
16. Binary Search Trees

[Ottman/Widmayer, Kap. 5.1, Cormen et al, Kap. 12.1 - 12.3]

423



Dictionary implementation

Hashing: implementation of dictionaries with expected very fast
access times.

Disadvantages of hashing:

linear access time in worst case. Some
operations not supported at all:

enumerate keys in increasing order
next smallest key to given key

424



Dictionary implementation

Hashing: implementation of dictionaries with expected very fast
access times.

Disadvantages of hashing: linear access time in worst case. Some
operations not supported at all:

enumerate keys in increasing order
next smallest key to given key

424



Dictionary implementation

Hashing: implementation of dictionaries with expected very fast
access times.

Disadvantages of hashing: linear access time in worst case. Some
operations not supported at all:

enumerate keys in increasing order

next smallest key to given key

424



Dictionary implementation

Hashing: implementation of dictionaries with expected very fast
access times.

Disadvantages of hashing: linear access time in worst case. Some
operations not supported at all:

enumerate keys in increasing order
next smallest key to given key

424



Trees

Trees are

Generalized lists: nodes can have more than one successor
Special graphs: graphs consist of nodes and edges. A tree is a
fully connected, directed, acyclic graph.

425



Trees

Use
Decision trees: hierarchic representation of
decision rules
syntax trees: parsing and traversing of
expressions, e.g. in a compiler
Code tress: representation of a code, e.g.
morse alphabet, huffman code
Search trees: allow efficient searching for an
element by value

426



Examples

start

E

I

S

H V

U

F U

A

R

L A

W

P I

T

N

D

B X

K

C Y

M

G

Z Q

O

Ö CH

longshort

Morsealphabet

427



Examples

3/5 + 7.0

+

/

3 5

7.0

Expression tree
428



Nomenclature

Wurzel

W

I E

K

parent

child

inner node

leaves

Order of the tree: maximum number of child nodes, here: 3
Height of the tree: maximum path length root – leaf (here: 4)

429



Binary Trees
A binary tree is either

a leaf, i.e. an empty tree, or
an inner leaf with two trees Tl (left subtree) and Tr (right subtree)
as left and right successor.

In each node v we store

a key v.key and
two nodes v.left and v.right to the roots of the left and right
subtree.
a leaf is represented by the null-pointer

key

left right

430



Binary search tree
A binary search tree is a binary tree that fulfils the search tree
property:

Every node v stores a key
Keys in the left subtree v.left of v are smaller than v.key
Key in the right subtree v.right of v are larger than v.key

16

7

5

2

10

9 15

18

17 30

99

431



Searching

Input : Binary search tree with root r, key k
Output : Node v with v.key = k or null
v ← r
while v 6= null do

if k = v.key then
return v

else if k < v.key then
v ← v.left

else
v ← v.right

return null

8

4 13

10

9

19

Search (12)

→ null

432



Searching

Input : Binary search tree with root r, key k
Output : Node v with v.key = k or null
v ← r
while v 6= null do

if k = v.key then
return v

else if k < v.key then
v ← v.left

else
v ← v.right

return null

8

4 13

10

9

19

Search (12)

→ null

432



Searching

Input : Binary search tree with root r, key k
Output : Node v with v.key = k or null
v ← r
while v 6= null do

if k = v.key then
return v

else if k < v.key then
v ← v.left

else
v ← v.right

return null

8

4 13

10

9

19

Search (12)

→ null

432



Searching

Input : Binary search tree with root r, key k
Output : Node v with v.key = k or null
v ← r
while v 6= null do

if k = v.key then
return v

else if k < v.key then
v ← v.left

else
v ← v.right

return null

8

4 13

10

9

19

Search (12)→ null

432



Height of a tree

The height h(T ) of a tree T with root r is given by

h(r) =

{
0 if r = null
1 + max{h(r.left), h(r.right)} otherwise.

The worst case run time of the search is thus O(h(T ))

433



Insertion of a key

Insertion of the key k
Search for k
If successful search: output
error
Of no success: insert the key at
the leaf reached

8

4

5

13

10

9

19

Insert (5)

434



Remove node

Three cases possible:
Node has no children
Node has one child
Node has two children

[Leaves do not count here]

8

3

5

4

13

10

9

19

435



Remove node

Node has no children
Simple case: replace node by leaf.

8

3

5

4

13

10

9

19

remove(4)−→

8

3

5

13

10

9

19

436



Remove node

Node has one child
Also simple: replace node by single child.

8

3

5

4

13

10

9

19

remove(3)−→

8

5

4

13

10

9

19

437



Remove node

Node has two children

The following observation helps: the
smallest key in the right subtree v.right
(the symmetric successor of v)

is smaller than all keys in v.right

is greater than all keys in v.left

and cannot have a left child.
Solution: replace v by its symmetric suc-
cessor.

8

3

5

4

13

10

9

19

438



By symmetry...

Node has two children

Also possible: replace v by its symmetric
predecessor.

8

3

5

4

13

10

9

19

439



Algorithm SymmetricSuccessor(v)

Input : Node v of a binary search tree.
Output : Symmetric successor of v
w ← v.right
x← w.left
while x 6= null do

w ← x
x← x.left

return w

440



Analysis

Deletion of an element v from a tree T requires O(h(T ))
fundamental steps:

Finding v has costs O(h(T ))

If v has maximal one child unequal to nullthen removal takes
O(1) steps
Finding the symmetric successor n of v takes O(h(T )) steps.
Removal and insertion of n takes O(1) steps.

441



Traversal possibilities

preorder: v, then Tleft(v), then
Tright(v).

8, 3, 5, 4, 13, 10, 9, 19
postorder: Tleft(v), then Tright(v), then
v.

4, 5, 3, 9, 10, 19, 13, 8

inorder: Tleft(v), then v, then Tright(v).

3, 4, 5, 8, 9, 10, 13, 19

8

3

5

4

13

10

9

19

442



Traversal possibilities

preorder: v, then Tleft(v), then
Tright(v).
8, 3, 5, 4, 13, 10, 9, 19

postorder: Tleft(v), then Tright(v), then
v.

4, 5, 3, 9, 10, 19, 13, 8

inorder: Tleft(v), then v, then Tright(v).

3, 4, 5, 8, 9, 10, 13, 19

8

3

5

4

13

10

9

19

442



Traversal possibilities

preorder: v, then Tleft(v), then
Tright(v).
8, 3, 5, 4, 13, 10, 9, 19
postorder: Tleft(v), then Tright(v), then
v.

4, 5, 3, 9, 10, 19, 13, 8
inorder: Tleft(v), then v, then Tright(v).

3, 4, 5, 8, 9, 10, 13, 19

8

3

5

4

13

10

9

19

442



Traversal possibilities

preorder: v, then Tleft(v), then
Tright(v).
8, 3, 5, 4, 13, 10, 9, 19
postorder: Tleft(v), then Tright(v), then
v.
4, 5, 3, 9, 10, 19, 13, 8

inorder: Tleft(v), then v, then Tright(v).

3, 4, 5, 8, 9, 10, 13, 19

8

3

5

4

13

10

9

19

442



Traversal possibilities

preorder: v, then Tleft(v), then
Tright(v).
8, 3, 5, 4, 13, 10, 9, 19
postorder: Tleft(v), then Tright(v), then
v.
4, 5, 3, 9, 10, 19, 13, 8
inorder: Tleft(v), then v, then Tright(v).

3, 4, 5, 8, 9, 10, 13, 19

8

3

5

4

13

10

9

19

442



Traversal possibilities

preorder: v, then Tleft(v), then
Tright(v).
8, 3, 5, 4, 13, 10, 9, 19
postorder: Tleft(v), then Tright(v), then
v.
4, 5, 3, 9, 10, 19, 13, 8
inorder: Tleft(v), then v, then Tright(v).
3, 4, 5, 8, 9, 10, 13, 19

8

3

5

4

13

10

9

19

442



Further supported operations

Min(T ): Read-out minimal value in
O(h)

ExtractMin(T ): Read-out and remove
minimal value in O(h)

List(T ): Output the sorted list of
elements
Join(T1, T2): Merge two trees with
max(T1) < min(T2) in O(n).

8

3

5

4

13

10

9

19

443



Degenerated search trees

9

5

4 8

13

10 19

Insert 9,5,13,4,8,10,19
ideally balanced

4

5

8

9

10

13

19

Insert 4,5,8,9,10,13,19
linear list

19

13

10

9

8

5

4

Insert 19,13,10,9,8,5,4
linear list

444



Probabilistically

A search tree constructed from a random sequence of numbers
provides an an expected path length of O(log n).

Attention: this only holds for insertions. If the tree is constructed by
random insertions and deletions, the expected path length is O(

√
n).

Balanced trees make sure (e.g. with rotations) during insertion or
deletion that the tree stays balanced and provide a O(log n)
Worst-case guarantee.

445



17. AVL Trees

Balanced Trees [Ottman/Widmayer, Kap. 5.2-5.2.1, Cormen et al,
Kap. Problem 13-3]

446



Objective

Searching, insertion and removal of a key in a tree generated from n
keys inserted in random order takes expected number of steps
O(log2 n).

But worst case Θ(n) (degenerated tree).

Goal: avoidance of degeneration. Artificial balancing of the tree for
each update-operation of a tree.

Balancing: guarantee that a tree with n nodes always has a height of
O(log n).

Adelson-Venskii and Landis (1962): AVL-Trees

447



Balance of a node

The height balance of a node v is de-
fined as the height difference of its
sub-trees Tl(v) and Tr(v)

bal(v) := h(Tr(v))− h(Tl(v))

v

Tl(v)

Tr(v)

hl
hr

bal(v)

448



AVL Condition

AVL Condition: for eacn node v of a
tree bal(v) ∈ {−1, 0, 1}

v

Tl(v)

Tr(v)

h h+ 1

h+ 2

449



(Counter-)Examples

AVL tree with height
2 AVL tree with height

3 No AVL tree

450



Number of Leaves

1. observation: a binary search tree with n keys provides exactly
n+ 1 leaves. Simple induction argument.
2. observation: a lower bound of the number of leaves in a search
tree with given height implies an upper bound of the height of a
search tree with given number of keys.

451



Lower bound of the leaves

AVL tree with height 1 has
M(1) := 2 leaves.

AVL tree with height 2 has
at least M(2) := 3 leaves.

452



Lower bound of the leaves for h > 2

Height of one subtree ≥ h− 1.
Height of the other subtree ≥ h− 2.

Minimal number of leaves M(h) is

M(h) = M(h− 1) +M(h− 2)

v

Tl(v)

Tr(v)

h− 2 h− 1

h

Overal we have M(h) = Fh+2 with Fibonacci-numbers F0 := 0,
F1 := 1, Fn := Fn−1 + Fn−2 for n > 1.

453



[Fibonacci Numbers: closed form]

Closed form of the Fibonacci numbers: computation via generation
functions:

1 Power series approach

f(x) :=
∞∑
i=0

Fi · xi

454



[Fibonacci Numbers: closed form]

2 For Fibonacci Numbers it holds that F0 = 0, F1 = 1,
Fi = Fi−1 + Fi−2 ∀i > 1. Therefore:

f(x) = x+
∞∑
i=2

Fi · xi = x+
∞∑
i=2

Fi−1 · xi +
∞∑
i=2

Fi−2 · xi

= x+ x
∞∑
i=2

Fi−1 · xi−1 + x2
∞∑
i=2

Fi−2 · xi−2

= x+ x
∞∑
i=0

Fi · xi + x2
∞∑
i=0

Fi · xi

= x+ x · f(x) + x2 · f(x).
455



[Fibonacci Numbers: closed form]

3 Thus:
f(x) · (1− x− x2) = x.

⇔ f(x) =
x

1− x− x2
= − x

x2 + x− 1

with the roots −φ and −φ̂ of x2 + x− 1,

φ =
1 +
√

5

2
≈ 1.6, φ̂ =

1−
√

5

2
≈ −0.6.

it holds that φ · φ̂ = −1 and thus

f(x) = − x

(x+ φ) · (x+ φ̂)
=

x

(1− φx) · (1− φ̂x)
456



[Fibonacci Numbers: closed form]

4 It holds that:
(1− φ̂x)− (1− φx) =

√
5 · x.

Damit:

f(x) =
1√
5

(1− φ̂x)− (1− φx)

(1− φx) · (1− φ̂x)

=
1√
5

(
1

1− φx
− 1

1− φ̂x

)

457



[Fibonacci Numbers: closed form]

5 Power series of ga(x) = 1
1−a·x (a ∈ R):

1

1− a · x
=

∞∑
i=0

ai · xi.

E.g. Taylor series of ga(x) at x = 0 or like this: Let
∑∞

i=0Gi · xi a power
series of g. By the identity ga(x)(1− a · x) = 1 it holds that for all x (within
the radius of convergence)

1 =
∞∑
i=0

Gi · xi − a ·
∞∑
i=0

Gi · xi+1 = G0 +
∞∑
i=1

(Gi − a ·Gi−1) · xi

For x = 0 it follows G0 = 1 and for x 6= 0 it follows then that Gi = a ·Gi−1 ⇒
Gi = ai.

458



[Fibonacci Numbers: closed form]

6 Fill in the power series:

f(x) =
1√
5

(
1

1− φx
− 1

1− φ̂x

)
=

1√
5

( ∞∑
i=0

φixi −
∞∑
i=0

φ̂ixi

)

=
∞∑
i=0

1√
5

(φi − φ̂i)xi

Comparison of the coefficients with f(x) =
∑∞

i=0 Fi · xi yields

Fi =
1√
5

(φi − φ̂i).

459



Fibonacci Numbers, Inductive Proof

It holds that Fi = 1√
5
(φi − φ̂i) with roots φ, φ̂ of the equation

x2 = x+ 1 (golden ratio), thus φ = 1+
√
5

2 , φ̂ = 1−
√
5

2 .

Proof (induction). Immediate for i = 0, i = 1. Let i > 2:

Fi = Fi−1 + Fi−2 =
1√
5

(φi−1 − φ̂i−1) +
1√
5

(φi−2 − φ̂i−2)

=
1√
5

(φi−1 + φi−2)− 1√
5

(φ̂i−1 + φ̂i−2) =
1√
5
φi−2(φ+ 1)− 1√

5
φ̂i−2(φ̂+ 1)

=
1√
5
φi−2(φ2)− 1√

5
φ̂i−2(φ̂2) =

1√
5

(φi − φ̂i).

460



Tree Height

Because φ̂ < 1, overal we have

M(h) ∈ Θ

(1 +
√

5

2

)h
 ⊆ Ω(1.618h)

and thus
h ≤ 1.44 log2 n+ c.

AVL tree is asymptotically not more than 44% higher than a
perfectly balanced tree.

461



Insertion

Balance

Keep the balance stored in each node
Re-balance the tree in each update-operation

New node n is inserted:

Insert the node as for a search tree.
Check the balance condition increasing from n to the root.

462



Balance at Insertion Point

=⇒

+1 0p p

n

case 1: bal(p) = +1

=⇒

−1 0p p

n

case 2: bal(p) = −1

Finished in both cases because the subtree height did not change

463



Balance at Insertion Point

=⇒

0 +1p p

n

case 3.1: bal(p) = 0 right

=⇒

0 −1p p

n

case 3.2: bal(p) = 0, left

Not finished in both case. Call of upin(p)

464



upin(p) - invariant

When upin(p) is called it holds that

the subtree from p is grown and
bal(p) ∈ {−1,+1}

465



upin(p)

Assumption: p is left son of pp20

=⇒

pp +1 pp 0

p p

case 1: bal(pp) = +1, done.

=⇒

pp 0 pp −1

p p

case 2: bal(pp) = 0, upin(pp)

In both cases the AVL-Condition holds for the subtree from pp

20If p is a right son: symmetric cases with exchange of +1 and −1
466



upin(p)
Assumption: p is left son of pp

pp −1

p

case 3: bal(pp) = −1,

This case is problematic: adding n to the subtree from pp has
violated the AVL-condition. Re-balance!

Two cases bal(p) = −1, bal(p) = +1
467



Rotationen

case 1.1 bal(p) = −1. 21

y

x

t1

t2

t3

pp −1

p −1

h

h− 1

h− 1

=⇒
rotation

right

x

y

t1 t2 t3

pp 0

p 0

h h− 1 h− 1

21p right son: bal(pp) = bal(p) = +1, left rotation
468



Rotationen
case 1.1 bal(p) = −1. 22

z

x

y

t1

t2
t3

t4

pp −1

p +1

h

h− 1

h− 1
h− 2

h− 2
h− 1

h− 1

=⇒
double
rotation
left-right

y

x z

t1 t2
t3

t4

pp 0

h− 1 h− 1
h− 2

h− 2
h− 1 h− 1

22p right son: bal(pp) = +1, bal(p) = −1, double rotation right left
469



Analysis

Tree height: O(log n).
Insertion like in binary search tree.
Balancing via recursion from node to the root. Maximal path
lenght O(log n).

Insertion in an AVL-tree provides run time costs of O(log n).

470



Deletion
Case 1: Children of node n are both leaves Let p be parent node of
n. ⇒ Other subtree has height h′ = 0, 1 or 2.

h′ = 1: Adapt bal(p).
h′ = 0: Adapt bal(p). Call upout(p).
h′ = 2: Rebalanciere des Teilbaumes. Call upout(p).

p

n

h = 0, 1, 2

−→

p

h = 0, 1, 2

471



Deletion

Case 2: one child k of node n is an inner node

Replace n by k. upout(k)

p

n

k −→

p

k

472



Deletion

Case 3: both children of node n are inner nodes

Replace n by symmetric successor. upout(k)
Deletion of the symmetric successor is as in case 1 or 2.

473



upout(p)

Let pp be the parent node of p.

(a) p left child of pp

1 bal(pp) = −1 ⇒ bal(pp)← 0. upout(pp)
2 bal(pp) = 0 ⇒ bal(pp)← +1.
3 bal(pp) = +1⇒ next slides.

(b) p right child of pp: Symmetric cases exchanging +1 and −1.

474



upout(p)
Case (a).3: bal(pp) = +1. Let q be brother of p
(a).3.1: bal(q) = 0.23

ypp +1

xp 0 zq 0

1 2

3 4

h− 1 h− 1

h+ 1 h+ 1

=⇒
Left Rotate(y)

z −1

y +1

x 0

1 2

3

4

h− 1 h− 1

h+ 1

h+ 1

23(b).3.1: bal(pp) = −1, bal(q) = −1, Right rotation 475



upout(p)
Case (a).3: bal(pp) = +1. (a).3.2: bal(q) = +1.24

ypp +1

xp 0 zq +1

1 2

3

4

h− 1 h− 1

h

h+ 1

=⇒
Left Rotate(y)

z 0r

y 0

x 0

1 2 3 4

h− 1 h− 1 h h+ 1

plus upout(r).

24(b).3.2: bal(pp) = −1, bal(q) = +1, Right rotation+upout
476



upout(p)
Case (a).3: bal(pp) = +1. (a).3.3: bal(q) = −1.25

ypp +1

xp 0 zq −1

w

1 2

3 4

5
h− 1 h− 1

h

=⇒
Rotate right
(z) left (y)

w 0r

y 0

x

z

0

1 2 3 4 5

h− 1 h− 1 h

plus upout(r).
25(b).3.3: bal(pp) = −1, bal(q) = −1, left-right rotation + upout

477



Conclusion

AVL trees have worst-case asymptotic runtimes of O(log n) for
searching, insertion and deletion of keys.
Insertion and deletion is relatively involved and an overkill for
really small problems.

478


	Binary Search Trees
	Trees
	Search Trees
	Key Insertion
	Remove Key
	Tree Traversal

	AVL Trees
	Balance
	AVL Condition
	Fibonacci Numbers
	AVL Insert


