16. Binary Search Trees

[Ottman/Widmayer, Kap. 5.1, Cormen et al, Kap. 12.1 - 12.3]

Dictionary implementation

Hashing: implementation of dictionaries with expected very fast access times.

Disadvantages of hashing: linear access time in worst case. Some operations not supported at all:

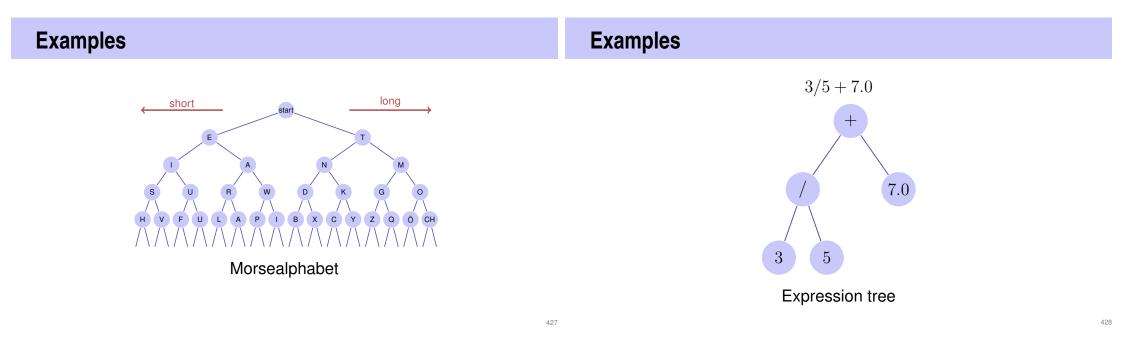
- enumerate keys in increasing order
- next smallest key to given key

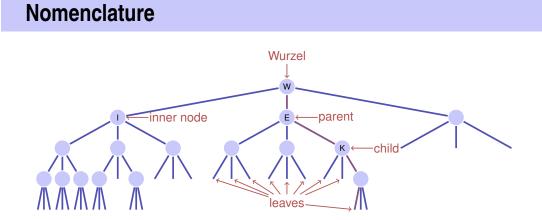
426

TreesTreesTrees areUse• Generalized lists: nodes can have more than one successor• Decision trees: hierarchic representation of decision rules• Special graphs: graphs consist of nodes and edges. A tree is a fully connected, directed, acyclic graph.• Syntax trees: parsing and traversing of expressions, e.g. in a compiler• Code tress: representation of a code, e.g. morse alphabet, huffman code• Code tress: representation of a code, e.g.

423

Search trees: allow efficient searching for an element by value





Order of the tree: maximum number of child nodes, here: 3
 Height of the tree: maximum path length root – leaf (here: 4)

Binary Trees

A binary tree is either

- a leaf, i.e. an empty tree, or
- an inner leaf with two trees T_l (left subtree) and T_r (right subtree) as left and right successor.

In each node v we store

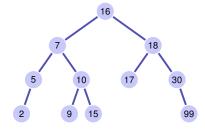
key	
left	right

- a key v.key and
- two nodes *v*.left and *v*.right to the roots of the left and right subtree.
- a leaf is represented by the **null**-pointer

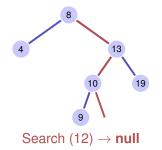
Binary search tree

A binary search tree is a binary tree that fulfils the search tree property:

- Every node v stores a key
- Keys in the left subtree v.left of v are smaller than v.key
- Key in the right subtree v.right of v are larger than v.key



Searching



return null

Height of a tree

The height h(T) of a tree T with root r is given by

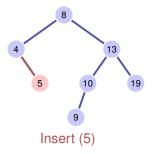
 $h(r) = \begin{cases} 0 & \text{if } r = \textbf{null} \\ 1 + \max\{h(r.\text{left}), h(r.\text{right})\} & \text{otherwise.} \end{cases}$

The worst case run time of the search is thus $\mathcal{O}(h(T))$

Insertion of a key

Insertion of the key \boldsymbol{k}

- $\blacksquare \ {\rm Search} \ {\rm for} \ k$
- If successful search: output error
- Of no success: insert the key at the leaf reached

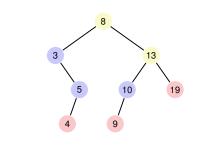


Remove node

Three cases possible:

- Node has no children
- Node has one child
- Node has two children

[Leaves do not count here]



Remove node

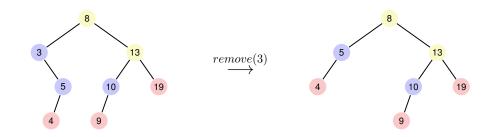
Node has no children

Simple case: replace node by leaf.

Remove node

Node has one child

Also simple: replace node by single child.



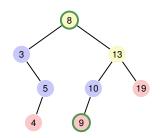
Remove node

Node has two children

The following observation helps: the smallest key in the right subtree v.right (the *symmetric successor* of v)

- is smaller than all keys in *v*.right
- is greater than all keys in *v*.left
- and cannot have a left child.

Solution: replace v by its symmetric successor.

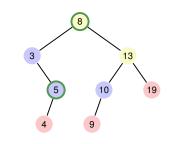


435

By symmetry...

Node has two children

Also possible: replace v by its symmetric predecessor.



Algorithm SymmetricSuccessor(v)

Input : Node v of a binary search tree. Output : Symmetric successor of v $w \leftarrow v.right$ $x \leftarrow w.left$ while $x \neq$ null do $w \leftarrow x$ $x \leftarrow x.left$

return w

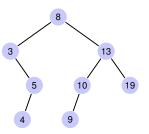
Analysis

Deletion of an element v from a tree T requires $\mathcal{O}(h(T))$ fundamental steps:

- Finding v has costs $\mathcal{O}(h(T))$
- If v has maximal one child unequal to **null**then removal takes $\mathcal{O}(1)$ steps
- Finding the symmetric successor n of v takes $\mathcal{O}(h(T))$ steps. Removal and insertion of n takes $\mathcal{O}(1)$ steps.

Traversal possibilities

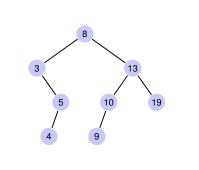
- preorder: v, then T_{left}(v), then T_{right}(v).
 8, 3, 5, 4, 13, 10, 9, 19
- postorder: T_{left}(v), then T_{right}(v), then v.
 4, 5, 3, 9, 10, 19, 13, 8
- inorder: $T_{\text{left}}(v)$, then v, then $T_{\text{right}}(v)$. 3, 4, 5, 8, 9, 10, 13, 19



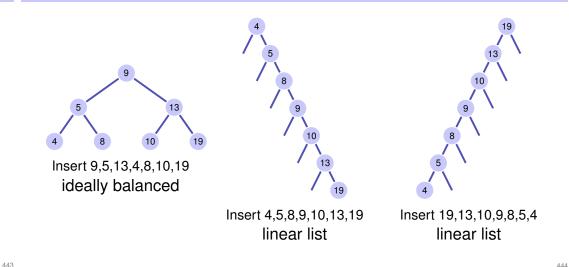
439

Further supported operations

- Min(*T*): Read-out minimal value in *O*(*h*)
- ExtractMin(*T*): Read-out and remove minimal value in *O*(*h*)
- List(T): Output the sorted list of elements
- Join (T_1, T_2) : Merge two trees with $\max(T_1) < \min(T_2)$ in $\mathcal{O}(n)$.



Degenerated search trees



Probabilistically

A search tree constructed from a random sequence of numbers provides an an expected path length of $O(\log n)$.

Attention: this only holds for insertions. If the tree is constructed by random insertions and deletions, the expected path length is $\mathcal{O}(\sqrt{n})$.

Balanced trees make sure (e.g. with *rotations*) during insertion or deletion that the tree stays balanced and provide a $O(\log n)$ Worst-case guarantee.

17. AVL Trees

Balanced Trees [Ottman/Widmayer, Kap. 5.2-5.2.1, Cormen et al, Kap. Problem 13-3]

Objective

Balance of a node

Searching, insertion and removal of a key in a tree generated from n keys inserted in random order takes expected number of steps $O(\log_2 n)$.

But worst case $\Theta(n)$ (degenerated tree).

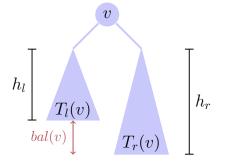
Goal: avoidance of degeneration. Artificial balancing of the tree for each update-operation of a tree.

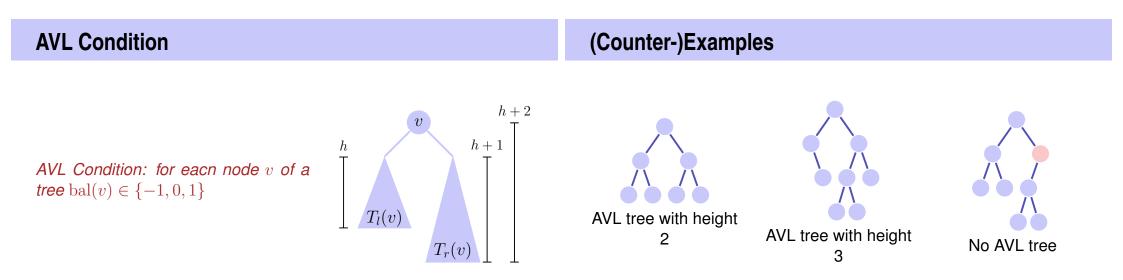
Balancing: guarantee that a tree with n nodes always has a height of $\mathcal{O}(\log n)$.

Adelson-Venskii and Landis (1962): AVL-Trees

The height *balance* of a node v is defined as the height difference of its sub-trees $T_l(v)$ and $T_r(v)$

$$\operatorname{bal}(v) := h(T_r(v)) - h(T_l(v))$$



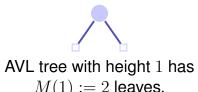


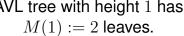
447

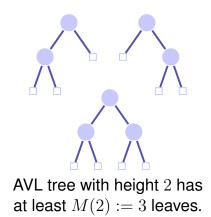
Number of Leaves

Lower bound of the leaves

- 1. observation: a binary search tree with *n* keys provides exactly n+1 leaves. Simple induction argument.
- 2. observation: a lower bound of the number of leaves in a search tree with given height implies an upper bound of the height of a search tree with given number of keys.

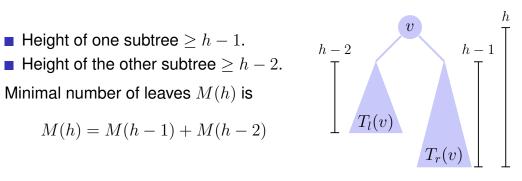






Lower bound of the leaves for h > 2

- Height of one subtree > h 1.
- Minimal number of leaves M(h) is
 - M(h) = M(h-1) + M(h-2)



Overal we have $M(h) = F_{h+2}$ with *Fibonacci-numbers* $F_0 := 0$, $F_1 := 1, F_n := F_{n-1} + F_{n-2}$ for n > 1.

[Fibonacci Numbers: closed form]

Closed form of the Fibonacci numbers: computation via generation functions:

1 Power series approach

$$f(x) := \sum_{i=0}^{\infty} F_i \cdot x^i$$

[Fibonacci Numbers: closed form]

2 For Fibonacci Numbers it holds that $F_0 = 0$, $F_1 = 1$, $F_i = F_{i-1} + F_{i-2} \forall i > 1$. Therefore:

$$f(x) = x + \sum_{i=2}^{\infty} F_i \cdot x^i = x + \sum_{i=2}^{\infty} F_{i-1} \cdot x^i + \sum_{i=2}^{\infty} F_{i-2} \cdot x^i$$
$$= x + x \sum_{i=2}^{\infty} F_{i-1} \cdot x^{i-1} + x^2 \sum_{i=2}^{\infty} F_{i-2} \cdot x^{i-2}$$
$$= x + x \sum_{i=0}^{\infty} F_i \cdot x^i + x^2 \sum_{i=0}^{\infty} F_i \cdot x^i$$
$$= x + x \cdot f(x) + x^2 \cdot f(x).$$

[Fibonacci Numbers: closed form]

3 Thus:

$$f(x) \cdot (1 - x - x^2) = x.$$

$$\Leftrightarrow \quad f(x) = \frac{x}{1 - x - x^2} = -\frac{x}{x^2 + x - 1}$$

with the roots $-\phi$ and $-\hat{\phi}$ of $x^2 + x - 1$,

$$\phi = \frac{1 + \sqrt{5}}{2} \approx 1.6, \qquad \hat{\phi} = \frac{1 - \sqrt{5}}{2} \approx -0.6.$$

it holds that
$$\phi \cdot \hat{\phi} = -1$$
 and thus

$$f(x) = -\frac{x}{(x+\phi)\cdot(x+\hat{\phi})} = \frac{x}{(1-\phi x)\cdot(1-\hat{\phi}x)}$$

[Fibonacci Numbers: closed form]

4 It holds that:

$$(1 - \hat{\phi}x) - (1 - \phi x) = \sqrt{5} \cdot x$$

Damit:

$$f(x) = \frac{1}{\sqrt{5}} \frac{(1 - \hat{\phi}x) - (1 - \phi x)}{(1 - \phi x) \cdot (1 - \hat{\phi}x)}$$
$$= \frac{1}{\sqrt{5}} \left(\frac{1}{1 - \phi x} - \frac{1}{1 - \hat{\phi}x}\right)$$

[Fibonacci Numbers: closed form]

5 Power series of
$$g_a(x) = \frac{1}{1-a\cdot x}$$
 $(a \in \mathbb{R})$:
$$\frac{1}{1-a\cdot x} = \sum_{i=0}^{\infty} a^i \cdot x^i.$$

E.g. Taylor series of $g_a(x)$ at x = 0 or like this: Let $\sum_{i=0}^{\infty} G_i \cdot x^i$ a power series of g. By the identity $g_a(x)(1 - a \cdot x) = 1$ it holds that for all x (within the radius of convergence)

$$1 = \sum_{i=0}^{\infty} G_i \cdot x^i - a \cdot \sum_{i=0}^{\infty} G_i \cdot x^{i+1} = G_0 + \sum_{i=1}^{\infty} (G_i - a \cdot G_{i-1}) \cdot x^i$$

For $x = 0$ it follows $G_0 = 1$ and for $x \neq 0$ it follows then that $G_i = a \cdot G_{i-1} \Rightarrow G_i = a^i$.

[Fibonacci Numbers: closed form]

6 Fill in the power series:

$$f(x) = \frac{1}{\sqrt{5}} \left(\frac{1}{1 - \phi x} - \frac{1}{1 - \hat{\phi} x} \right) = \frac{1}{\sqrt{5}} \left(\sum_{i=0}^{\infty} \phi^i x^i - \sum_{i=0}^{\infty} \hat{\phi}^i x^i \right)$$
$$= \sum_{i=0}^{\infty} \frac{1}{\sqrt{5}} (\phi^i - \hat{\phi}^i) x^i$$

Comparison of the coefficients with $f(x) = \sum_{i=0}^{\infty} F_i \cdot x^i$ yields

$$F_i = \frac{1}{\sqrt{5}}(\phi^i - \hat{\phi}^i).$$

Fibonacci Numbers, Inductive Proof

It holds that $F_i = \frac{1}{\sqrt{5}}(\phi^i - \hat{\phi}^i)$ with roots ϕ , $\hat{\phi}$ of the equation $x^2 = x + 1$ (golden ratio), thus $\phi = \frac{1+\sqrt{5}}{2}$, $\hat{\phi} = \frac{1-\sqrt{5}}{2}$.

Proof (induction). Immediate for i = 0, i = 1. Let i > 2:

$$F_{i} = F_{i-1} + F_{i-2} = \frac{1}{\sqrt{5}} (\phi^{i-1} - \hat{\phi}^{i-1}) + \frac{1}{\sqrt{5}} (\phi^{i-2} - \hat{\phi}^{i-2})$$

$$= \frac{1}{\sqrt{5}} (\phi^{i-1} + \phi^{i-2}) - \frac{1}{\sqrt{5}} (\hat{\phi}^{i-1} + \hat{\phi}^{i-2}) = \frac{1}{\sqrt{5}} \phi^{i-2} (\phi + 1) - \frac{1}{\sqrt{5}} \hat{\phi}^{i-2} (\hat{\phi} + 1)$$

$$= \frac{1}{\sqrt{5}} \phi^{i-2} (\phi^{2}) - \frac{1}{\sqrt{5}} \hat{\phi}^{i-2} (\hat{\phi}^{2}) = \frac{1}{\sqrt{5}} (\phi^{i} - \hat{\phi}^{i}).$$

Tree Height

Because $\hat{\phi} < 1$, overal we have

$$M(h)\in \Theta\left(\left(\frac{1+\sqrt{5}}{2}\right)^h\right)\subseteq \Omega(1.618^h)$$

and thus

$$h \le 1.44 \log_2 n + c$$

AVL tree is asymptotically not more than 44% higher than a perfectly balanced tree.

Insertion

Balance

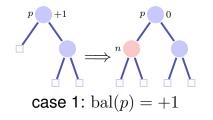
- Keep the balance stored in each node
- Re-balance the tree in each update-operation

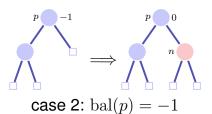
New node n is inserted:

- Insert the node as for a search tree.
- \blacksquare Check the balance condition increasing from n to the root.

459

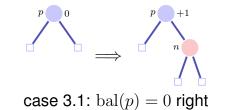
Balance at Insertion Point

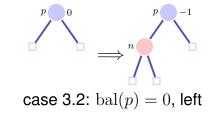




Finished in both cases because the subtree height did not change

Balance at Insertion Point





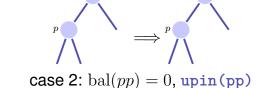
Not finished in both case. Call of upin(p)

463

When upin(p) is called it holds that

- the subtree from p is grown and
- $\bullet \operatorname{bal}(p) \in \{-1, +1\}$

$$p \xrightarrow{pp +1} \implies p \xrightarrow{pp 0}$$



case 1: bal(pp) = +1, done.

In both cases the AVL-Condition holds for the subtree from pp

 $^{^{20}}$ If p is a right son: symmetric cases with exchange of +1 and -1

upin(p)

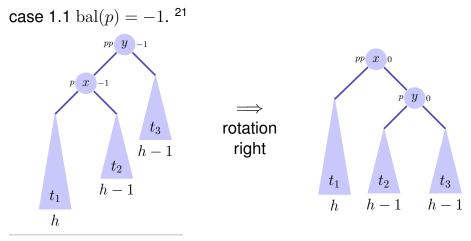
Assumption: p is left son of pp

ase 3: bal(pp) = -1,

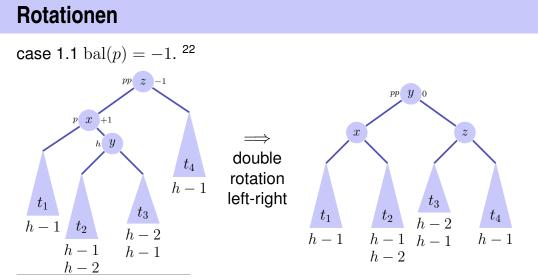
This case is problematic: adding n to the subtree from pp has violated the AVL-condition. Re-balance!

Two cases bal(p) = -1, bal(p) = +1

Rotationen



 ^{21}p right son: bal(pp) = bal(p) = +1, left rotation



Analysis

- Tree height: $\mathcal{O}(\log n)$.
- Insertion like in binary search tree.
- Balancing via recursion from node to the root. Maximal path lenght $\mathcal{O}(\log n)$.

Insertion in an AVL-tree provides run time costs of $O(\log n)$.

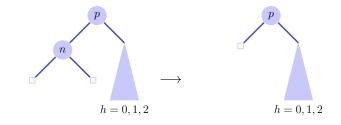
467

 $^{^{22}}p$ right son: bal(pp) = +1, bal(p) = -1, double rotation right left

Deletion

Case 1: Children of node n are both leaves Let p be parent node of $n. \Rightarrow$ Other subtree has height h' = 0, 1 or 2.

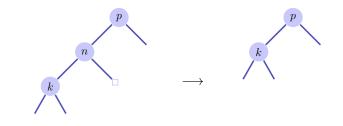
- h' = 1: Adapt bal(p).
- h' = 0: Adapt bal(p). Call upout (p).
- h' = 2: Rebalanciere des Teilbaumes. Call upout (p).



Deletion

Case 2: one child k of node n is an inner node

Replace n by k. upout (k)



upout(p)

Case 3: both children of node n are inner nodes

- Replace n by symmetric successor. upout (k)
- Deletion of the symmetric successor is as in case 1 or 2.

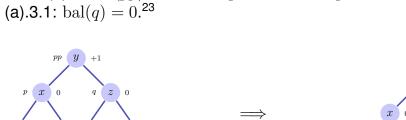
Let pp be the parent node of p.

- (a) p left child of pp
 - 1 $\operatorname{bal}(pp) = -1 \Rightarrow \operatorname{bal}(pp) \leftarrow 0.$ upout (pp)
 - **2** $\operatorname{bal}(pp) = 0 \Rightarrow \operatorname{bal}(pp) \leftarrow +1.$
 - $\exists bal(pp) = +1 \Rightarrow next slides.$

(b) p right child of pp: Symmetric cases exchanging +1 and -1.

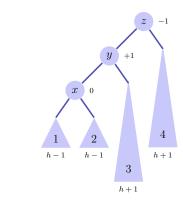
471

upout(p)



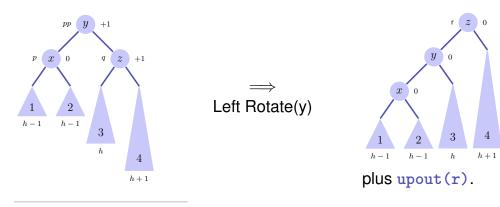
Left Rotate(y)

Case (a).3: bal(pp) = +1. Let q be brother of p



upout(p)

Case (a).3: bal(pp) = +1. (a).3.2: bal(q) = +1.²⁴



```
<sup>24</sup>(b).3.2: bal(pp) = -1, bal(q) = +1, Right rotation+upout
```

²³(b).3.1: bal(pp) = -1, bal(q) = -1, Right rotation

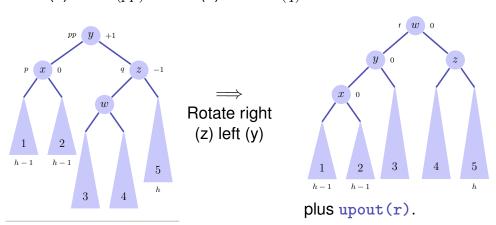
h + 1

h + 1

upout(p)

h - 1

h - 1



Case (a).3: bal(pp) = +1. (a).3.3: bal(q) = -1.²⁵

Conclusion

- AVL trees have worst-case asymptotic runtimes of $O(\log n)$ for searching, insertion and deletion of keys.
- Insertion and deletion is relatively involved and an overkill for really small problems.

475

²⁵(b).3.3: $\operatorname{bal}(pp) = -1$, $\operatorname{bal}(q) = -1$, left-right rotation + upout