nodes with same values are evaluated (too) often.

508

Memoization

Memoization (sic) saving intermediate results.

Before a subproblem is solved, the existence of the corresponding
intermediate result is checked.
If an intermediate result exists then it is used.
Otherwise the algorithm is executed and the result is saved
accordingly.

509



Memoization with Fibonacci

F47

F46

F45

F44 F43

F44

F45

Rechteckige Knoten wurden bereits ausgewertet.

510

Algorithm FibonacciMemoization(n)

Input : n ≥ 0
Output : n-th Fibonacci number

if n ≤ 2 then
f ← 1

else if ∃memo[n] then
f ← memo[n]

else
f ← FibonacciMemoization(n− 1) + FibonacciMemoization(n− 2)
memo[n]← f

return f

511

Analysis

Computational complexity:

T (n) = T (n− 1) + c = ... = O(n).

Algorithm requires Θ(n) memory.28

28But the naive recursive algorithm also requires Θ(n) memory implicitly.
512

Looking closer ...

... the algorithm computes the values of F1, F2, F3,. . . in the
top-down approach of the recursion.

Can write the algorithm bottom-up. Then it is called dynamic
programming.

513



Algorithm FibonacciDynamicProgram(n)

Input : n ≥ 0
Output : n-th Fibonacci number

F [1]← 1
F [2]← 1
for i← 3, . . . , n do

F [i]← F [i− 1] + F [i− 2]

return F [n]

514

Dynamic Programming: Idea

Divide a complex problem into a reasonable number of
sub-problems
The solution of the sub-problems will be used to solve the more
complex problem
Identical problems will be computed only once

515

Dynamic Programming Consequence

Identical problems will be computed only once

⇒ Results are saved

We trade spee against

memory consumption

516

Dynamic Programming = Divide-And-Conquer ?

In both cases the original problem can be solved (more easily) by
utilizing the solutions of sub-problems. The problem provides
optimal substructure.
Divide-And-Conquer algorithms (such as Mergesort):
sub-problems are independent; their solutions are required only
once in the algorithm.
DP: sub-problems are dependent. The problem is said to have
overlapping sub-problems that are required multiple-times in the
algorithm. In order to avoid redundant computations, results have
to be tabulated.

517



Dynamic Programming: Procedure

1 Use a DP-table with information to the subproblems.
Dimension of the entries? Semantics of the entries?

2 Computation of the base cases
Which entries do not depend on others?

3 Determine computation order.
In which order can the entries be computed such that dependencies are
fulfilled?

4 Read-out the solution
How can the solution be read out from the table?

Runtime (typical) = number entries of the table times required operations per entry.

518

Dynamic Programing: Procedure with the example

1
Dimension of the table? Semantics of the entries?
n× 1 table. nth entry contains nth Fibonacci number.

2
Which entries do not depend on other entries?
Values F1 and F2 can be computed easily and independently.

3
What is the execution order such that required entries are always available?
Fi with increasing i.

4
Wie kann sich Lösung aus der Tabelle konstruieren lassen?
Fn ist die n-te Fibonacci-Zahl.

519

Longest Ascending Sequence (LAS)

1 2 3 4 5 6 7

3 2 4 6 5 7 1

1 2 3 4 5 6 7

3 2 4 6 5 7 1

Connect as many as possible fitting ports without lines crossing.

520

Formally

Consider Sequence A = (a1, . . . , an).
Search for a longest increasing
subsequence of A.
Examples of increasing subsequences:
(3, 4, 5), (2, 4, 5, 7), (3, 4, 5, 7), (3, 7).

1 2 3 4 5 6 7

3 2 4 6 5 7 1
A

Generalization: allow any numbers, even with duplicates. But only
strictly increasing subsequences are permitted. Example:
(2, 3, 3, 3, 5, 1) with increasing subsequence (2, 3, 5).

521



First idea

Assumption: LAS Lk known for k Now want to compute Lk+1 for
k + 1 .

If ak+1 fits to Lk, then Lk+1 = Lk ⊕ ak+1

Counterexample A5 = (1, 2, 5, 3, 4). Let A3 = (1, 2, 5) with L3 = A.
Determine L4 from L3?

It does not work this way, we cannot infer Lk+1 from Lk.

522

Second idea.

Assumption: a LAS Lj is known for each j ≤ k. Now compute LAS
Lk+1 for k + 1.

Look at all fitting Lk+1 = Lj ⊕ ak+1 (j ≤ k) and choose a longest
sequence.

Counterexample: A5 = (1, 2, 5, 3, 4). Let A4 = (1, 2, 5, 3) with
L1 = (1), L2 = (1, 2), L3 = (1, 2, 5), L4 = (1, 2, 5). Determine L5

from L1, . . . , L4?

That does not work either: cannot infer Lk+1 from only an arbitrary
solution Lj. We need to consider all LAS. Too many.

523

Third approach
Assumption: the LAS Lj, that ends with smallest element is known
for each of the lengths 1 ≤ j ≤ k.

Consider all fitting Lj ⊕ ak+1 (j ≤ k) and update the table of the
LAS,that end with smallest possible element.

Example: A = (1, 1000, 1001, 2, 3, 4, ...., 999)

A LAT
(1) (1)
(1, 1000) (1), (1, 1000)
(1, 1000, 1001) (1), (1, 1000), (1, 1000, 1001)
(1, 1000, 1001, 2) (1), (1, 2), (1, 1000, 1001)
(1, 1000, 1001, 2, 3) (1), (1, 2), (1, 2, 3)

524

DP Table

Idea: save the last element of
the increasing sequence Lj at
slot j.
Example: 3 2 5 1 6 4
Problem: Table does not
contain the subsequence, only
the last value.
Solution: second table with the
predecessors.

Index 1 2 3 4 5 6
Wert 3 2 5 1 6 4
Predecessor −∞ −∞ 2 −∞ 5 1

Index 0 1 2 3 4 ...
(Lj)j -∞ 1 4 6 ∞

525



Dynamic Programming Algorithm LAS

1

Table dimension? Semantics?
Two tables T [0, . . . , n] and V [1, . . . , n]. Start with T [0]← −∞,
T [i]←∞ ∀i > 1

2

Computation of an entry
Entries in T sorted in ascending order. For each new entry ak+1 binary
search for l, such that T [l] < ak < T [l + 1]. Set T [l + 1]← ak+1. Set
V [k] = T [l].

526

Dynamic Programming algorithm LAS

3
Computation order

Traverse the list anc compute T [k] and V [k] with ascending k

4

How can the solution be determined from the table?
Search the largest l with T [l] <∞. l is the last index of the LAS. Starting at l
search for the index i < l such that V [l] = A[i], i is the predecessor of l.
Repeat with l← i until T [l] = −∞

527

Analysis

Computation of the table:

Initialization: Θ(n) Operations
Computation of the kth entry: binary search on positions {1, . . . , k} plus
constant number of assignments.

n∑

k=1

(log k +O(1)) = O(n) +
n∑

k=1

log(k) = Θ(n log n).

Reconstruction: traverse A from right to left: O(n).

Overal runtime:
Θ(n log n).

528

DNA - Comparison (Star Trek)

529



DNA - Comparison

DNA consists of sequences of four different nucleotides Adenine
Guanine Thymine Cytosine
DNA sequences (genes) thus can be described with strings of A,
G, T and C.
Possible comparison of two genes: determine the longest
common subsequence

530

Longest common subsequence

Subsequences of a string:

Subsequences(KUH): (), (K), (U), (H), (KU), (KH), (UH),
(KUH)

Problem:

Input: two strings A = (a1, . . . , am), B = (b1, . . . , bn) with lengths
m > 0 and n > 0.
Wanted: Longest common subsequecnes (LCS) of A and B.

531

Longest Common Subsequence

Examples:

LGT(IGEL,KATZE)=E, LGT(TIGER,ZIEGE)=IGE

Ideas to solve?

T I G E R
Z I E G E

532

Recursive Procedure
Assumption: solutions L(i, j) known for A[1, . . . , i] and B[1, . . . , j]
for all 1 ≤ i ≤ m and 1 ≤ j ≤ n, but not for i = m and j = n.

T I G E R
Z I E G E

Consider characters am, bn. Three possibilities:

1 A is enlarged by one whitespace. L(m,n) = L(m,n− 1)

2 B is enlarged by one whitespace. L(m,n) = L(m− 1, n)

3 L(m,n) = L(m− 1, n− 1) + δmn with δmn = 1 if am = bn and
δmn = 0 otherwise

533



Recursion

L(m,n)← max {L(m− 1, n− 1) + δmn, L(m,n− 1), L(m− 1, n)}
for m,n > 0 and base cases L(·, 0) = 0, L(0, ·) = 0.

∅ Z I E G E
∅ 0 0 0 0 0 0
T 0 0 0 0 0 0
I 0 0 1 1 1 1
G 0 0 1 1 2 2
E 0 0 1 2 2 3
R 0 0 1 2 2 3

534

Dynamic Programming algorithm LCS

1

Dimension of the table? Semantics?
Table L[0, . . . ,m][0, . . . , n]. L[i, j]: length of a LCS of the strings (a1, . . . , ai)
and (b1, . . . , bj)

2

Computation of an entry

L[0, i]← 0 ∀0 ≤ i ≤ m, L[j, 0]← 0 ∀0 ≤ j ≤ n. Computation of L[i, j]
otherwise via L[i, j] = max(L[i− 1, j − 1] + δij, L[i, j − 1], L[i− 1, j]).

535

Dynamic Programming algorithm LCS

3
Computation order
Rows increasing and within columns increasing (or the other way round).

4

Reconstruct solution?
Start with j = m, i = n. If ai = bj then output ai and continue with
(j, i)← (j − 1, i− 1); otherwise, if L[i, j] = L[i, j − 1] continue with
j ← j − 1 otherwise, if L[i, j] = L[i− 1, j] continue with i← i− 1 .
Terminate for i = 0 or j = 0.

536

Analysis LCS

Number table entries: (m+ 1) · (n+ 1).
Constant number of assignments and comparisons each. Number
steps: O(mn)

Determination of solition: decrease i or j. Maximally O(n+m)
steps.

Runtime overal:
O(mn).

537



Editing Distance
Editing distance of two sequences A = (a1, . . . , am),
B = (b1, . . . , bm).

Editing operations:

Insertion of a character
Deletion of a character
Replacement of a character

Question: how many editing operations at least required in order to
transform string A into string B.

TIGER ZIGER ZIEGER ZIEGE

Editing Distance = Levenshtein Distance
538

Procedure?

Two dimensional table E[0, . . . ,m][0, . . . , n] with editing distances
E[i, j] of strings Ai = (a1, . . . , ai) and Bj = (b1, . . . , bj).
Consider the last characters of Ai and Bj. Three possible cases:

1 Delete last character of Ai: 29 E[i− 1, j] + 1.
2 Append character to Ai:30 E[i, j − 1] + 1.
3 Replace Ai by Bj : E[i− 1, j − 1] + 1− δij .

E[i, j]← min
{
E[i−1, j]+1, E[i, j−1]+1, E[i−1, j−1]+1−δij

}

29or append character to Bj

30or delete last character of Bj
539

DP Table

E[i, j]← min
{
E[i− 1, j] + 1, E[i, j− 1] + 1, E[i− 1, j− 1] + 1− δij

}

∅ Z I E G E
∅ 0 1 2 3 4 5
T 1 1 2 3 4 5
I 2 2 1 2 3 4
G 3 3 2 2 2 3
E 4 4 3 2 3 2
R 5 5 4 3 3 3

Algorithm: exercise
540

Matrix-Chain-Multiplication

Task: Computation of the product A1 ·A2 · ... ·An of matrices A1, . . . ,
An.

Matrix multiplication is associative, i.e. the order of evalution can be
chosen arbitrarily

Goal: efficient computation of the product.

Assumption: multiplicaiton of an (r× s)-matrix with an (s× u)-matrix
provides costs r · s · u.

541



Does it matter?

·

A1

1

k
k

1 ·

A2

1

k

A3

=

A1 · A2

·

A3

=

A1 · A2 · A3

k2 Operationen! k2 Operationen!

·

1

k

A1

k
1 ·

A2

1

k

A3

=

A1

·

A2 · A3

=

A1 · A2 · A3

k Operationen!k Operationen!

542

Recursion

Assume that the best possible computation of (A1 · A2 · · ·Ai) and
(Ai+1 · Ai+2 · · ·An) is known for each i.
Compute best i, done.

n× n-table M . entry M [p, q] provides costs of the best possible
bracketing (Ap · Ap+1 · · ·Aq).

M [p, q]← min
p≤i<q

(M [p, i] +M [i+ 1, q] + costs of the last multiplication)

543

Computation of the DP-table

Base cases M [p, p]← 0 for all 1 ≤ p ≤ n.
Computation of M [p, q] depends on M [i, j] with p ≤ i ≤ j ≤ q,
(i, j) 6= (p, q).
In particular M [p, q] depends at most from entries M [i, j] with
i− j < q − p.
Consequence: fill the table from the diagonal.

544

Analysis

DP-table has n2 entries. Computation of an entry requires
considering up to n− 1 other entries.

Overal runtime O(n3).

Readout the order from M : exercise!

545



Digression: matrix multiplication
Consider the mutliplicaiton of two n× n matrices.

Let

A = (aij)1≤i,j≤n, B = (bij)1≤i,j≤n, C = (cij)1≤i,j≤n,

C = A ·B

then

cij =
n∑

k=1

aikbkj.

Naive algorithm requires Θ(n3) elementary multiplications.
546

Divide and Conquer

C = ABA

B

e f

g h

a b

c d

ea + fc eb + fd

ga + hc gb + hd

547

Divide and Conquer

Assumption n = 2k.
Number of elementary multiplications:
M(n) = 8M(n/2), M(1) = 1.
yields M(n) = 8log2 n = nlog2 8 = n3. No
advantage

e f

g h

a b

c d

ea + fc eb + fd

ga + hc gb + hd

548

Strassen’s Matrix Multiplication
Nontrivial observation by Strassen (1969):
It suffices to compute the seven products
A = (e+ h) · (a+ d), B = (g + h) · a,
C = e · (b− d), D = h · (c− a), E = (e+ f) · d,
F = (g − e) · (a+ b), G = (f − h) · (c+ d). Denn:
ea+ fc = A+D − E +G, eb+ fd = C + E,
ga+ hc = B +D, gb+ hd = A−B + C + F .

This yields M ′(n) = 7M(n/2),M ′(1) = 1.
Thus M ′(n) = 7log2 n = nlog2 7 ≈ n2.807.

Fastest currently known algorithm:
O(n2.37)

e f

g h

a b

c d

ea + fc eb + fd

ga + hc gb + hd

549


