
16. Binary Search Trees

[Ottman/Widmayer, Kap. 5.1, Cormen et al, Kap. 12.1 - 12.3]
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Dictionary implementation

Hashing: implementation of dictionaries with expected very fast
access times.

Disadvantages of hashing:

linear access time in worst case. Some
operations not supported at all:

enumerate keys in increasing order
next smallest key to given key

424



Dictionary implementation

Hashing: implementation of dictionaries with expected very fast
access times.

Disadvantages of hashing: linear access time in worst case. Some
operations not supported at all:

enumerate keys in increasing order
next smallest key to given key

424



Dictionary implementation

Hashing: implementation of dictionaries with expected very fast
access times.

Disadvantages of hashing: linear access time in worst case. Some
operations not supported at all:

enumerate keys in increasing order

next smallest key to given key

424



Dictionary implementation

Hashing: implementation of dictionaries with expected very fast
access times.

Disadvantages of hashing: linear access time in worst case. Some
operations not supported at all:

enumerate keys in increasing order
next smallest key to given key

424



Trees

Trees are

Generalized lists: nodes can have more than one successor
Special graphs: graphs consist of nodes and edges. A tree is a
fully connected, directed, acyclic graph.
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Trees

Use
Decision trees: hierarchic representation of
decision rules
syntax trees: parsing and traversing of
expressions, e.g. in a compiler
Code tress: representation of a code, e.g.
morse alphabet, huffman code
Search trees: allow efficient searching for an
element by value
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Nomenclature

Wurzel

W

I E

K

parent

child

inner node

leaves

Order of the tree: maximum number of child nodes, here: 3
Height of the tree: maximum path length root – leaf (here: 4)
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Binary Trees
A binary tree is either

a leaf, i.e. an empty tree, or
an inner leaf with two trees Tl (left subtree) and Tr (right subtree)
as left and right successor.

In each node v we store

a key v.key and
two nodes v.left and v.right to the roots of the left and right
subtree.
a leaf is represented by the null-pointer

key

left right
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Binary search tree
A binary search tree is a binary tree that fulfils the search tree
property:

Every node v stores a key
Keys in the left subtree v.left of v are smaller than v.key
Key in the right subtree v.right of v are larger than v.key
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Searching

Input : Binary search tree with root r, key k
Output : Node v with v.key = k or null
v ← r
while v 6= null do

if k = v.key then
return v

else if k < v.key then
v ← v.left

else
v ← v.right

return null

8

4 13

10

9

19

Search (12)

→ null
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Height of a tree

The height h(T ) of a tree T with root r is given by

h(r) =

{
0 if r = null
1 + max{h(r.left), h(r.right)} otherwise.

The worst case run time of the search is thus O(h(T ))
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Insertion of a key

Insertion of the key k
Search for k
If successful search: output
error
Of no success: insert the key at
the leaf reached
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Remove node

Three cases possible:
Node has no children
Node has one child
Node has two children

[Leaves do not count here]
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Remove node

Node has no children
Simple case: replace node by leaf.
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Remove node

Node has one child
Also simple: replace node by single child.
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Remove node

Node has two children

The following observation helps: the
smallest key in the right subtree v.right
(the symmetric successor of v)

is smaller than all keys in v.right

is greater than all keys in v.left

and cannot have a left child.
Solution: replace v by its symmetric suc-
cessor.
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By symmetry...

Node has two children

Also possible: replace v by its symmetric
predecessor.

8

3

5

4

13

10

9

19

439



Algorithm SymmetricSuccessor(v)

Input : Node v of a binary search tree.
Output : Symmetric successor of v
w ← v.right
x← w.left
while x 6= null do

w ← x
x← x.left

return w
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Analysis

Deletion of an element v from a tree T requires O(h(T ))
fundamental steps:

Finding v has costs O(h(T ))

If v has maximal one child unequal to nullthen removal takes
O(1) steps
Finding the symmetric successor n of v takes O(h(T )) steps.
Removal and insertion of n takes O(1) steps.
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Traversal possibilities

preorder: v, then Tleft(v), then
Tright(v).

8, 3, 5, 4, 13, 10, 9, 19
postorder: Tleft(v), then Tright(v), then
v.

4, 5, 3, 9, 10, 19, 13, 8

inorder: Tleft(v), then v, then Tright(v).

3, 4, 5, 8, 9, 10, 13, 19
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Further supported operations

Min(T ): Read-out minimal value in
O(h)

ExtractMin(T ): Read-out and remove
minimal value in O(h)

List(T ): Output the sorted list of
elements
Join(T1, T2): Merge two trees with
max(T1) < min(T2) in O(n).
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Degenerated search trees
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Insert 9,5,13,4,8,10,19
ideally balanced
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linear list

19

13

10

9

8

5

4

Insert 19,13,10,9,8,5,4
linear list
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Probabilistically

A search tree constructed from a random sequence of numbers
provides an an expected path length of O(log n).

Attention: this only holds for insertions. If the tree is constructed by
random insertions and deletions, the expected path length is O(

√
n).

Balanced trees make sure (e.g. with rotations) during insertion or
deletion that the tree stays balanced and provide a O(log n)
Worst-case guarantee.
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17. AVL Trees

Balanced Trees [Ottman/Widmayer, Kap. 5.2-5.2.1, Cormen et al,
Kap. Problem 13-3]
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Objective

Searching, insertion and removal of a key in a tree generated from n
keys inserted in random order takes expected number of steps
O(log2 n).

But worst case Θ(n) (degenerated tree).

Goal: avoidance of degeneration. Artificial balancing of the tree for
each update-operation of a tree.

Balancing: guarantee that a tree with n nodes always has a height of
O(log n).

Adelson-Venskii and Landis (1962): AVL-Trees
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Balance of a node

The height balance of a node v is de-
fined as the height difference of its
sub-trees Tl(v) and Tr(v)

bal(v) := h(Tr(v))− h(Tl(v))

v

Tl(v)

Tr(v)

hl
hr

bal(v)
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AVL Condition

AVL Condition: for eacn node v of a
tree bal(v) ∈ {−1, 0, 1}

v

Tl(v)

Tr(v)

h h+ 1

h+ 2
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(Counter-)Examples

AVL tree with height
2 AVL tree with height

3 No AVL tree
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Number of Leaves

1. observation: a binary search tree with n keys provides exactly
n+ 1 leaves. Simple induction argument.
2. observation: a lower bound of the number of leaves in a search
tree with given height implies an upper bound of the height of a
search tree with given number of keys.
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Lower bound of the leaves

AVL tree with height 1 has
M(1) := 2 leaves.

AVL tree with height 2 has
at least M(2) := 3 leaves.
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Lower bound of the leaves for h > 2

Height of one subtree ≥ h− 1.
Height of the other subtree ≥ h− 2.

Minimal number of leaves M(h) is

M(h) = M(h− 1) +M(h− 2)

v

Tl(v)

Tr(v)

h− 2 h− 1

h

Overal we have M(h) = Fh+2 with Fibonacci-numbers F0 := 0,
F1 := 1, Fn := Fn−1 + Fn−2 for n > 1.
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[Fibonacci Numbers: closed form]

Closed form of the Fibonacci numbers: computation via generation
functions:

1 Power series approach

f(x) :=
∞∑
i=0

Fi · xi
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[Fibonacci Numbers: closed form]

2 For Fibonacci Numbers it holds that F0 = 0, F1 = 1,
Fi = Fi−1 + Fi−2 ∀i > 1. Therefore:

f(x) = x+
∞∑
i=2

Fi · xi = x+
∞∑
i=2

Fi−1 · xi +
∞∑
i=2

Fi−2 · xi

= x+ x
∞∑
i=2

Fi−1 · xi−1 + x2
∞∑
i=2

Fi−2 · xi−2

= x+ x
∞∑
i=0

Fi · xi + x2
∞∑
i=0

Fi · xi

= x+ x · f(x) + x2 · f(x).
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[Fibonacci Numbers: closed form]

3 Thus:
f(x) · (1− x− x2) = x.

⇔ f(x) =
x

1− x− x2
= − x

x2 + x− 1

with the roots −φ and −φ̂ of x2 + x− 1,

φ =
1 +
√

5

2
≈ 1.6, φ̂ =

1−
√

5

2
≈ −0.6.

it holds that φ · φ̂ = −1 and thus

f(x) = − x

(x+ φ) · (x+ φ̂)
=

x

(1− φx) · (1− φ̂x)
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[Fibonacci Numbers: closed form]

4 It holds that:
(1− φ̂x)− (1− φx) =

√
5 · x.

Damit:

f(x) =
1√
5

(1− φ̂x)− (1− φx)

(1− φx) · (1− φ̂x)

=
1√
5

(
1

1− φx
− 1

1− φ̂x

)
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[Fibonacci Numbers: closed form]

5 Power series of ga(x) = 1
1−a·x (a ∈ R):

1

1− a · x
=

∞∑
i=0

ai · xi.

E.g. Taylor series of ga(x) at x = 0 or like this: Let
∑∞

i=0Gi · xi a power
series of g. By the identity ga(x)(1− a · x) = 1 it holds that for all x (within
the radius of convergence)

1 =
∞∑
i=0

Gi · xi − a ·
∞∑
i=0

Gi · xi+1 = G0 +
∞∑
i=1

(Gi − a ·Gi−1) · xi

For x = 0 it follows G0 = 1 and for x 6= 0 it follows then that Gi = a ·Gi−1 ⇒
Gi = ai.
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[Fibonacci Numbers: closed form]

6 Fill in the power series:

f(x) =
1√
5

(
1

1− φx
− 1

1− φ̂x

)
=

1√
5

( ∞∑
i=0

φixi −
∞∑
i=0

φ̂ixi

)

=
∞∑
i=0

1√
5

(φi − φ̂i)xi

Comparison of the coefficients with f(x) =
∑∞

i=0 Fi · xi yields

Fi =
1√
5

(φi − φ̂i).
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Fibonacci Numbers, Inductive Proof

It holds that Fi = 1√
5
(φi − φ̂i) with roots φ, φ̂ of the equation

x2 = x+ 1 (golden ratio), thus φ = 1+
√
5

2 , φ̂ = 1−
√
5

2 .

Proof (induction). Immediate for i = 0, i = 1. Let i > 2:

Fi = Fi−1 + Fi−2 =
1√
5

(φi−1 − φ̂i−1) +
1√
5

(φi−2 − φ̂i−2)

=
1√
5

(φi−1 + φi−2)− 1√
5

(φ̂i−1 + φ̂i−2) =
1√
5
φi−2(φ+ 1)− 1√

5
φ̂i−2(φ̂+ 1)

=
1√
5
φi−2(φ2)− 1√

5
φ̂i−2(φ̂2) =

1√
5

(φi − φ̂i).
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Tree Height

Because φ̂ < 1, overal we have

M(h) ∈ Θ

(1 +
√

5

2

)h
 ⊆ Ω(1.618h)

and thus
h ≤ 1.44 log2 n+ c.

AVL tree is asymptotically not more than 44% higher than a
perfectly balanced tree.

461



Insertion

Balance

Keep the balance stored in each node
Re-balance the tree in each update-operation

New node n is inserted:

Insert the node as for a search tree.
Check the balance condition increasing from n to the root.
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Balance at Insertion Point

=⇒

+1 0p p

n

case 1: bal(p) = +1

=⇒

−1 0p p

n

case 2: bal(p) = −1

Finished in both cases because the subtree height did not change
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Balance at Insertion Point

=⇒

0 +1p p

n

case 3.1: bal(p) = 0 right

=⇒

0 −1p p

n

case 3.2: bal(p) = 0, left

Not finished in both case. Call of upin(p)
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upin(p) - invariant

When upin(p) is called it holds that

the subtree from p is grown and
bal(p) ∈ {−1,+1}
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upin(p)

Assumption: p is left son of pp20

=⇒

pp +1 pp 0

p p

case 1: bal(pp) = +1, done.

=⇒

pp 0 pp −1

p p

case 2: bal(pp) = 0, upin(pp)

In both cases the AVL-Condition holds for the subtree from pp

20If p is a right son: symmetric cases with exchange of +1 and −1
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upin(p)
Assumption: p is left son of pp

pp −1

p

case 3: bal(pp) = −1,

This case is problematic: adding n to the subtree from pp has
violated the AVL-condition. Re-balance!

Two cases bal(p) = −1, bal(p) = +1
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Rotationen

case 1.1 bal(p) = −1. 21

y

x

t1

t2

t3

pp −1

p −1

h

h− 1

h− 1

=⇒
rotation

right

x

y

t1 t2 t3

pp 0

p 0

h h− 1 h− 1

21p right son: bal(pp) = bal(p) = +1, left rotation
468



Rotationen
case 1.1 bal(p) = −1. 22

z

x

y

t1

t2
t3

t4

pp −1

p +1

h

h− 1

h− 1
h− 2

h− 2
h− 1

h− 1

=⇒
double
rotation
left-right

y

x z

t1 t2
t3

t4

pp 0

h− 1 h− 1
h− 2

h− 2
h− 1 h− 1

22p right son: bal(pp) = +1, bal(p) = −1, double rotation right left
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Analysis

Tree height: O(log n).
Insertion like in binary search tree.
Balancing via recursion from node to the root. Maximal path
lenght O(log n).

Insertion in an AVL-tree provides run time costs of O(log n).
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Deletion
Case 1: Children of node n are both leaves Let p be parent node of
n. ⇒ Other subtree has height h′ = 0, 1 or 2.

h′ = 1: Adapt bal(p).
h′ = 0: Adapt bal(p). Call upout(p).
h′ = 2: Rebalanciere des Teilbaumes. Call upout(p).

p

n

h = 0, 1, 2

−→

p

h = 0, 1, 2
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Deletion

Case 2: one child k of node n is an inner node

Replace n by k. upout(k)

p

n

k −→

p

k
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Deletion

Case 3: both children of node n are inner nodes

Replace n by symmetric successor. upout(k)
Deletion of the symmetric successor is as in case 1 or 2.
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upout(p)

Let pp be the parent node of p.

(a) p left child of pp

1 bal(pp) = −1 ⇒ bal(pp)← 0. upout(pp)
2 bal(pp) = 0 ⇒ bal(pp)← +1.
3 bal(pp) = +1⇒ next slides.

(b) p right child of pp: Symmetric cases exchanging +1 and −1.
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upout(p)
Case (a).3: bal(pp) = +1. Let q be brother of p
(a).3.1: bal(q) = 0.23

ypp +1

xp 0 zq 0

1 2

3 4

h− 1 h− 1

h+ 1 h+ 1

=⇒
Left Rotate(y)

z −1

y +1

x 0

1 2

3

4

h− 1 h− 1

h+ 1

h+ 1

23(b).3.1: bal(pp) = −1, bal(q) = −1, Right rotation 475



upout(p)
Case (a).3: bal(pp) = +1. (a).3.2: bal(q) = +1.24

ypp +1

xp 0 zq +1

1 2

3

4

h− 1 h− 1

h

h+ 1

=⇒
Left Rotate(y)

z 0r

y 0

x 0

1 2 3 4

h− 1 h− 1 h h+ 1

plus upout(r).

24(b).3.2: bal(pp) = −1, bal(q) = +1, Right rotation+upout
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upout(p)
Case (a).3: bal(pp) = +1. (a).3.3: bal(q) = −1.25

ypp +1

xp 0 zq −1

w

1 2

3 4

5
h− 1 h− 1

h

=⇒
Rotate right
(z) left (y)

w 0r

y 0

x

z

0

1 2 3 4 5

h− 1 h− 1 h

plus upout(r).
25(b).3.3: bal(pp) = −1, bal(q) = −1, left-right rotation + upout
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Conclusion

AVL trees have worst-case asymptotic runtimes of O(log n) for
searching, insertion and deletion of keys.
Insertion and deletion is relatively involved and an overkill for
really small problems.
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