Dictionary implementation

Hashing: implementation of dictionaries with expected very fast
access times.

16 Binary SearCh Trees Disadvantages of hashing: linear access time in worst case. Some

operations not supported at all:

[Ottman/Widmayer, Kap. 5.1, Cormen et al, Kap. 12.1 - 12.3] m enumerate keys in increasing order
m next smallest key to given key

423

Trees Trees

Use

m Decision trees: hierarchic representation of
Trees are decision rules

m syntax trees: parsing and traversing of
expressions, e.g. in a compiler

m Code tress: representation of a code, e.g.
morse alphabet, huffman code

m Search trees: allow efficient searching for an
element by value

m Generalized lists: nodes can have more than one successor

m Special graphs: graphs consist of nodes and edges. A tree is a
fully connected, directed, acyclic graph.

425

Examples

short |ong
start

/ \
N N
/ \ /N /N / N\
/\ /\ /R\ /W\ /D\ /K\ /G\ /O\

H Vv F U L A P B X € Y Z Q O CH

AYAYAVAVAVAVAAVAYATAYAYAVAVL

Morsealphabet

427

Nomenclature

Wurzel

l

| nner node 1V<—parent\
AN N I
ASNVANVINVIA
MMM A BN

m Order of the tree: maximum number of child nodes, here: 3
m Height of the tree: maximum path length root — leaf (here: 4)

Ieaves\/I\

429

Examples

3/54 7.0
+
/N
/ 7.0
/\
3 5

Expression tree

428

Binary Trees

A binary tree is either

m a leaf, i.e. an empty tree, or

m an inner leaf with two trees T; (left subtree) and T, (right subtree)
as left and right successor.

In each node v we store key
left right

m a key v.key and

m two nodes v.left and v.right to the roots of the left and right
subtree.

m a leaf is represented by the null-pointer

430

Binary search tree

A binary search tree is a binary tree that fulfils the search tree
property:
m Every node v stores a key

m Keys in the left subtree v.left of v are smaller than v.key
m Key in the right subtree v.right of v are larger than v.key

7/ \18
5/ \10
[]\ \

431

Height of a tree

The height h(7T") of a tree T" with root r is given by

0 if » = null
h(r) = : .
1 + max{h(r.left), h(r.right)} otherwise.

The worst case run time of the search is thus O(h(7"))

Searching

Input : Binary search tree with root r, key k

Output : Node v with v.key = k or null
VT
while v # null do
if & = v.key then
| return v
else if k£ < v.key then
I v v.left
else
| v < v.right

return null

Insertion of a key

Insertion of the key k

m Search for k

m If successful search: output
error

m Of no success: insert the key at
the leaf reached

4/8\13

10/ \19
J\

Search (12) — null

4 / | \13
\5 10/

/

9
Insert (5)

\

19

434

Remove node

Three cases possible:

m Node has no children
m Node has one child

m Node has two children

\

19

/

9

8
/ \
& 13
\ /
5] 10
[Leaves do not count here] 4/

435

Remove node

Node has one child
Also simple: replace node by single child.

3 / 8 \13
\ 10/ \19

5)

/] /

4 9 9

remove(3) >
— /

437

Remove node

Node has no children
Simple case: replace node by leaf.

8
3 / \13
remove(4)
AN =
10 19

5

/[/

4 9 9

436

Remove node

Node has two children

The following observation helps: the
smallest key in the right subtree v.right
(the symmetric successor of v) 3 13

m is smaller than all keys in v.right
m is greater than all keys in v.left
m and cannot have a left child.

Solution: replace v by its symmetric suc-
cessor.

438

By symmetry...
3 13
Also possible: replace v by its symmetric /' \l
predecessor. 10 19
/
4 9
Analysis

Deletion of an element v from a tree 7" requires O(h(T))
fundamental steps:

m Finding v has costs O(h(T))

m If v has maximal one child unequal to nullthen removal takes
O(1) steps

m Finding the symmetric successor n of v takes O(h(T")) steps.
Removal and insertion of n takes O(1) steps.

441

Algorithm SymmetricSuccessor(v)

Input : Node v of a binary search tree.
Output : Symmetric successor of v

w 4— v.right

T <+ w.left

while z # null do

W T

T < x.left

return w

440

Traversal possibilities

m preorder: v, then Ti.(v), then
CTlright(v)-
8,3,5,4,13,10,9, 19

m postorder: Tie (v), then Thigne(v), then
v.

4,5,3,9,10,19, 13,8

m inorder: Tics(v), then v, then Tign: (v).
3,4,5,8,9,10,13, 19

3

\

19

/

9

3 / 8 \1
\5 10/
4/

442

Further supported operations

m Min(7T"): Read-out minimal value in
O(h)

m ExtractMin(7"): Read-out and remove
minimal value in O(h)

m List(7): Output the sorted list of
elements

m Join(71,T5): Merge two trees with
max(77) < min(73) in O(n).

Probabilistically

A search tree constructed from a random sequence of numbers

3/8
\5
/

provides an an expected path length of O(logn).

Attention: this only holds for insertions. If the tree is constructed by
random insertions and deletions, the expected path length is O(\/n).

Balanced trees make sure (e.g. with rotations) during insertion or

9

N
10/

/

\

deletion that the tree stays balanced and provide a O(logn)

Worst-case guarantee.

19

443

445

Degenerated search trees

/4\5 13/19\
9 / \8 10/ \
N\ /N A\
4/ \8 10/ \19 / \10 8/ \

/) /\
Insert 9,5,13,4,8,10,19 13\ /5
ideally balanced / m 4 \
Insert 4,5,8,9,10,13,19 Insert 19,13,10,9,8,5,4
linear list linear list

444

17. AVL Trees

Balanced Trees [Ottman/Widmayer, Kap. 5.2-5.2.1, Cormen et al,
Kap. Problem 13-3]

446

Objective

Searching, insertion and removal of a key in a tree generated from n
keys inserted in random order takes expected number of steps
O(logy n).

But worst case ©(n) (degenerated tree).

Goal: avoidance of degeneration. Artificial balancing of the tree for
each update-operation of a tree.

Balancing: guarantee that a tree with n nodes always has a height of
O(logn).

Adelson-Venskii and Landis (1962): AVL-Trees

447

AVL Condition
h+2
’U _
h h+1
AVL Condition: for eacn node v of a
tree bal(v) € {—1,0,1}
Ti(v)
T.(v) 1 |

449

Balance of a node

The height balance of a node v is de-
fined as the height difference of its
sub-trees T;(v) and T,.(v) hy

bal(v) := h(T,(v)) — h(Ti(v))

(Counter-)Examples

/' \
/' \
\ /N
/\ 7\
/\
AVL tree with height
) AVL tree with height

3

448

/' \
A,
/\

No AVL tree

450

Number of Leaves Lower bound of the leaves

/N /\

m 1. observation: a binary search tree with n keys provides exactly /\ /\
n + 1 leaves. Simple induction argument. / \

m 2. observation: a lower bound of the number of leaves in a search / \
tree with given height implies an upper bound of the height of a AVL tree with height 1 has
search tree with given number of keys. M(1) := 2 leaves. /\ /\

AVL tree with height 2 has
at least M (2) := 3 leaves.

Lower bound of the leaves for i > 2 [Fibonacci Numbers: closed form]
J h Closed form of the Fibonacci numbers: computation via generation
m Height of one subtree > h — 1. L 4 functions:
m Height of the other subtree > h — 2. T m Power series approach
Minimal number of leaves M (h) is o
M(h) = M(h—1)+ M(h —2) Ti(v) flz):= 2; F-af
T, (v) 1 1 B

Overal we have M (h) = Fj .o with Fibonacci-numbers Fy := 0,
F=1F,=F,_1+F,_oforn>1.

[Fibonacci Numbers: closed form] [Fibonacci Numbers: closed form]

For Fibonacci Numbers it holds that £y = 0, F} = 1, Thus:
F; = F,_1+ F,_9 ¥Yi > 1. Therefore: @) (1—2—2%) =2
[0.9] o0 oo o T _ x
x):JJ—FZFL‘-Ii::L‘—t—ZFi,l-xi—{—ZFi,Q-xi = f(x)_l—x—xz 2?2 +x—1
= . = . ith the roots —¢ and —¢ of 22 + 2 — 1,
o+ Foyoa ' 425 Fy 22 wi
x X Z 1T i Z 2T 1+ \/5 A L \/5
:x+xZF’i~xi+x2ZE-xi it holds that ¢ - ¢ = —1 and thus
§ - fla)= -t = -
=zt - f(x)+2% f(2). (@+¢) (x+0) (1—ox) (1—¢a)
[Fibonacci Numbers: closed form] [Fibonacci Numbers: closed form]
It holds that:) Power series of g,(z) = —— (a € R):
(1—¢z)—(1—¢z) =5) o
Damit: l—a-ngo:al x
1 (1— él’) — (1 — ¢x) E.g. Taylor series of g,(z) at z = 0 or like this: Let Y ;° G, - 2" a power
f(a:) - 7 1 1— o series of g. By the identity g,(x)(1 — a - z) = 1 it holds that for all x (within
1 (_1@3) (—1q§a:) the radius of convergence)
_7<1—¢x 1_ggx> 1:ZGZTZ—CLZGZ’L' G0+Z i —a- Gzl
=0 =0

For x = 0 it follows Gy = 1 and for x # 0 it foIIows then that G; = a-G;_1 =
Gi = G,i.

[Fibonacci Numbers: closed form]

@ Fill in the power series:

(1—1¢x 1—1g£cc> :7 <Z¢ | iqg)

_ L
\/_
S CETE

Comparison of the coefficients with f(z) = "2, F; - 2" yields

F, = %(W —).

Tree Height

Because ¢ < 1, overal we have

h
M(h) € © ((1 +2\/5>) C Q(1.618")

h < 1.44logyn + c.

and thus

AVL tree is asymptotically not more than 44% higher than a
perfectly balanced tree.

461

Fibonacci Numbers, Inductive Proof

¢') with roots ¢, ¢ of the equation
145 é: 1-V5
2 2 2

It holds that F; = \/Lg(gbi —
2? = x + 1 (golden ratio), thus ¢ =

Proof (induction). Immediate fori = 0,72 = 1. Let i > 2:

1 i—1 2i—1 L2 2i—2
F‘:Fi71+F‘i72:%(¢ ")+ \/(fﬁ —¢')
7—1 12_7A' A‘QZLIQ 122A
\f(é +¢77) f(¢> +¢'77) \/5¢ (p+1)— \/gcé (¢ +1)
i—2) L i i
:ﬁcb (¢)—\/5¢ (%) = 5(¢ ?')
Insertion
Balance

m Keep the balance stored in each node
m Re-balance the tree in each update-operation

New node n is inserted:

m Insert the node as for a search tree.
m Check the balance condition increasing from n to the root.

460

462

Balance at Insertion Point

VANEEIVAN /NN
ANANA AR ARYA\
case 1: bal(p) = +1 case 2: bal(p) = —1

Finished in both cases because the subtree height did not change

upin(p) - invariant

When upin(p) is called it holds that

m the subtree from p is grown and
m bal(p) € {—1,+1}

463

465

Balance at Insertion Point

/N /N
= N

case 3.1: bal(p) = 0 right

N
=\

case 3.2: bal(p) = 0, left

/\

Not finished in both case. Call of upin(p)

464

upin(p)

Assumption: p is left son of pp?°
pp +1

ANEVAN VANEIVAN
ANEEERA /N T\

case 1: bal(pp) = +1, done. case 2: bal(pp) = 0, upin(pp)

In both cases the AVL-Condition holds for the subtree from pp

20|f p is a right son: symmetric cases with exchange of +1 and —1
466

upin(p)

Assumption: p is left son of pp

AN
/\

case 3: bal(pp) = —1,

This case is problematic: adding n to the subtree from pp has
violated the AVL-condition. Re-balance!

Two cases bal(p) = —1, bal(p) = +1

467

Rotationen
case 1.1 bal(p) = —1. 22
ppl Z 1\
pp Y 0
Pz +1/ /
N\ T z
hlY 2
/ \ i double / \ / \
_, rotation
t left-right ts
3 1t t3 '[,'1 t2 h—9 '[I4
. h—2 h—1 h—1php—-1 h—1
h=1""h-1 h—2
h—2

22p right son: bal(pp) = +1, bal(p) = —1, double rotation right left
469

Rotationen

/ \ T 0
Pz —1 / \
/ \ . Py o
t3 rotation / \
h—1 right
1)
i ho 1 t1 iy t3
h h—1 h—1
h
21p right son: bal(pp) = bal(p) = +1, left rotation
Analysis

m Tree height: O(logn).
m Insertion like in binary search tree.

m Balancing via recursion from node to the root. Maximal path
lenght O(logn).

Insertion in an AVL-tree provides run time costs of O(logn).

Deletion

Case 1: Children of node n are both leaves Let p be parent node of
n. = Other subtree has height »’ = 0, 1 or 2.

m 7/ = 1: Adapt bal(p).
m 7/ = 0: Adapt bal(p). Call upout (p).
m /' = 2: Rebalanciere des Teilbaumes. Call upout (p).

N Za\N
SN

h=0,1,2 h=0,1,2

471

Deletion

Case 3: both children of node n are inner nodes

m Replace n by symmetric successor. upout (k)
m Deletion of the symmetric successor is as in case 1 or 2.

Deletion

Case 2: one child k of node n is an inner node

m Replace n by k. upout (k)

N N
SN LA
/ \

upout (p)

Let pp be the parent node of p.
(a) p left child of pp

bal(pp) = —1 = bal(pp) + 0. upout (pp)
bal(pp) =0 = bal(pp) < +1.
bal(pp) = +1 = next slides.

(b) p right child of pp: Symmetric cases exchanging +1 and —1.

upout (p)

Case (a).3: bal(pp) = +1. Let g be brother of p

(a).3.1: bal(q) = 0.2

/N /N

h+1 h+1

—
Left Rotate(y)

23(b).3.1: bal(pp) = —1, bal(q) = —

upout (p)

1, Right rotation

Case (a).3: bal(pp) = +1. (a).3.3: bal(q) = —1.%°

oY+l

/NN
\

—
Rotate right

(2) left (y)

25(b).3.3: bal(pp) = —1, bal(q) =

1, left-right rotation + upout

A
N
/ \
N\
N /N
/ \

plus upout (r).

475

477

Case (a).3: bal(pp) = +1. (a).3.2: bal(q) = +1.24

upout (p)
p Y +1
P x{ \12 +1
/N / N\
1 2
h—1 h—1
3
by
h+1
24(b).3.2: bal(pp) = —1, bal(q) = +
Conclusion

N\
- x{ \
Left Rotate(y) / \
1 2 3 4

plus upout (r).

, Right rotation+upout

m AVL trees have worst-case asymptotic runtimes of O(logn) for
searching, insertion and deletion of keys.

m Insertion and deletion is relatively involved and an overkill for

really small problems.

476

478

