Data Structures and Algorithms

Course at D-MATH (CSE) of ETH Zurich

Felix Friedrich

FS 2018

1. Introduction

Algorithms and Data Structures, Three Examples

Goals of the course

- Understand the design and analysis of fundamental algorithms and data structures.
- An advanced insight into a modern programming model (with C++).
- Knowledge about chances, problems and limits of the parallel and concurrent computing.

Goals of the course

On the one hand

Essential basic knowlegde from computer science.

Andererseits

Preparation for your further course of studies and practical considerations.

Contents

data structures / algorithms

The notion invariant, cost model, Landau notation algorithms design, induction searching, selection and sorting dynamic programming

Landau notation sorting networks, parallel algorithms
ion Randomized algorithms (Gibbs/SA), multiscale approach
tion and sorting geometric algorithms, high peformance LA
programming graphs, shortest paths, backtracking, flow
dictionaries: hashing and search trees

prorgamming with C++

RAII, Move Konstruktion, Smart Pointers, Constexpr, user defined literals

Templates and generic programming threads, mutex

Exceptions

functors and lambdas

rals promises and futures

threads, mutex and monitors

parallel programming

parallelism vs. concurrency, speedup (Amdahl/-Gustavson), races, memory reordering, atomir registers, RMW (CAS,TAS), deadlock/starvation

1.2 Algorithms

[Cormen et al, Kap. 1;Ottman/Widmayer, Kap. 1.1]

Algorithm

Algorithm: well defined computing procedure to compute *output* data from *input* data

2

Input: A sequence of n numbers (a_1, a_2, \ldots, a_n)

Input: A sequence of n numbers (a_1, a_2, \ldots, a_n)

Output: Permutation $(a'_1, a'_2, \dots, a'_n)$ of the sequence $(a_i)_{1 \leq i \leq n}$, such that

 $a_1' \le a_2' \le \dots \le a_n'$

2

Input: A sequence of n numbers (a_1, a_2, \ldots, a_n)

Output: Permutation $(a'_1, a'_2, \dots, a'_n)$ of the sequence $(a_i)_{1 \leq i \leq n}$, such that

 $a_1' \le a_2' \le \dots \le a_n'$

Possible input

 $(1,7,3), (15,13,12,-0.5), (1) \dots$

Input: A sequence of n numbers (a_1, a_2, \ldots, a_n)

Output: Permutation $(a'_1, a'_2, \dots, a'_n)$ of the sequence $(a_i)_{1 \leq i \leq n}$, such that

 $a_1' \le a_2' \le \dots \le a_n'$

Possible input

$$(1,7,3), (15,13,12,-0.5), (1) \dots$$

Every example represents a problem instance

■ Tables and statistis: sorting, selection and searching

- Tables and statistis: sorting, selection and searching
- routing: shortest path algorithm, heap data structure

- Tables and statistis: sorting, selection and searching
- routing: shortest path algorithm, heap data structure
- DNA matching: Dynamic Programming

- Tables and statistis: sorting, selection and searching
- routing: shortest path algorithm, heap data structure
- DNA matching: Dynamic Programming
- fabrication pipeline: Topological Sorting

- Tables and statistis: sorting, selection and searching
- routing: shortest path algorithm, heap data structure
- DNA matching: Dynamic Programming
- fabrication pipeline: Topological Sorting
- autocomletion and spell-checking: Dictionaries / Trees

- Tables and statistis: sorting, selection and searching
- routing: shortest path algorithm, heap data structure
- DNA matching: Dynamic Programming
- fabrication pipeline: Topological Sorting
- autocomletion and spell-checking: Dictionaries / Trees
- Symboltables (compiler) : Hash-Tables

- Tables and statistis: sorting, selection and searching
- routing: shortest path algorithm, heap data structure
- DNA matching: Dynamic Programming
- fabrication pipeline: Topological Sorting
- autocomletion and spell-checking: Dictionaries / Trees
- Symboltables (compiler) : Hash-Tables
- The travelling Salesman: Dynamic Programming, Minimum Spanning Tree, Simulated Annealing

- Tables and statistis: sorting, selection and searching
- routing: shortest path algorithm, heap data structure
- DNA matching: Dynamic Programming
- fabrication pipeline: Topological Sorting
- autocomletion and spell-checking: Dictionaries / Trees
- Symboltables (compiler) : Hash-Tables
- The travelling Salesman: Dynamic Programming, Minimum Spanning Tree, Simulated Annealing
- Drawing at the computer: Digitizing lines and circles, filling polygons

- Tables and statistis: sorting, selection and searching
- routing: shortest path algorithm, heap data structure
- DNA matching: Dynamic Programming
- fabrication pipeline: Topological Sorting
- autocomletion and spell-checking: Dictionaries / Trees
- Symboltables (compiler) : Hash-Tables
- The travelling Salesman: Dynamic Programming, Minimum Spanning Tree, Simulated Annealing
- Drawing at the computer: Digitizing lines and circles, filling polygons
- Page-Rank: (Markov-Chain) Monte Carlo ...

Characteristics

- Extremely large number of potential solutions
- Practical applicability

Darta Structures

- Organisation of the data tailored towards the algorithms that operate on the data.
- Programs = algorithms + data structures.

Very hard problems.

- NP-compleete problems: no known efficient solution (but the non-existence of such a solution is not proven yet!)
- Example: travelling salesman problem

A dream

- If computers were infinitely fast and had an infinite amount of memory ...
- ... then we would still need the theory of algorithms (only) for statements about correctness (and termination).

The reality

Resources are bounded and not free:

- Computing time → Efficiency
- Storage space → Efficiency

1.3 Ancient Egyptian Multiplication

Ancient Egyptian Multiplication

Compute $11 \cdot 9$

11 | 9

9 | 11

¹Also known as russian multiplication

Compute $11 \cdot 9$

11 | 9

9 | 11

Double left, integer division by 2 on the right

¹Also known as russian multiplication

Compute $11 \cdot 9$

Double left, integer division by 2 on the right

¹Also known as russian multiplication

Compute $11 \cdot 9$

11	9		11
22	4	18	5
44	2	36	2

Double left, integer division by 2 on the right

¹Also known as russian multiplication

11	9	9	11
22	4	18	5
44	2	36	2
88	1	72	1

- Double left, integer division by 2 on the right
- **2** Even number on the right \Rightarrow eliminate row.

¹Also known as russian multiplication

11	9	9	11
22	_4	18	5
44	$\frac{2}{2}$	36	_ 2
88	1	72	1

- Double left, integer division by 2 on the right
- **Even number on the right** \Rightarrow eliminate row.

¹Also known as russian multiplication

11	9	9	11
22	_4	18	5
44	$\frac{2}{2}$	36	_ 2
88	1	72	1

- Double left, integer division by 2 on the right
- **2** Even number on the right \Rightarrow eliminate row.
- Add remaining rows on the left.

¹Also known as russian multiplication

11	9	9	11
22	_4	18	5
11	2	36	$\frac{2}{2}$
00	1		1
88		$\frac{72}{}$	
99	_	99	

- Double left, integer division by 2 on the right
- **Even number on the right** \Rightarrow eliminate row.
- Add remaining rows on the left.

¹Also known as russian multiplication

Advantages

- Short description, easy to grasp
- Efficient to implement on a computer: double = left shift, divide by 2 = right shift

Beispiel

```
\begin{array}{ll} \textit{left shift} & 9 = 01001_2 \rightarrow 10010_2 = 18 \\ \textit{right shift} & 9 = 01001_2 \rightarrow 00100_2 = 4 \\ \end{array}
```

3

Questions

- Does this always work (negative numbers?)?
- If not, when does it work?
- How do you prove correctness?
- Is it better than the school method?
- What does "good" mean at all?
- How to write this down precisely?

Observation

If b > 1, $a \in \mathbb{Z}$, then:

$$a \cdot b = egin{cases} 2a \cdot rac{b}{2} & \text{falls } b \text{ gerade,} \\ a + 2a \cdot rac{b-1}{2} & \text{falls } b \text{ ungerade.} \end{cases}$$

Termination

$$a\cdot b= egin{cases} a & \text{falls } b=1, \ 2a\cdot rac{b}{2} & \text{falls } b \text{ gerade,} \ a+2a\cdot rac{b-1}{2} & \text{falls } b \text{ ungerade.} \end{cases}$$

Recursively, Functional

$$f(a,b) = \begin{cases} a & \text{falls } b = 1, \\ f(2a, \frac{b}{2}) & \text{falls } b \text{ gerade,} \\ a + f(2a, \frac{b-1}{2}) & \text{falls } b \text{ ungerade.} \end{cases}$$

Implemented

```
// pre: b>0
// post: return a*b
int f(int a, int b){
   if(b==1)
       return a;
   else if (b\%2 == 0)
       return f(2*a, b/2);
   else
       return a + f(2*a, (b-1)/2):
```

Correctnes

$$f(a,b) = \begin{cases} a & \text{if } b = 1, \\ f(2a, \frac{b}{2}) & \text{if } b \text{ even,} \\ a + f(2a \cdot \frac{b-1}{2}) & \text{if } b \text{ odd.} \end{cases}$$

Remaining to show: $f(a,b) = a \cdot b$ for $a \in \mathbb{Z}$, $b \in \mathbb{N}^+$.

Proof by induction

Base clause: $b = 1 \Rightarrow f(a, b) = a = a \cdot 1$.

Hypothesis: $f(a, b') = a \cdot b'$ für $0 < b' \le b$

Step: $f(a, b+1) \stackrel{!}{=} a \cdot (b+1)$

$$f(a,b+1) = \begin{cases} f(2a, \underbrace{\frac{\leq b}{b+1}}) = a \cdot (b+1) & \text{if } b \text{ odd,} \\ a + f(2a, \underbrace{\frac{b}{2}}) = a + a \cdot b & \text{if } b \text{ even.} \end{cases}$$

End Recursion

The recursion can be writen as *end recursion*

```
// pre: b>0
                                         // post: return a*b
// pre: b>0
                                          int f(int a, int b){
// post: return a*b
int f(int a, int b){
                                            if(b==1)
  if(b==1)
                                              return a:
   return a;
                                            int z=0;
  else if (b\%2 == 0)
                                            if (b\%2!=0){
   return f(2*a, b/2);
                                              --b:
  else
                                              z=a:
   return a + f(2*a, (b-1)/2):
                                            return z + f(2*a, b/2):
```

End-Recursion ⇒ **Iteration**

```
int f(int a, int b) {
                                          int res = 0;
// pre: b>0
                                          while (b != 1) {
// post: return a*b
                                            int z = 0:
int f(int a, int b){
                                            if (b \% 2 != 0){
  if(b==1)
                                              --b:
   return a:
                                              z = a:
  int z=0:
  if (b\%2!=0){
                                            res += z:
    --b:
                                            a *= 2: // neues a
    z=a:
                                            b /= 2: // neues b
  return z + f(2*a, b/2):
                                          res += a; // Basisfall b=1
                                          return res;
```

Simplify

```
int f(int a, int b) {
  int res = 0;
                                             // pre: b>0
  while (b != 1) {
                                             // post: return a*b
    int z = 0:
                                             int f(int a, int b) {
    if (b \% 2 != 0){
                                               int res = 0:
      --b; → Teil der Division
                                               while (b > 0) {
      z = a \longrightarrow Direkt in res
                                                  if (b \% 2 != 0)
                                                    res += a:
    res += z;
                                                  a *= 2:
    a *= 2:
                                                  b /= 2:
    b /= 2:
                                               return res;
  res += a; \longrightarrow in den Loop
  return res;
```

```
// pre: b>0
// post: return a*b
int f(int a, int b) {
                                    Sei x := a \cdot b.
  int res = 0;
  while (b > 0) {
    if (b % 2 != 0){
     res += a;
      --b:
   a *= 2;
    b /= 2:
  return res;
```

```
// pre: b>0
// post: return a*b
int f(int a, int b) {
                                      Sei x := a \cdot b.
  int res = 0;
                                      here: x = a \cdot b + res
  while (b > 0) {
    if (b % 2 != 0){
      res += a;
      --b:
    a *= 2;
    b /= 2:
  return res;
```

```
// pre: b>0
// post: return a*b
int f(int a, int b) {
                                        Sei x := a \cdot b.
  int res = 0;
                                        here: x = a \cdot b + res
  while (b > 0) {
    if (b % 2 != 0){
                                        if here x = a \cdot b + res \dots
      res += a;
      --b:
    a *= 2;
    b /= 2:
  return res;
```

```
// pre: b>0
// post: return a*b
int f(int a, int b) {
                                         Sei x := a \cdot b.
  int res = 0;
                                         here: x = a \cdot b + res
  while (b > 0) {
    if (b % 2 != 0){
                                         if here x = a \cdot b + res \dots
      res += a;
      --b:
                                         ... then also here x = a \cdot b + res
    a *= 2;
    b /= 2:
  return res;
```

```
// pre: b>0
// post: return a*b
int f(int a, int b) {
                                         Sei x := a \cdot b.
  int res = 0;
                                         here: x = a \cdot b + res
  while (b > 0) {
    if (b % 2 != 0){
                                         if here x = a \cdot b + res \dots
      res += a:
       --b:
                                         ... then also here x = a \cdot b + res
                                         b even
    a *= 2;
    b /= 2:
  return res;
```

```
// pre: b>0
// post: return a*b
int f(int a, int b) {
                                          Sei x := a \cdot b.
  int res = 0;
                                          here: x = a \cdot b + res
  while (b > 0) {
    if (b % 2 != 0){
                                          if here x = a \cdot b + res \dots
      res += a:
       --b:
                                          ... then also here x = a \cdot b + res
                                          b even
    a *= 2;
    b /= 2:
                                          here: x = a \cdot b + res
  return res;
```

```
// pre: b>0
// post: return a*b
int f(int a, int b) {
                                          Sei x := a \cdot b.
  int res = 0;
                                          here: x = a \cdot b + res
  while (b > 0) {
    if (b % 2 != 0){
                                          if here x = a \cdot b + res \dots
      res += a:
       --b:
                                           ... then also here x = a \cdot b + res
                                          b even
    a *= 2;
    b /= 2:
                                          here: x = a \cdot b + res
                                          here: x = a \cdot b + res und b = 0
  return res;
```

```
// pre: b>0
// post: return a*b
int f(int a, int b) {
  int res = 0;
  while (b > 0) {
    if (b % 2 != 0){
                                       if here x = a \cdot b + res \dots
      res += a:
      --b:
                                       ... then also here x = a \cdot b + res
                                       b even
    a *= 2;
    b /= 2:
  return res;
```

```
Sei x := a \cdot b.
here: x = a \cdot b + res
```

here:
$$x = a \cdot b + res$$

here: $x = a \cdot b + res$ und $b = 0$
Also $res = x$.

Conclusion

The expression $a \cdot b + res$ is an *invariant*

- Values of *a*, *b*, *res* change but the invariant remains basically unchanged
- The invariant is only temporarily discarded by some statement but then re-established
- If such short statement sequences are considered atomiv, the value remains indeed invariant
- In particular the loop contains an invariant, called *loop invariant* and operates there like the induction step in induction proofs.
- Invariants are obviously powerful tools for proofs!

Further simplification

```
// pre: b>0
// post: return a*b
                                        // pre: b>0
int f(int a, int b) {
                                        // post: return a*b
  int res = 0;
                                        int f(int a, int b) {
 while (b > 0) {
                                          int res = 0;
    if (b \% 2 != 0){
                                          while (b > 0) {
     res += a:
                                           res += a * (b\%2):
      --b:
                                            a *= 2;
                                            b /= 2:
   a *= 2;
   b /= 2:
                                          return res;
  return res;
```

```
// pre: b>0
// post: return a*b
int f(int a, int b) {
  int res = 0:
  while (b > 0) {
   res += a * (b\%2):
   a *= 2;
   b /= 2:
  return res;
```

```
1 \ 0 \ 0 \ 1 \ \times \ 1 \ 0 \ 1 \ 1
```

```
// pre: b>0
// post: return a*b
int f(int a, int b) {
  int res = 0:
  while (b > 0) {
   res += a * (b\%2):
   a *= 2;
   b /= 2:
  return res;
```

```
// pre: b>0
// post: return a*b
int f(int a, int b) {
  int res = 0:
  while (b > 0) {
   res += a * (b\%2):
   a *= 2;
   b /= 2:
  return res;
```

```
// pre: b>0
// post: return a*b
int f(int a, int b) {
  int res = 0:
  while (b > 0) {
   res += a * (b\%2):
   a *= 2;
   b /= 2:
  return res;
```

```
// pre: b>0
// post: return a*b
int f(int a, int b) {
  int res = 0:
  while (b > 0) {
   res += a * (b\%2):
   a *= 2;
   b /= 2:
  return res;
```

```
// pre: b>0
// post: return a*b
int f(int a, int b) {
  int res = 0:
  while (b > 0) {
    res += a * (b\%2):
    a *= 2;
    b /= 2:
  return res;
```

Efficiency

Question: how long does a multiplication of a and b take?

- Measure for efficiency
 - Total number of fundamental operations: double, divide by 2, shift, test for "even", addition
 - In the recursive and recursive code: maximally 6 operations per call or iteration, respectively
- Essential criterion:
 - Number of recursion calls or
 - Number iterations (in the iterative case)
- $\frac{b}{2^n} \le 1$ holds for $n \ge \log_2 b$. Consequently not more than $6\lceil \log_2 b \rceil$ fundamental operations.

1.4 Fast Integer Multiplication

[Ottman/Widmayer, Kap. 1.2.3]

a			C	d	
6	2		3	7	
			1	4	$d \cdot b$
		4	2		$d \cdot a$
			6		$c \cdot b$
	1	8			$d \cdot b$ $d \cdot a$ $c \cdot b$ $c \cdot a$
		a b 6 2	6 2 .	6 2 · 3 1 4 2 6	$6 2 \cdot 3 7$

Primary school:

	a	b		C	d	
	6	2		<i>c</i> 3		
				1	4	$d \cdot b$
			4	2 6		$d \cdot a$
				6		$d \cdot b$ $d \cdot a$ $c \cdot b$
		1	8			$c \cdot a$
=		2	2	9	4	

Primary school:

 $2 \cdot 2 = 4$ single-digit multiplications.

Primary school:

 $2 \cdot 2 = 4$ single-digit multiplications. \Rightarrow Multiplication of two n-digit numbers: n^2 single-digit multiplications

Observation

$$ab \cdot cd = (10 \cdot a + b) \cdot (10 \cdot c + d)$$

Observation

$$ab \cdot cd = (10 \cdot a + b) \cdot (10 \cdot c + d)$$
$$= 100 \cdot a \cdot c + 10 \cdot a \cdot c$$
$$+ 10 \cdot b \cdot d + b \cdot d$$
$$+ 10 \cdot (a - b) \cdot (d - c)$$

a	b		C	d	
6	2		3	•	
			1		$d \cdot b$
		1	4		$d \cdot b$
		1	6		$(a-b)\cdot(d-c)$
		1	8		$c \cdot a$
	1	8			$c \cdot a$

	a	b		C	d	
	6	2		3	7	
				1	4	$d \cdot b$
			1	4		$d \cdot b$
			1	6		$(a-b)\cdot(d-c)$
			1	8		$c \cdot a$
		1	8			$c \cdot a$
=		2	2	9	4	

ightarrow 3 single-digit multiplications.

Large Numbers

$$6237 \cdot 5898 = \underbrace{62}_{a'} \underbrace{37}_{b'} \cdot \underbrace{58}_{c'} \underbrace{98}_{d'}$$

Large Numbers

$$6237 \cdot 5898 = \underbrace{62}_{a'} \underbrace{37}_{b'} \cdot \underbrace{58}_{c'} \underbrace{98}_{d'}$$

Recursive / inductive application: compute $a' \cdot c'$, $a' \cdot d'$, $b' \cdot c'$ and $c' \cdot d'$ as shown above.

Large Numbers

$$6237 \cdot 5898 = \underbrace{62}_{a'} \underbrace{37}_{b'} \cdot \underbrace{58}_{c'} \underbrace{98}_{d'}$$

Recursive / inductive application: compute $a' \cdot c'$, $a' \cdot d'$, $b' \cdot c'$ and $c' \cdot d'$ as shown above.

 $\rightarrow 3 \cdot 3 = 9$ instead of 16 single-digit multiplications.

Generalization

Assumption: two numbers with n digits each, $n = 2^k$ for some k.

$$(10^{n/2}a + b) \cdot (10^{n/2}c + d) = 10^n \cdot a \cdot c + 10^{n/2} \cdot a \cdot c + 10^{n/2} \cdot b \cdot d + b \cdot d + 10^{n/2} \cdot (a - b) \cdot (d - c)$$

Recursive application of this formula: algorithm by Karatsuba and Ofman (1962).

Analysis

M(n): Number of single-digit multiplications.

Recursive application of the algorithm from above \Rightarrow recursion equality:

$$M(2^k) = \begin{cases} 1 & \text{if } k = 0, \\ 3 \cdot M(2^{k-1}) & \text{if } k > 0. \end{cases}$$

Iterative Substition

Iterative substition of the recursion formula in order to guess a solution of the recursion formula:

$$M(2^k) = 3 \cdot M(2^{k-1})$$

Iterative Substition

Iterative substition of the recursion formula in order to guess a solution of the recursion formula:

$$M(2^k) = 3 \cdot M(2^{k-1}) = 3 \cdot 3 \cdot M(2^{k-2}) = 3^2 \cdot M(2^{k-2})$$

Iterative Substition

Iterative substition of the recursion formula in order to guess a solution of the recursion formula:

$$M(2^{k}) = 3 \cdot M(2^{k-1}) = 3 \cdot 3 \cdot M(2^{k-2}) = 3^{2} \cdot M(2^{k-2})$$

$$= \dots$$

$$\stackrel{!}{=} 3^{k} \cdot M(2^{0}) = 3^{k}.$$

Proof: induction

Hypothesis H:

$$M(2^k) = 3^k.$$

Proof: induction

Hypothesis H:

$$M(2^k) = 3^k.$$

Base clause (k = 0):

$$M(2^0) = 3^0 = 1.$$
 \checkmark

Proof: induction

Hypothesis H:

$$M(2^k) = 3^k.$$

Base clause (k = 0):

$$M(2^0) = 3^0 = 1.$$
 \checkmark

Induction step $(k \rightarrow k + 1)$:

$$M(2^{k+1}) \stackrel{\text{def}}{=} 3 \cdot M(2^k) \stackrel{\text{H}}{=} 3 \cdot 3^k = 3^{k+1}.$$

Comparison

Traditionally n^2 single-digit multiplications.

Comparison

Traditionally n^2 single-digit multiplications.

Karatsuba/Ofman:

$$M(n) = 3^{\log_2 n} = (2^{\log_2 3})^{\log_2 n} = 2^{\log_2 3 \log_2 n} = n^{\log_2 3} \approx n^{1.58}.$$

Comparison

Traditionally n^2 single-digit multiplications.

Karatsuba/Ofman:

$$M(n) = 3^{\log_2 n} = (2^{\log_2 3})^{\log_2 n} = 2^{\log_2 3 \log_2 n} = n^{\log_2 3} \approx n^{1.58}.$$

Example: number with 1000 digits: $1000^2/1000^{1.58} \approx 18$.

Best possible algorithm?

We only know the upper bound $n^{\log_2 3}$.

There are (for large n) practically relevant algorithms that are faster. The best upper bound is not known.

Lower bound: n/2 (each digit has to be considered at at least once)

1.5 Finde den Star

Is this constructive?

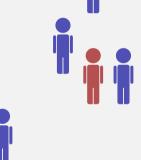
Exercise: find a faster multiplication algorithm. Unsystematic search for a solution $\Rightarrow \bigcirc$.

Let us consider a more constructive example.

Example 3: find the star!

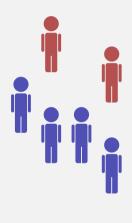
Room with n > 1 people.

- Star: Person that does not know anyone but is known by everyone.
- **Fundamental operation:** Only allowed question to a person A: "Do you know B?" ($B \neq A$)

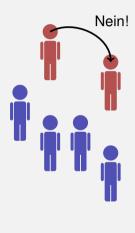


known?

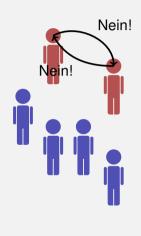
- Possible: no star present
- Possible: one star present
- More than one star possible?



- Possible: no star present
- Possible: one star present
- More than one star possible?

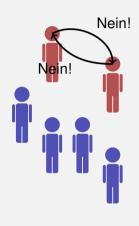


- Possible: no star present
- Possible: one star present
- More than one star possible?



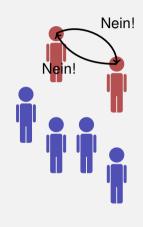
- Possible: no star present
- Possible: one star present
- More than one star possible?

Assumption: two stars S_1 , S_2 .



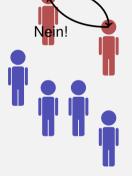
- Possible: no star present
- Possible: one star present
- More than one star possible?

Assumption: two stars S_1 , S_2 . S_1 knows $S_2 \Rightarrow S_1$ no star.



- Possible: no star present
- Possible: one star present
- More than one star possible?

Assumption: two stars S_1 , S_2 . S_1 knows $S_2 \Rightarrow S_1$ no star. S_1 does not know $S_2 \Rightarrow S_2$ no star. \bot



Nein!

Naive solution

Ask everyone about everyone

Result:

	1	2	3	4
1	-	yes	no	no
2	no	-	no	no
3	yes	yes	-	no
4	yes	yes	yes	-

Naive solution

Ask everyone about everyone

Result:

	1	2	3	4
1	-	yes	no	no
2	no	-	no	no
3	yes	yes yes	-	no
4	yes	yes	yes	-

Star is 2.

Naive solution

Ask everyone about everyone

Result:

Star is 2.

Numer operations (questions): $n \cdot (n-1)$.

Induction: partition the problem into smaller pieces.

Induction: partition the problem into smaller pieces.

n=2: Two questions suffice

Induction: partition the problem into smaller pieces.

- \blacksquare n=2: Two questions suffice
- n>2: Send one person out. Find the star within n-1 people. Then check A with $2\cdot (n-1)$ questions.

Induction: partition the problem into smaller pieces.

- n=2: Two questions suffice
- n > 2: Send one person out. Find the star within n-1 people. Then check A with $2 \cdot (n-1)$ questions.

Overal

$$F(n) = 2(n-1) + F(n-1) = 2(n-1) + 2(n-2) + \dots + 2 = n(n-1).$$

Induction: partition the problem into smaller pieces.

- n=2: Two questions suffice
- n > 2: Send one person out. Find the star within n-1 people. Then check A with $2 \cdot (n-1)$ questions.

Overal

$$F(n) = 2(n-1) + F(n-1) = 2(n-1) + 2(n-2) + \dots + 2 = n(n-1).$$

No benefit. 😕

Idea: avoid to send the star out.

Idea: avoid to send the star out.

 \blacksquare Ask an arbitrary person A if she knows B.

Idea: avoid to send the star out.

- \blacksquare Ask an arbitrary person A if she knows B.
- If yes: A is no star.

Idea: avoid to send the star out.

- Ask an arbitrary person A if she knows B.
- If yes: A is no star.
- If no: *B* is no star.

Idea: avoid to send the star out.

- \blacksquare Ask an arbitrary person A if she knows B.
- If yes: A is no star.
- If no: B is no star.
- At the end 2 people remain that might contain a star. We check the potential star *X* with any person that is out.

Analyse

$$F(n) = \begin{cases} 2 & \text{for } n = 2, \\ 1 + F(n-1) + 2 & \text{for } n > 2. \end{cases}$$

Analyse

$$F(n) = \begin{cases} 2 & \text{for } n = 2, \\ 1 + F(n-1) + 2 & \text{for } n > 2. \end{cases}$$

Iterative substitution:

$$F(n) = 3 + F(n-1) = 2 \cdot 3 + F(n-2) = \dots = 3 \cdot (n-2) + 2 = 3n - 4.$$

Proof: exercise!

Moral

With many problems an inductive or recursive pattern can be developed that is based on the piecewise simplification of the problem. Next example in the next lecture.